块状转变与钢中贝氏体相变机制

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

块状转变与钢中贝氏体相变机制

刘宗昌,王海燕,任慧平(内蒙古科技大学材料科学与工程学院,内蒙古包头014010)

摘要:应用JEM-2010高分辨电镜和Ouanta—400型环境扫描电镜,运用试验与综合分析的方法,研究了纯铁的块状转变和钢中的贝氏体相变,通过对相变的形核、长大,贝氏体亚单元和组织的形成的综合研究和分析,以为贝氏体相变与块状转变存在亲缘关系。依靠随机涨落,形成贫碳区,贝氏体铁素体在贫碳的奥氏体中形核。Fe原子和替换原子通过热激活跃迁、界面扩散或切变等方式,重复产生亚单元。在亚单元边界处的富碳奥氏体中析出碳化物,或成为残留奥氏体。贝氏体相变机制具有过渡性,即切变——扩散整合机制。

关键词:贝氏体,亚单元,块状转变,扩散,切变

20世纪70年代以来,贝氏体相变切变学说和扩散学说两个学派进行了学术论争,加深了对贝氏体相变和贝氏体的物理本质的熟悉,促进了贝氏体相变理论的发展。至今,双方仍然论争不止。笔者就钢中贝氏体转变也发表了几篇文章,提出了自己不同于两个学派的独特的看法,主要观点有:

(1)贝氏体相变是介于马氏体相变和共析分解之间的过渡性质的相变,相变过程及其产物在质上和量上均具有过渡性;

(2)不同意两个学派给贝氏体下的定义,提出了新定义:钢中的贝氏体是过冷奥氏体的中温转变产物,它以贝氏体铁素体为基体,同时可能存在渗碳体或ε——碳化物、残留奥氏体等相,贝氏体铁素体的形貌多呈条片状,内部有规则排列的亚单元及较高密度的位错等亚结构。这种整合组织称为贝氏体。

(3)肯定了奥氏体中贫碳区的客观存在,在预相变时通过涨落必然形成贫碳区,贫碳区是贝氏体铁素体形核的地点;

(4)贝氏体形核是单相,即贝氏体铁素体(BF)亚单元,依靠碳原子的扩散不断形成亚单元,连续形成的亚单元构成片条状贝氏体铁素体;

(5)贝氏体铁素体长大具有切变——扩散整合机制。

在这些观点的基础上,本文研究了块状转变与贝氏体相变的亲缘关系,阐述了贝氏体组织形成过程,提出了贝氏体相变的“切变——扩散整合机制”。

1 纯铁块状转变的形核及长大

纯铁的块状相变也属于中温转变,以为其与钢中的贝氏体相变有亲缘关系。纯铁在中温区发生块状相变,即块状相变取代了钢中贝氏体相变的位置,如图1(a)。

Υ—Fe在0~55000℃/s的冷速之间,发生两种转变。当冷速超过5000℃/s,直到30000℃/s,相变点稳定在740℃,发生块状相变。当冷速超过35000℃/s以后,相变点稳定在700℃左右,发生了马氏体相变,如图1(b)。

块状铁素体也可以失往块状形貌,而变成条片状。将含0.041%La的纯铁试样(厚度3mm)加热到1100℃,在冰盐水中激冷,可获得的块状组织,即具有条片状形貌,如图2所示,可见,α—Fe呈现条片状,跟钢中的无碳化物贝氏体的铁素体片条相似,本质上是一致的,即均为体心立方晶格的低碳铁素体。

块状相变通常在晶界形核,然后迅速长进四周的母相中。相界面往往具有不规则的外形,它经常可以穿过母相的原始晶界。生长机制是热激活的。由于新相和母相的成分相同,原子只需热激活跳跃就可以跨越界面,直接地连续地转进新相。即不需要原子的长程扩散,也不依靠原子的短程扩散,就可以使界面迁移,因而界面迁移速度快,形核——长大速度很快。

由于块状相变长大速度极快,因此有人对块状转变的扩散机制提出了疑问。并且理论计算了纯铁块状相变时以铁原子跨相界短程扩散的方式完成相变的时间,结果表明,计算值比实验值小得多,相差3~4个数目级。因而以为由奥氏体(Υ相)形成块状铁素体(α相)时,通过铁原子的跨相界短程扩散是难以实现的。据此提出了“相界与母相原子联动位移”机制,指出相界上的原子转进新相,与母相原子转进相界基本上是同步的,相界不断向母相迁移,新相则不断长大。显然,以这种方式长大,长大速率要比跨相界的原子短程扩散高得多。

从纯铁的块状相变联想到钢中贝氏体铁素体的形核,则可以设想,在奥氏体中一旦通过涨落形成贫碳区,那么,低碳甚至超低碳的Υ相则可能以“块状相变”机制迅速形成贝氏体铁素体晶核。替换原子的迁移既非切变,也非扩散,而是热激活跃迁,连续长大,属于非协同型的无扩散转变。这可能就是块状转变与贝氏体相变的亲缘关系。

2 钢中贝氏体相变的形核

实际上没有成分均匀的奥氏体,无论碳还是合金元素,在奥氏体中分布都是不均匀的。此外,在奥氏体向贝氏体转变时,在预相变期,过冷奥氏体中必然通过随机涨落形成贫碳区和富碳区。扩散学派以为贝氏体转变不可能出现贫碳区,是不符合自然法则的。

应用不同含碳量的钢,测定某一温度下,贝氏体等温转变动力学曲线以及与之相对应的奥氏体点阵常数的变化,也即奥氏体含碳量的变化,发现中碳钢在转变的孕育期内,奥氏体中的含碳量已经增加,这意味着奥氏体中出现了富碳区和贫碳区。在8Mn8SiMo钢中发现在奥氏体晶界四周贫碳,贫碳区是贝氏体(BF)的形核位置。贫碳区的形成为贝氏体铁素体形核的预备阶段,是相变的出发点。

按照固态相变的一般规律,贝氏体铁素体的形核属于非均匀形核。金相观察表明,上贝氏体一般在奥氏体晶界处形核。应用Quanta—400型环境扫描电子显微镜研究了34CrNi3Mo钢的贝氏体铁素体的形核,发现上贝氏体在奥氏体晶界处形核并长大,如图3所示,可见在奥氏体晶界上形成了贝氏体铁素体,并且向晶内长大。

下贝氏体大多在奥氏体晶粒内部的缺陷处形核,这与马氏体的形核地点相似。

切变学派以为,在贝氏体转变孕育期内,由于奥氏体内形成贫碳区和富碳区。在贫碳区内,贝氏体铁素体可以按低碳或超低碳马氏体的切变机制形核。

在贝氏体铁素体片条的长大过程中,存在激发形核现象。上贝氏体束由亚单元组成,它在长大过程中,随着贝氏体铁素体片条的加厚,相变引起的应力和应变急遽增大,当畸变应力(阻力因素)高于贝氏体相变驱动力时,贝氏体铁素体条片将停止长大。这时,在所形成的贝氏体亚单元四周、应力集中的区域形成另一片贝氏体铁素体晶核,该过程为应力激发形核。应力激发形核消耗了部分应变能,获得了额外相变驱动力。实验表明,钢中的贝氏体铁素体片条几乎都是由亚片条、亚单元、或超细亚单元组成的,这表明激发形核过程的客观存在。

3 贝氏体铁素体晶核的长大

切变学派以为贝氏体铁素体的长大是以切变方式形成亚单元的结果。亚单元的重复形成导致贝氏体铁素体片条的长大。但贝氏体的长大速率比马氏体慢得多。每个亚单元的长大速率比较快,但是由于新的亚单元形成受碳原子扩散控制,因而贝氏体束在整体上以较低的速率长大。第二类完全共格相界面可以通过切变使相界面迁移,直到共格破坏,成为含有错配界面位错的半共格相界面。

台阶长大机制以为,界面台阶的高度约几个纳米到几个微米,台阶宽边为半共格界面,这种半共格界面的正向移动是靠台阶的横向迁移来进行的,台阶的移动受控于碳在奥氏体中的体扩散。然而,康氏以为,在钢、铁合金、铜合金中尚未观察到巨型台阶侧向移动的现象。贝氏体铁素体条片的侧面出现巨型台阶并不即是“台阶机制”。

总之,切变学派和扩散学派都承认碳原子的扩散控制着贝氏体铁素体的长大,但是长大方式不同,切变学派以为替换原子以切变位移的方式形成亚单元;而扩散学派以为以扩散台阶方式形成亚单元。

贝氏体铁素体晶核及四周奥氏体的碳浓度的分布情况如图4(a),可见,过冷到T1温度,奥氏体中形成的贝氏体铁素体晶核,含碳量为Cα-γ,它高于Fe-C相图中P点的碳含量(0.0218%)。此晶核向奥氏体中长大时,首先需要碳原子的长程扩散,晶核与奥氏体的相界才可能向奥氏体中移动,并且长大成为铁素体亚单元。与晶核相接触的奥氏体的含碳量为Cα-γ,远处奥氏体的均匀含碳量为Cγ,而Cα-γ>Cγ,则形成浓度梯度,那么,碳原子将向远处的奥氏体扩散,这将使相晶面的碳浓度失往平衡。为了回复平衡,晶核(BF)将长大,相晶面向奥氏体中推移,如图4(b)所示。

相关文档
最新文档