有限元法基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元法是最先应用于航空工程结构的矩阵分析方法,主要用来解决复杂结构中力与位移的关系。有限元法的基本思想:将具有无限个自由度的连续的求解区域离散为具有有限个自由度、且按一定方式(节点)相互连接在一起的离散体(单元),即将连续体假想划分为数目有限的离散单元,而单元之间只在数目有限的指定点处相互联结,用离散单元的集合体代替原来的连续体。一般情况下,有限元方程是一组以节点位移为未知量的线性方程组,解次方程组可得到连续体上有限个节点上的位移,进而可求得各单元上的应力分布规律。

有限元方法求解问题主要分为以下几步:

(1)结构的离散化

将连续体离散成为单元组合体;

(2)选择位移模式

即假定单元中位移分布是坐标的某种函数,位移模式一般选为多项式的函数;

(3)单元力学特性分析

利用弹性力学的平衡方程、几何方程、物理方程和虚功原理得到单元节点力和节点位移之间的力学关系,即建立单元刚度矩阵;

(4)计算等效节点力

根据虚功相等原则,用等效节点力来代替所有作用于单元边界或单元内部的载荷;

(5)建立整个结构的所有节点载荷与节点位移之间的关系(整体结构平衡方程),即建立结构的的总体刚度矩阵;

(6)边界条件

排除结构发生整体刚性位移的可能性。

(7)求解线性方程组

方程组有唯一解,即得到结构中各节点的位移,单元内部位移通过插值得到。

(8)后处理与计算结果评价

相关文档
最新文档