有限元分析理论基础
材料力学有限元分析知识点总结

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。
本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。
一、理论基础1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。
2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。
3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。
二、有限元建模1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。
2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。
3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。
三、求解方法1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。
2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。
3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。
4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。
四、误差分析1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。
2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。
3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。
第二章 有限元分析基本理论

第二章 有限元分析基本理论有限元法的基本思路是将一个连续求解区域分割成有限个不重叠且按一定方式相互连接在一起的子域(单元),利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场函数。
单元内的场函数通常由未知场函数或其导数在单元各个节点的数值和其插值函数来近似表示。
这样,未知场函数或其导数在各个节点上的数值即成为未知量(自由度)。
根据单元在边界处相互之间的连续性,将各单元的关系式集合成方程组,求出这些未知量,并通过插值函数计算出各个单元内场函数的近似值,从而得到全求解域上的近似解。
有限元将一个连续的无限自由度问题变成离散的有限自由度问题进行求解。
如果将区域划分成很细的网格,也即单元的尺寸变得越来越小,或随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断被改进。
如果单元是满足收敛要求的,近似解最后可收敛于精确解。
2.1 有限元分析的基本概念和计算步骤首先以求解连续梁为例,引出结构有限元分析的一些基本概念和计算步骤。
如图2-1,连续梁承受集中力矩作用。
将结构离散为三个节点,两个单元。
结构中的节点编号为1、2、32.1.1单元分析在有限元分析过程中,第一步是进行结构离散,并对离散单元进行分析,分析的目的是得到单元节点的力与位移的关系。
单元分析的方法有直接法和能量法,本节采用直接法。
从连续梁中取出一个典型单元e ,左边为节点i ,右边为节点j 。
将节点选择在支承点处,单元两端只产生转角位移e i θ、ej θ,顺时针转动为正。
独立的单元杆端内力为弯矩i m 、j m ,顺时针为正。
记:{}e j i eu ⎭⎬⎫⎩⎨⎧=θθ为单元e 的节点位移向量;{}ej i em m f ⎭⎬⎫⎩⎨⎧=为单元e 的杆端力向量。
根据结构力学位移法可得如下平衡方程:⎪⎭⎪⎬⎫+=+=e j e e i e e j ej e e i e e i k k m k k m θθθθ22211211 (2-1)式中:ee e e ee i k k i k k 2412212211====,lEIi e =,EI 、l 分别为单元e 的抗弯刚度和长度。
有限元理论基础及应用

有限元理论基础及应用有限元理论是应用于工程计算领域的一种数值分析方法,它是通过将连续的结构或物体分割成有限数量的离散单元,然后在每个单元上进行近似计算,最终得到整个结构或物体的近似解。
有限元理论广泛应用于结构分析、流体力学、电磁场分析等领域,是工程计算的重要工具。
有限元理论的基础是有限元方法,它将连续的结构或物体以网格的形式划分成一系列有限的单元,通过在每个单元内进行节点位移或其他物理量的近似表示,建立起离散的数学模型。
在有限元方法中,常用的单元形状包括线元、三角形单元、四边形单元等。
每个单元的节点之间通过连接的方式形成整个结构的网格。
有限元理论的基本原理是将连续的物理问题转化为离散的代数问题,通过求解代数方程组得到数值结果。
其基本步骤包括:1.离散化:将连续的结构或物体划分为离散的单元,并在每个单元上建立近似解。
2.建立单元方程:根据结构或物体的本构关系、边界条件等,建立每个单元的方程。
3.组装:根据单元之间的连接方式,将每个单元的方程组装成整个结构或物体的方程。
4.边界条件处理:考虑边界条件对结构或物体的约束作用,修改方程。
5.求解代数方程组:将边界条件处理后的方程组进行求解,得到数值解。
有限元理论的应用非常广泛,主要包括:1.结构分析:有限元方法在结构力学领域的应用非常广泛,可以用于预测结构的应力、变形、疲劳寿命等。
例如,在建筑工程中,可以使用有限元方法对建筑结构进行静力分析,以确保结构的稳定性和安全性。
2.流体力学:有限元方法在流体力学领域的应用包括流体流动、传热、空气动力学等方面。
通过将流体分割成离散的单元,并建立流体的动量方程、能量方程等,可以模拟和预测流体的各种特性。
3.电磁场分析:有限元方法可以用于模拟和分析电磁场的分布、辐射、散射等现象。
在电子器件设计中,有限元方法可以用于预测电磁场的影响和优化设计。
此外,有限元方法还应用于声学、热力学、生物力学等领域。
它的优势包括模拟结果的准确性、适用于复杂几何形状和边界条件、计算速度较快等。
有限元分析基本理论问答基础理论知识

有限元分析基本理论问答基础理论知识1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。
3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。
4. 有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。
缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无限求解域问题没有较好的处理办法。
尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。
5. ?梁单元和平面钢架结构单元的自由度由什么确定答:每个节点上有几个节点位移分量,就称每个节点有几个自由度6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。
7. 有限元法基本方程中的每一项的意义是什么答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。
8. 位移边界条件和载荷边界条件的意义是什么答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。
9. ?简述整体刚度矩阵的性质和特点答:对称性;奇异性;稀疏性;对角线上的元素恒为正。
有限元分析理论基础大全超详细

有限元分析理论基础大全超详细有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
有限元分析理论基础

13.05.2021
爱学习,爱交院
3
弹性力学 — 区别与联系 — 材料力学
3、研究的方法:有较大的区别。
虽然都从静力学、几何学与物理学三方面进行研究,
但是在建立这三方面条件时,采用了不同的分析方法。 材料力学是对构件的整个截面来建立这些条件的,因而 要常常引用一些截面的变形状况或应力情况的假设。这 样虽然大大简化了数学推演,但是得出的结果往往是近 似的,而不是精确的。而弹性力学是对构件的无限小单 元体来建立这些条件的,因而无须引用那些假设,分析 的方法比较严密,得出的结论也比较精确。所以,我们 可以用弹性力学的解答来估计材料力学解答的精确程度, 并确定它们的适用范围。
y,
z
平面问题
s
s s
xx yy
(x, (x,
y)
y
)
s
xy
(
x,
y
)
s s
yz zx
x, x,
y , z
y
,
z
一维问题
ssxxx
三、应变
空间三维问题
四、位移
xx x , y , z
yy
x,
y
,
z
zz xy
x , y , z
x
,
y
,
z
yz zx
x x
0
0
y
令:
0
0
z
其中
, , x y z
称微分算子,
0
13.05.2021
y
0
z
x z
0
y
x 爱 学习,爱交院
称算子矩阵。
17
二维问题的应变-位移关系可简化为:
02-01有限元分析基础-理论基础

Kq=f——————(1) 其中:K是整体刚度矩阵;
q是节点位移矩阵; f是载荷矩点位移 解有限元方程Kq=f可得到位移。在根据方
程组的特点来选择合适的计算方法。
通过上述分析了解到,有限元分析的基本 思路是“先离散在组装”,离散为了进行单 元分析,组装为了对整体结构进行分析。
σ=Eε—————(2-4) 将式(2-2)、式(2-3)代入到式(2-4) 后简化得到:
F=(AE/l)Δl—————(2-5) 式(2-5)与弹簧方程F=kx很相似。因此, 受轴向力作用的等截面杆看做一个弹簧,则:
keq=AE/l——————(2-6)
一、有限元分析理论基础
根据上述分析,杆件的截面面积都是在 一个方向上变化的。可以将杆件近似地看做 是由4个弹簧串联起来的模型。
(2)假定一个近似描述单元特性解 为研究典型单元的力学特性,不妨先考虑
横截面积为A、长度为l的杆件在外力F作用下 构件的变形。
杆件的平均应力由下式给出: σ=F/A————(2-2) 杆件的平均正应变ε为
ε=Δl/l————(2-3)
一、有限元分析理论基础
在弹性区域内,应力和应变服从胡克定 律,即:
1.2 定义单元特性 (2)定义单元的力学关系
根据单元的材料、形状、尺寸、节点数目、 位置等参数,找出单元节点力和节点位移的 关系式。 (3)计算等效节点力
物理模型离散化后,假定力是通过节点在 单元间进行传递的,但对于实际连续体,力 是通过单元的公共界面在单元间进行传递。
一、有限元分析理论基础
1.3 组装单元 利用结构中力的平衡条件和边界条件将各
利用以上模型,假定力施加在各节点上。 可根据有图中节点1~节点5的受力情况, 得到各节点上力的静平衡: 节点1:R1-k1(u2-u1)=0 节点2:k1(u2-u1)-k2(u3-u2)=0 节点3:k2(u3-u2)-k3(u4-u3)=0 节点2:k3(u4-u3)-k4(u5-u4)=0 节点2:k4(u5-u4)-P=0
有限元分析基础

有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。
边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。
场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。
下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。
等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。
试求:杆的位移分布,杆的应变和应⼒。
)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析概念有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
它包括大位移大应变及大位移小应变问题。
如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。
3)非线性边界问题在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。
平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。
实际的非线性可能同时出现上述两种或三种非线性问题。
有限元理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weighted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0L u f -=(5.1.1)()0B u g -=(5.1.2)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。
对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。
无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。
已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。
若计算问题具有对称性,应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
他们都可以认为是与某些控制方程相等效的积分“弱”形式。
虚功原理:变形体中任意满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。
虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式;虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。
虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的功的总和为零。
反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它们一定满足平衡方程。
所以,虚位移原理表述了力系平衡的必要而充分条件。
一般而言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非线性问题。
虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们上面所作的功的总和为零。
反之,如果上述虚力系在他们上面所作的功的和为零,则它们一定是满足协调的。
所以,虚应力原理表述了位移协调的必要而充分条件。
虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。
但是必须指出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于小变形理论的,他们不能直接应用于基于大变形理论的力学问题。
3、最小总势能法应变能:作用在物体上的外载荷会引起物体变形,变形期间外力所做的功以弹性能的形式储存在物体中,即为应变能。
由n 个单元和m 个节点组成的物体的总势能为总应变能和外力所做功的差:()11=n m e i i e i Fu ==∏Λ-∑∑ 最小势能原理:对于一个稳定的系统,相对于平衡位置发生的位移总会使系统的总势能最小,即:()110n m e i i e i i i i Fu u u u ==∂∏∂∂=Λ-=∂∂∂∑∑,i=1,2,3,……,n有限元法的收敛性有限元法是一种数值分析方法,因此应考虑收敛性问题。
有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
有限元的收敛条件包括如下四个方面:1)单元内,位移函数必须连续。
多项式是单值连续函数,因此选择多项式作为位移函数,在单元内的连续性能够保证。
2)在单元内,位移函数必须包括常应变项。
每个单元的应变状态总可以分解为不依赖于单元内各点位置的常应变和由各点位置决定的变量应变。
当单元的尺寸足够小时,单元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为应变的主要部分。
为反映单元的应变状态,单元位移函数必须包括常应变项。
3)在单元内,位移函数必须包括刚体位移项。
一般情况下,单元内任一点的位移包括形变位移和刚体位移两部分。
形变位移与物体形状及体积的改变相联系,因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移是不产生变形的位移。
空间一个物体包括三个平动位移和三个转动位移,共有六个刚体位移分量。
由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体位移,由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体位移项。
4)位移函数在相邻单元的公共边界上必须协调。
对一般单元而言,协调性是指相邻单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是说,要保证不发生单元的相互脱离开裂和相互侵入重叠。
要做到这一点,就要求函数在公共边界上能由公共节点的函数值唯一确定。
对一般单元,协调性保证了相邻单元边界位移的连续性。
但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能保证结构的应变能是有界量。
总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。
前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要求,满足协调性的单元叫协调单元;否则称为非协调单元。
完备性要求是收敛的必要条件,四条全部满足,构成收敛的充分必要条件。
在实际应用中,要使选择的位移函数全部满足完备性和协调性要求是比较困难的,在某些情况下可以放松对协调性的要求。
需要指出的是,有时非协调单元比与它对应的协调单元还要好,其原因在于近似解的性质。
假定位移函数就相当于给单元施加了约束条件,使单元变形服从所加约束,这样的替代结构比真实结构更刚一些。
但是,这种近似结构由于允许单元分离、重叠,使单元的刚度变软了,或者形成了(例如板单元在单元之间的绕度连续,而转角不连续时,刚节点变为铰接点)对于非协调单元,上述两种影响有误差相消的可能,因此利用非协调单元有时也会得到很好的结果。
在工程实践中,非协调元必须通过“小片试验后”才能使用。
应力的单元平均或节点平均处理方法最简单的处理应力结果的方法是取相邻单元或围绕节点各单元应力的平均值。
• 1.取相邻单元应力的平均值这种方法最常用于3节点三角形单元中。
这种最简单而又相当实用的单元得到的应力解在单元内是常数。
可以将其看作是单元内应力的平均值,或是单元形心处的应力。
由于应力近似解总是在精确解上下振荡,可以取相邻单元应力的平均值作为此两个单元合成的较大四边形单元形心处的应力。
如2单元的情况下,取平均应力可以采用算术平均,即平均应力=(单元1的应力+单元2的应力)/2。
也可以采用精确一些的面积加权平均,即平均应力=[单元1应力× 单元1的面积+单元2应力× 单元2面积]/(单元1面积+单元2面积)当相邻两单元面积相差不大时,两者的结果基本相同。
在单元划分时应避免相邻两单元的面积相差太多,从而使求解的误差相近。
一般而言,3节点三角形单元的最佳应力点是单元的中心点,此点的应力具有1阶的精度。
• 2.取围绕节点各单元应力的平均值首先计算围绕该节点(i )周围的相关单元在该节点出的应力值 ,然后以他们的平均值作为该节点的最后应力值 ,即其中,1~m 是围绕在i 节点周围的全部单元。
取平均值时也可进行面积加权。
有限元法求解问题的基本步骤i σ1.结构离散化对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;2.求出各单元的刚度矩阵[K](e)[K](e)是由单元节点位移量{Φ}(e)求单元节点力向量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e)3.集成总体刚度矩阵[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量{Φ}求整体节点力向量的转移矩阵,其关系式为{F}= [K] {Φ},此即为总体平衡方程。