大作业报告参考2有限元学习心得

合集下载

模态分析有限元仿真分析学习心得

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得1 有限元分析方法原理有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。

20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。

由于其方法的有效性,迅速被推广应用于机械结构分析中。

随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。

随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。

其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。

ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。

有限元分析一般由以下基本步骤组成:①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点;②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解;③建立单元刚度方程;④组装单元,构造总刚度矩阵;⑤应用边界条件和初值条件,施加载荷;⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移;⑦通过后处理获得最大应力、应变等信息。

结构的离散化是有限元的基础。

所谓离散化就是将分析的结构分割成为有限个单元体,使相邻单元体仅在节点处相连接,而以此单元的结合体去代替原来的结构。

如果分析的对象是桁架或者是刚架,显然可以取每一根杆作为单元,因为这一类结构就是由每一杆件相互连接而成;如果分析二维或是三维的连续介质,就要根据实际物体的形状和对于计算结果所要求的精度来确定单元的形状和剖分方式。

有限元基础学习心得

有限元基础学习心得

有限元基础学习心得一、问题:1、在开始安装软件时无法正常安装。

2、一些输入符号上的错误,如2.1e11,习惯上输入成了2.1ell,说明对物理意义并不是很清楚。

3、只是按照步骤一步一步往下走,不应该单纯只追求结果,应该要弄懂每一步都是什么意思。

但是现在做完之后根本不知道错在哪一步。

4、老师在课堂上讲过的坝体的载荷分布问题,应该是水深处压力,F应该修改为10000(0.45-X),这样计算的结果会合理一些。

5、英文界面的问题。

6、在操作时要细心,不能丢三落四,尽量独自完成练习,但是可以与同学做学习心得上的交流。

7、操作时不记得要经常保存。

8、对于有限元基本思想的理解不深(为什么要划分网格,ANSYS不是有限元分析的唯一软件)。

9、在生成几何模型时提前划分网格的一处有哪些,局部坐标系的用处有哪些。

二、建议1、希望老师可以推荐几本好的教材,学习起来比较得心应手。

2、希望可以多安排一些上机练习,练习量比较少,进步不大。

(这样理论学习上应该会有很大提高。

)3、上机时指导更加详细一些,一些问题还是有一些难度的。

4、讲课的速度开始时有些快,示范操作时速度慢一些,有一些同学可能会跟不上。

5、上课时多讲解一些操作方面的知识(特别是网格划分和结果显示,以及选择合适的单元类型的方法),增加一些对实际问题的分析和解决实例。

6、希望老师可以将软件及课程中出现的重要单词罗列出来,具体操作步骤的意义可以挑典型例题加以讲解,适当做一些总结。

7、希望老师可以在重要章节可以多重复几遍,加深印象。

8、建议老师安排同学们分组进行一些没有操作步骤提示的问题。

9、上机作业可能会存在抄袭现象。

10、对于用矩阵表达的一些公式的意义多加以讲解。

11、希望可以增加一些弹性力学的讲解。

12、希望老师能在作业每个操作步骤里添加一些解释性的说明。

13、希望可以多讲解一些船舶建模的基本方法以及它与桥梁建模之间的区别。

三、经验\感受:1、建议同学们在遇到问题时最好能记下来,积累经验,避免犯同样的错误。

有限元方法基本原理模型设计体会与总结

有限元方法基本原理模型设计体会与总结

有限元方法基本原理模型设计体会与总结有限元方法基本原理模型设计体会与总结
有限元方法基本原理模型设计体会与总结,在此我想到了一个重要的问题:如何才能算出这些误差量呢?还是用 matlab 来做。

利用自由度和约束条件,可以很容易得出各点误差值及相关系数,但对于非线性模型中各节点处的斜率、弹性力等参数都不太好求解。

对此,首先将非线性问题转化为线性问题;然后再分别计算这些参数并建立相应的数学表达式,最终得出结果。

有限元方法基本原理模型设计体会与总结,经过反复的推敲,逐步掌握了非线性结构的一般规律,这样便可在实际工程问题中加以应用,起到事半功倍的效果,而且通过对有限元方法模型设计所进行的探索,使自己明确了课堂教学任务。

从有限元方法方面说,本人觉得作业比较少,没有专门去布置习题,导致我们只会按照书上的例子进行套用,也就是用这种方法,缺乏创新意识。

而每次上课时,老师也没有提醒同学什么东西该记住或者怎么记住,那怕是你看过之后要考试也不见得考到,只让背下来,期末背就够了。

没办法呀!人家说不定把最难的放在期末来考呢!大家都喜欢拿高分嘛!这样的话就必须把它背下来,背得越熟练越好,要不然哪里有机会考啊?
- 1 -。

有限元读书报告

有限元读书报告

有限元读书报告1.有限元的基本理论在当前科学和工程技术的发展和研究中,有限元分析方法是应用最广泛的数值方法,它最早由clough在20世纪60年代提出了“有限单元法”的概念,研究人员们以此为基础不断的探索与创新,经过40年的发展从有限元法的基本概念演化出了一种新的数值分析方法。

有限元分析法把连续体的全求解域看成是由许多个子域组成,对全求解域进行离散,再对各个子域单元上分片假定一个合适的近似解,最后推导全求解域的满足条件建立方程,解出方程即可。

在确定工程和物理问题的数学模型后,使用有限元方法计算模型。

基本思想可以概括如下:1.把连续体的全求解域看成是由许多个子域组成的,并对其进行离散,一个连续体是通过各个单元边界上的节点互连组合成的。

2.在每个元素上假设近似函数,然后使用这些近似函数来表示解域中的未知字段变量。

每个单元中假定的近似函数通常由单元每个节点处的未知场函数值及其相应的插值函数表示。

我们知道,在这些节点上,场函数的值是相同的,所以它们可以作为数值解中的基本未知数。

然后就可以求出原始的场函数无穷多自由度的求解问题转化为场函数节点值的有限自由度的求解问题。

3.基于原问题的数学模型,采用等效加权法或变分原理建立有限元解方程,并用数值方法求解。

从上面所述的有限元法的基本思路中可以得到其具有以下四个特性:1.适应性,表现在其适用于复杂几何模型中;2.可应用性,表现于其在各种物理问题中的使用;3.可靠性,表现为其建立于严格的理论基础上;4.高效性,表现为其特别适合计算机的编程和执行。

由于上述四个特点,有限元法已成为应用最广泛的数值方法。

2.有限元的发展趋势纵观当今国际上cae软件的发展情况,可以看出有限元分析方法的一些发展趋势:2.1与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用cad软件的集成使用,即在用cad软件完成部件和零件的造型设计后,能直接将模型传送到cae软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析直到令人满意,这大大提高了设计水平和效率。

有限元分析学习心得4页

有限元分析学习心得4页

有限元分析学习心得4页有限元分析是一种非常重要的数值分析方法,应用广泛,用于对有限元几何体、材料特性下的力学问题进行分析。

本次学习课程对有限元分析进行了全面系统的介绍,总结如下:一、基本概念-(有限元几何和材料特性)有限元分析的基本概念是有限元几何、材料特性以及它们之间的关系。

有限元是通过将实体几何体划分合理的有限个单元网格对实体进行建模,每个单元都对应一个建模精度较高的小空间,这样可以大大减少建模量而不影响建模结果,从而提高计算效率。

材料特性通常指的是材料的弹性模量、刚度、网表等特性,这样可以精准地模拟几何体的变形和力学特性。

二、假设-(连续性和对称性)在进行有限元分析时,需要做出若干假设,为了提高计算效率,才能得到更准确的计算结果。

以连续性和对称性为例,连续性假设假设单元间不同位置上的物理性质之间具有连续性,从而削减计算量;而对称性假设假设单元间的非线性应力分布形态具有对称性,这样可以使计算的有效性更高。

三、节点-(节点的设定和支座的条件)节点是有限元分析中最重要也是最基本的一步,节点是建模和计算时首先进行的一步,它可以说是模型研究的基石。

所谓节点,指的是几何体在三维空间中不同位置所对应的单点,节点的设定条件可以分为硬支座和弹性支座。

硬支座是节点位置固定,运动角度和位移量都为零;弹性支座则是节点位置具有可变性,它的位移量和角度自由可变,通常用于研究弹性体的力学特性。

四、有限元分析方法-(有限元法和有限差分法)有限元分析可以分为有限元法和有限差分法两大类。

有限元法是建立在极限分析理论之上的,主要用于分析特定几何体的力学性能;有限差分法则是一种逐步积分的计算方法,用于分析广泛的物理场应用问题,如热流体流动以及电磁和声学仿真等等。

本次学习过程中,对有限元分析的基本概念、建模所需的假设、节点的设定以及有限元分析方法都有了深入的了解。

希望以后在工程实践中能够更好地应用有限元分析。

有限元读书报告范文

有限元读书报告范文

有限元读书报告范文1.有限元的基本理论在目前的科学技术和工程技术的发展和研究中,有限元分析方法是使用最广泛的一种数值方法,Clough于20世纪60年代首次提出了“有限单元法”的概念,研究人员们以此为基础不断的探索与创新,经过40年的发展从有限元法的基本概念演化出了一种新的数值分析方法。

有限元分析法把连续体的全求解域看成是由许多个子域组成,对全求解域进行离散,再对各个子域单元上分片假定一个合适的近似解,最后推导全求解域的满足条件建立方程,解出方程即可。

在工程以及物理问题的数学模型确定后,用有限元对该模型进行数值计算,其基本思路可归纳为以下3点:1.把连续体的全求解域看成是由许多个子域组成的,并对其进行离散,一个连续体是通过各个单元边界上的节点互连组合成的。

2.在每一个单元上分片假设近似函数,再将求解域内的未知场变量用这些近似函数来表示。

通常是用未知场函数在单元各个节点上的数值以及其相对应的插值函数来表达每个单元内所假设的近似函数。

而我们知道在这些节点上,场函数的数值是相同的,因此可以用它们来作为数值求解中的基本未知量。

那么就可以将原待求场函数无穷多自由度的求解问题转化为场函数节点值的有限自由度的求解问题。

3.在原问题的数学模型基础上,采用与其等效的加权法或变分原理来建立有限元求解方程,并用数值方法求出方程的解得到原问题的解答。

从上面所述的有限元法的基本思路中可以得到其具有以下四个特性:1.适应性,表现在其适用于复杂几何模型中;2.可应用性,表现于其在各种物理问题中的使用;3.可靠性,表现为其建立于严格的理论基础上;4.高效性,表现为其特别适合计算机的编程和执行。

有限元方法成为使用最为广泛的一种数值方法也就归因于以上的四个特性。

2.有限元的发展趋势纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:2.1与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE 软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。

有限元读书报告

有限元读书报告

有限元理论读书报告1.概述有限元法是一种数值计算的近似方法。

早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。

有限元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的j.h.argyris教授,于1954–1955年间,他在《aircraft engineering》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限元法的理论基础。

美国的m.t.turner,r.w.clough,h.c.martin和l.j.topp等人于1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。

美国教授r.w.clough于1960年在一篇介绍平面应力分析的论文中,首次提出了有限元法的名字。

1965年英国的o.c.zienliewice教授及其合作者解决了将有限元应用于所有场的问题,使有限元法的应用范围更加广泛。

有限元法的优点很多,其中最突出的优点是应用范围广。

发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。

而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。

1.1有限元的基础理论有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。

把连续体分成有限个单元和节点,称为离散化。

先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。

这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。

大作业报告参考2有限元学习心得

大作业报告参考2有限元学习心得

有限元学习心得吴清鸽车辆工程 50110802411短短八周的有限元课已经结束。

关于有限元,我一直停留在一个很模糊的概念。

我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。

总体来说,这是一门非常重要又有点难度的课程。

有限元方法(finite element method) 或有限元分析(finite element analysis),是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

本课程教学基本内容有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件的使用.通过有限元分析课程学习使我了解和掌握了一些有限元知识:1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。

2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。

掌握有限元分析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。

3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。

各种结构的实例研究。

4.了解并掌握建立高质量建模所涉及的各种关键技术。

包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元学习心得吴清鸽车辆工程 50110802411短短八周的有限元课已经结束。

关于有限元,我一直停留在一个很模糊的概念。

我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。

总体来说,这是一门非常重要又有点难度的课程。

有限元方法(finite element method) 或有限元分析(finite element analysis),是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

本课程教学基本内容有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件的使用.通过有限元分析课程学习使我了解和掌握了一些有限元知识:1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。

2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。

掌握有限元分析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。

3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。

各种结构的实例研究。

4.了解并掌握建立高质量建模所涉及的各种关键技术。

包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。

以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。

掌握PATRAN软件的基本使用。

利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。

课程的具体学习内容:内容:1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度矩阵、载荷移置、方程求解;2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;3. 其他常用单元形函数、自由度。

1、三节点三角形单元 1.1. 单元分析1.1.1 分析步骤单元分析的任务是建立单元平衡方程,形成单元刚度矩阵。

不失一般性,从图1-1三角形离散结构中任取一个单元,设单元编号为e ,单元节点按右手法则顺序编号为 i, j, m,在定义的坐标系xOy 中,节点坐标分别为(xi+yi),(xj+yj),(xm+ym),节点位移和节点力表示如图1-1所示。

取结点位移作基本未知量。

由结点位移求结点力:其中,转换矩阵称为单元刚度矩阵。

单元分析的主要目的就是要求出单元刚度矩阵。

1.1.2 位移模式和形函数对于平面问题,单元任意一点的位移可用位移分量u, v 描述,他们是坐标x, y 的函数。

假定三节点单元的位移函数为x, y 的线性函数,六个节点位移只能确定六个多项式的系数,所以平面问题的3结点三角形单元的位移函数如下:所选用的这个位移函数,将单元内部任一点的位移定为座标的线性函数,位移模式很简单。

位移函数写成矩阵形式为:{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i ev u v u v u δ{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i eV U V U V U F {}[]{}ee e K F δ=⎭⎬⎫++=++=y a x a a y a x a a u 654321v ⎪⎪⎫⎪⎪⎧21a a将水平位移分量和结点坐写成矩阵: 代入位移函数第一式:令 则有 A 为三角形单元[T]的伴随矩阵为 令 则有同样,将垂直位移分量与结点坐标代入位移插值公式:最终确定六个待定系数 :mm m j j j i i i y a x a a u y a x a a u y a x a a u 321321321++=++=++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧321111a a a y xy x y x u u u m m j j i im j i []T 111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡m mj j i i y x y xy x []1-123i j m a u a T u a u ⎧⎫⎧⎫⎪⎪⎪⎪=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭A2T =[]T*T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------=i j ji i j j i m i i m mi i m j m m j jm m j x x y y y x y x x x y y y x y x x x y y y x y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m ji m ji m j i m mmj jji i ic c c b b b a a a c b a c b a c b a T*]T [⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j im jiu u u c c c b b b a a a A a a a 21321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m ji v v v c c c b b b a a a A a a a 21654⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j im ji u u u c c c b b b a a a A a a a 21321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i v v v c c c b b b a a a A a a a 21654])()()[(21m m m m j j j j i i i i u y c x b a u y c x b a u y c x b a Au ++++++++=])()()[(21m m m m j j j j i i i i v y c x b a v y c x b a v y c x b a Av ++++++++=⎫⎧i u令 (下标i ,j ,m 轮换)[N]称为形态矩阵, N i 称为位移的形态函数1.1.3 位移函数的收敛性选择单元位移函数时,应当保证有限元法解答的收敛性,即当网格逐渐加密时,有限元法的解答应当收敛于问题的正确解答。

因此,选用的位移模式应当满足下列两方面的条件:(1) 必须能反映单元的刚体位移和常量应变。

6个参数 到 反映了三个刚体位移和三个常量应变。

(2) 必须保证相邻单元在公共边界处的位移连续性。

(线性函数的特性)1.1.4 应变矩阵和应力矩阵利用几何方程、物理方程,实现用结点位移表示单元的应变和单元的应力。

用结点位移表示单元的应变的表达式为:[B]矩阵称为几何矩阵由物理方程,可以得到单元的应力表达式: 为应力矩阵1.1.5 单元刚度矩阵)(21y c x b a AN i i i i ++={}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=m m j j i i m j i ev u v u v u δδδδ1a6a{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=εm m j j i i m mjjiim j i m j i v u v u v u b c b c b c c 0c 0c 00b 0b 0b A 21x v y u y v x u eB }]{[}{δε=[][]mj iB B B B =[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i i i i i b c c b A B 0021{}[]{}[][]{}eB D D δεσ==[][][]B D S =[][]mj iS S S S =[][][]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---==i i i i i ii i b c c b c b A E B D S 2121)1(22μμμμμ讨论单元内部的应力与单元的结点力的关系,导出用结点位移表示结点力的表达式。

由应力推算结点力,需要利用平衡方程。

用虚功方程表示出平衡方程。

考虑上图三角形单元的实际受力,任意虚设位移,节点位移结点力和内部应力为: 与内部应变为:令实际受力状态在虚设位移上作虚功,外力虚功为微小矩形的内力虚功为根据虚功原理,得这就是弹性平面问题的虚功方程,实质是外力与应力之间的平衡方程。

虚应变可以由结点虚位移求出: 代入虚功方程接上式,将应力用结点位移表示出有令 {}{}{}{} dxdydz σεF δT *T *⎰⎰⎰=*{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧g εε=ε*xy *y *x *m*m m *m j *j j *j i *i i *i V v U u V v U u V v U u +++++=T []⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=m m j j i i *m *m *j *j *i*i V U V U V U v u v uv u {}{}eeT *F δ=dy)(γtdx)(τdy)(εtdx)(σdx)(εtdy)(σdU *xyxy *y y *x x ⨯+⨯+⨯=)tdxdyτγσεσ(εxy *xy y *y x *x ++=[]tdxdyτσσ γεεxy y x *xy *y *x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧={}{}{}{}⎰⎰σε=δtdxdyF T*eT e *{}[]{}{}TTe*T e *T*[B]δ)δB (ε=={}{}{}{}⎰⎰=tdxdy B F TT eeT eσδδ][**{}{}⎰⎰=tdxdyσ[B]F Te{}[][]{}e δB D σ={}{}⎰⎰=eT e δy [D][B]tdxd [B]F []⎰⎰=y[D][B]tdxd [B]K T e则建立了单元的结点力与结点位移之间的关系, 称为单元刚度矩阵。

它是6*6矩阵,其元素表示该单元的各结点沿坐标方向发生单位位移时引起的结点力,它决定于该单元的形状、大小、方位和弹性常数,而与单元的位置无关,即不随单元或坐标轴的平行移动而改变。

1.2 总刚度矩阵组装整体刚度矩阵 是单元刚度矩阵 的集成。

1、刚度集成法的物理概念:刚度矩阵中的元素是刚度系数,即由单位结点位移引起的结点力。

2、刚度矩阵的集成规则: 先对每个单元求出单元刚度矩阵 ,然后将其中的每个子块 送到结构刚度矩阵中的对应位置上去,进行迭加之后即得出结构刚度矩阵[K]的子块,从而得出结构刚度矩阵[K]。

相关文档
最新文档