毕业设计(论文)-航空发动机压气机转子叶片强度计算及气流场模拟

合集下载

机械设计制造及自动化毕业论文-风力机叶片的有限元分析

机械设计制造及自动化毕业论文-风力机叶片的有限元分析

风力机叶片的有限元分析学生姓名:1111 专业班级:机械设计制造及其自动化2008级10班指导教师:朱仁胜指导单位:机械与汽车工程学院摘要:通过Solidworks软件对3MW风力机叶片进行建模,然后基于ANSYS 和Workbench分别对其进行模态分析和流固耦合分析,其中流固耦合分析中的结构静力分析部分也使用到了ANSYS Mechanical APDL。

其中模态分析结果表示:叶片的振型以摆振和弯曲为主,其一阶模态频率分别为 0.34Hz,能顺利的避开外在激励频率,避免了共振现象的发生。

流固耦合分析对额定风载进行了数值模拟仿真,通过结构静力分析,对叶片的受力,变形情况有了一个基本的了解,其中叶片在额定风载情况下的最大应力为56MPa,远远低于其实测拉伸强度的720MPa。

在11级风载下的应力云图显示其所受的最大应力为83.8MPa,满足其材料的强度要求。

该分析对进一步的疲劳分析和优化设计等提供了参考和依据。

关键词:叶片建模;模态分析;流固耦合分析;结构静力分析1Abstract:Through the Solidworks software build the blade model which power is 3 MW. Then based on the ANSYS and Workbench software,the analysis of modal and fluid-structure interaction.Andthe Static structural analysis is used the ANSYS Mechanical APDL too.The modal analysisresults show that the vibration modes of this blade are presented as Shimmy and bending,Thefirst modes frequency is 0.34Hz.And it can avoid the external excitation frequencywell,Avoid the resonance phenomenon occurs.The analysis of fluid-structure interaction havedo a numerical simulation about Rated wind load,through the Static structural analysis wehave a basic understanding of the stress and deformation about the blade. And the maximumstress of the blade is 56MPa under the rated wind load.Far lower than the Measured tensilestrength of 720MPa.And under the 11 rating wind load.The stress cloud show that maximumstress is 83.8MPa,Meet the strength of the material requirements.This analysis providesa reference and basis for further fatigue analysis and optimization design.Keywords:Blade modeling;Modal analysis;Fluid-structure interaction analysis;Static structural analysis31 概 述风能是地球表面大量空气流动所产生的动能,风能量具有取之不尽、用之不竭、就地可取、不需运输、广泛分布、不污染环境、不破坏生态、周而复始、可以再生等诸多优点。

轴流压气机进气旋流畸变实验与仿真研究

轴流压气机进气旋流畸变实验与仿真研究

轴流压气机进气旋流畸变实验与仿真研究宋国兴;李军;周游天;聂永正【摘要】为深入分析旋流畸变问题,发现叶片式旋流畸变发生器产生旋流流场的机理和旋流畸变对压气机稳定性的影响机制,本文开展了旋流畸变发生器与压气机的耦合数值仿真.分析计算结果,认为叶尖脱落涡的叠加效应是产生旋流的主要机理,旋流结构对转子叶尖区域的扰流作用是造成转子提前失速的重要原因.建立了S弯进气道仿真模型,通过对S弯进气道与高亚声速压气机进行耦合仿真计算,研究了S弯进气道出口旋流流场的形成机制,初步探讨了S弯进气道出口旋流流场对压气机稳定性的影响.S弯进气道出口形成的对涡结构靠近压气机机匣,这种局部的涡结构会影响部分转子叶片叶顶区域的流动结构,从而导致压气机失速边界右移.【期刊名称】《风机技术》【年(卷),期】2017(059)005【总页数】12页(P1-12)【关键词】压气机;旋流畸变;旋流畸变发生器;仿真计算【作者】宋国兴;李军;周游天;聂永正【作者单位】空军工程大学航空航天工程学院等离子体动力学重点实验室;空军工程大学航空航天工程学院等离子体动力学重点实验室;空军工程大学航空航天工程学院等离子体动力学重点实验室;空军工程大学航空航天工程学院等离子体动力学重点实验室【正文语种】中文【中图分类】TH452;TK05进气旋流畸变对发动机工作的影响是在工程实践中发现的。

上世纪70年代,英国Tornado战机在试飞过程中出现了严重的喘振以及叶片颤振问题,频繁造成发动机空中停车等严重事故。

然而测量发现,该型飞机进气道出口流场的总压畸变、总温畸变等仍在允许范围之内。

经过大量的地面风洞试验以及空中飞行实验最终发现,该型飞机进气道出口的旋流畸变是导致发动机出现问题的决定性原因[1-2]。

研究人员从Tornado战机的事故中汲取经验,对由旋流畸变引起的进气道/发动机匹配问题进行了深入分析[3],尤其是针对在第三代战机上广泛采用的S弯进气道出口流场的旋流畸变问题进行了全面的研究。

航空发动机核心机——压气机

航空发动机核心机——压气机
57
58
涡喷—6发动机整流叶片是用螺 纹轴颈和矩形板直接装在机匣内 壁的环槽内,并用螺帽拧紧。
59
60
压气机喘振
压气机喘振是气流沿压气机轴 向发生的低频率、高振幅的气流 振荡现象,它产生很大的激振力 ,导致强烈的机械振动,破坏性 很大。
61
喘振的表现
➢发动机声音由尖锐转为低沉,出现强烈机械振动 ➢压气机出口压力和流量大幅度波动,出现发动机熄火 ➢发动机进口处有明显的 气流吞吐现象,并伴有放炮声
44
45
CFM56—7 风扇叶片
46
47
轴流式压 气机静子
压气机静子为压气机中不旋 转的部件,由机匣和静子叶 片(整流叶片)组成
48
49
50
51
整流器机匣的方案
分半式 分段式 整体式
52
53
54
55
56
整流器
➢在铸造的分半式机匣内,由于机匣壁较厚,整流叶片可以用各种 形式的榫头直接固定在机匣内壁机械加工的特形环槽中; ➢在整体式机匣和分段式机匣内,整流叶片采用间接固定的方案。
23
24
盘式
由轴和若干盘组成,用轴将各级盘联接在一起。 优点:承受离心载荷能力强,但抗弯刚性差
25
26
鼓盘式
由若干个轮盘,鼓筒和前、后半轴组成
27
鼓式
鼓盘式
28
鼓盘式转子
按级间联 接特点
不可拆卸的转子 可拆卸的转子
混合式转子
29
不可拆卸的转子
盘鼓式转子的级间联接 常用圆柱面紧度配合加径 向销钉联接和焊接两种方 法,在完成装配后不可能 再进行无损分解。
73
四、双转子或三转子压气机
74

CFD案例5-发动机仿真

CFD案例5-发动机仿真

ANSYS对航空工业解决方案(三)航空发动机仿真方案_2发表时间:2008-10-23 作者: 安世亚太来源: 安世亚太关键字: 航空航天 CAE 仿真解决方案 ANSYS 安世亚太第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明4航空发动机流体力学和温度场的计算需求及ANSYS实现航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。

航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。

现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。

而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。

因此结果也更为真实有效。

ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

4.1.进气道及风扇气动分析CFX对进气道和风扇的模拟主要是研究进气道存在摩擦、激波和分离等产生的损失,风扇效率。

在亚音速时进气道的工况,在超音速时的工况,并精确计算附面层及分离损失。

(整理)(7)航空发动机叶片.

(整理)(7)航空发动机叶片.

发动机叶片一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS )HS5、HS6、HS92. 发动机的结构与组成燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。

(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5)3. 发动机工作原理及热处理过程风扇高压压气机燃烧室高压涡轮 低压涡轮加力燃烧室喷管发动机的整体结构工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。

热力过程:用p-υ或T-S 图来表示发动机的热力过程:4. 飞机与发动机发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。

如: 1)军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发动机。

2)强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS类发动机。

3)军民用直升机装用WZ 类发动机。

二、 叶片在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。

叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。

工程力学毕业设计-垂直轴风机叶片翼型的空气动力分析

工程力学毕业设计-垂直轴风机叶片翼型的空气动力分析

哈尔滨理工大学毕业设计题目:垂直轴风机叶片翼型的空气动力分析院、系:建筑工程学院工程力学系姓名:王健指导教师:隗喜斌系主任:李东华2014年 6月 19日哈尔滨理工大学毕业设计题目:垂直轴风机叶片的空气动力分析院、系:建筑工程学院工程力学系姓名:王健指导教师:隗喜斌系主任:李东华2014年 6月 19日垂直轴风机叶片的空气动力分析摘要随着化石能源的过度消耗以及环境问题,风能越来越受到重视,各国都在努力开发风能资源。

近几年我国的风能发电事业有了很大的发展,但我国关于风力发电技术的研究仍远落后于先进国家,尤其是对叶片的研究。

本文所研究的是一个应用于H型三叶片垂直轴风力机上的叶片,采用理论分析和数值模拟相结合的方法,主要工作和成果如下:(1)回顾风力发电的研究背景,介绍以往垂直轴风力机的研究工作,并阐述了垂直轴风力机的空气动力学设计理论,给出了垂直轴风力机的流管理论模型,分析了垂直轴风力机的运行状态。

(2)应用动量-叶素理论中的双盘多流管模型计算分析了相同雷诺数情况下多种应用较广泛的翼型。

由此筛选出了较适合本文设计目标的翼型,并确定了用来进一步验证叶片性能的风轮结构的主要结构参数。

(3)利用Gambit软件建模、FLUENT软件进行流场分析,改变雷诺数、攻角和叶片翼型,通过对叶片升力、阻力、升阻比的变化趋势,得出NACA 0012,NACA 0018,NACA 2415,NACA 4415四种翼型中最适用于叶片制造的翼型。

关键词:垂直轴风机;叶片翼型;气动性能;数值模拟Aerodynamic Analysis Of Vertical AxisWind Turbine BladesAbstractWith excessive consumption of fossil energy and environmental issues, people are increasingly pay attention to the wind energy , some countries are trying to develop the wind energy resources. In recent years, China's wind power business has been greatly developed, but our research on wind power technology is still far behind the advanced countries, especially in the study of the blade. It is studied in this paper is applied to the blades of a H-type three-bladed vertical axis wind turbine on the theoretical analysis and numerical simulation methods, the main work and results are as follows:(1)Review of wind power research background, previous research work introduces a vertical axis wind turbine, and expounded the theory of aerodynamics design vertical axis wind turbine, given the current administration on the vertical axis wind turbine models, analyzes the vertical axis wind turbine operation.(2)It is applied is Momentum - Double blade element theory of multi-model analysis of the flow tube at the same Reynolds number airfoils wider variety of applications. Thus screened out more suited to this article airfoil design goals, and identified the mainstructural parameters used to further validate the performance of the wind turbine blade structure.(3) The use of Gambit software modeling, FLUENT software flow field analysis, changing the angle of attack vane airfoils and, through the blades, lift, drag, lift-drag ratio, torque and trends around the blade pressure, velocity summary was NACA 0012,NACA 0018,NACA 2415,NACA 4415 the airfoil blade airfoil is ideal for manufacturing.Key words:Vertical axis wind turbine;Blade airfoil;Aerodynamic performance;Numerical Simulation目录摘要 (I)Abstract (II)第1章绪论 (1)1.1论文研究的背景 (1)1.2垂直轴风机的介绍 (3)1.3文章中名词及缩写介绍 (6)1.4本文的研究意义和研究方法 (7)第2章垂直轴风机气动性能的理论研究 (9)2.1流管法 (9)2.2涡方法 (10)2.3动量一叶素理论 (13)2.3.1经典的动量一叶素理论 (13)2.3.2修正的动量一叶素理论 (16)2.4垂直轴风力机流管理论模型 (17)第3章数值模拟及分析结果 (21)3.1 NACA0015翼型建模 (21)3.2雷诺数对气动特性的影响 (23)3.3厚度对气动特性的影响 (25)3.4弯度对气动特性的影响 (28)3.5本章小结 (32)结论 (34)致谢 (35)参考文献 (36)附录A (38)附录B (43)第1章绪论1.1 论文研究的背景目前人类发展和生存面临的最紧迫的问题就是能源和环境问题。

航空发动机强度与振动--各章作业

航空发动机强度与振动--各章作业
二弯 B1 值 13.8;并假设叶片均匀扭转。 (1)当转子转速为 12000r/min 时,求一弯动频,二弯动频。 (2)此转子叶片前方有两个进气支柱时,求一弯共振转速,二弯共振转速。 3、发动机某级转子叶片前有四个进气支柱,当发动机转速 6000r/min 时,进气支柱造成的气流尾迹形成的前 三阶倍频力的频率分别为? 400Hz、800Hz、1200HZ。
三、计算题
1、某等截面、无扭向、根部固装的转子叶片长 l = 16cm , E = 5.0 ×105 cm / s , J = 0.8cm4 , A = 5cm2 , ρ
( 1 ) 请 求 出 前 三 阶 弯 曲 振 动 的 固 有 频 率 ( 固 有 频 率 的 单 位 为 Hz )。 计 算 公 式 已 经 给 出 :
4、旋转着叶片的自振频率称为
;静止叶片的自振频率称为

5、叶片的振动阻尼有


三类。
6、列举出一些常用的提高叶片抗振阻尼的结构措施。
7、从气动和结构两个方面分析下带冠叶片的优缺点。
8、燕尾形、枞树形、销钉式三种榫头榫槽的连接方式中,哪种叶片和轮盘的连接方式抗振阻尼最好?
9、如图,试解释双榫根构造的叶片,抗振阻尼较好的原因?
8、判断弹性元件的串联或者并联。
6
第一章 转子叶片强度计算
9、在图(a)中,两弹簧是并联还是串联?在图(b)中,若将弹簧的长度变为原来的一半,则此一半长度的弹簧 的刚度系数是多少?
10、系统受外界激励作用而产生的振动称为( )振动。激励根据其来源可分为两类:一类是( ),
另一类是(
)。
7
第一章 转子叶片强度计算
5、不管是实心盘还是空心盘,热应力σθ 在轮盘外缘处呈压应力状态。

航空发动机结构设计分析

航空发动机结构设计分析

航空发动机结构设计分析作者:胡佳锐来源:《中国科技博览》2018年第31期[摘要]本文针对航空发动机结构设计展开分析,思考了航空发动机结构设计的具体的要求和具体的思路,并针对航空发动机结构设计的重点工作进行了分析和总结,供今后参考。

[关键词]航空发动机,结构设计中图分类号:V235.1 文献标识码:A 文章编号:1009-914X(2018)31-0273-01前言随着我国航空事业的发展和进步,航空发动机结构设计也越来越重要,我们必须要提高航空发动机结构设计的质量,才能够更好的提升航空发动机的使用效果。

1、航空发动机发展概述由于航空发动机的高技术、高投入、长周期、高风险等特点,行业进入门槛很高,全球范围内航空发动机经过多年的发展,已呈现出典型、明显的寡头垄断格局。

世界航空发动机发展上百年来,经历了诸多技术突破和行业变革,从军事到民用,航空发动机的发展取得了长足进步,活塞、涡轮、冲压等发动机相继问世,其中燃气涡轮发动机成为当前应用最广泛的航空发动机。

目前,世界主要国家的航空发动机的发展已相当成熟,其发展现状、趋势及发展经验,对我国航空发动机的发展具有重要的参考和借鉴意义。

2、先进航空发动机关键设计制造技术发展现状与趋势2.1 轻量化、整体化新型冷却结构件设计制造技术2.1.1 整体叶盘设计制造技术整体叶盘是新一代航空发动机实现结构创新与技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。

在第四代战斗机的动力装置推重比10发动机F119和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50%以上。

目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空发动机压气机转子叶片强度计算及气流场模拟摘要压气机是为航空发动机提供需要压缩空气的关键部分,由转子和静子等组成,其中转子叶片是完成该功能的核心零件,在能量转换方面起着至关重要的作用。

叶片工作的环境比较恶劣,除了承受高转速下的气动力、离心力和高振动负荷外,还要承受热应力,所以在叶片设计之中,首先遇到的问题是叶片结构的强度问题,转子叶片强度的高低直接影响发动机的运行可靠性,叶片强度不足,可能会直接导致叶片的疲劳寿命不足,因此在强度设计中必须尽量增大强度,以提高叶片疲劳寿命和可靠性。

由进气道、转子、静子等组成的离心式压气机内部流动通道是非常复杂的,由于压气机是发动机的主要增压设备,其工作的好坏对发动机的性能有很大的影响。

随着现在的计算机和数字计算方法的大力发展,三维计算流体模拟软件越来越多的被运用到旋转机械的内部流场进行数值分析。

本文利用三维流体模拟软件ANSYS系列软件对压气机内部的气体流动性能进行模拟,得到一些特征截面的压力和速度分布情况。

关键字:转子叶片;强度计算;Fluent;轴流式压气机AbstractThe compressor is to provide compressed air for the needs of key parts of aero engine, the rotor and the stator, etc., wherein the rotor blades are core components to complete the function, plays a crucial role in the transformation of energy. The blade working environment is relatively poor, in addition to withstand high speed aerodynamics, centrifugal force and vibration in high load, to withstand greater thermal stress, so in the blade design, the first problem is the strength of the blade structure, the rotor blade strength directly affect the reliability of the engine, blade lack of strength, may directly lead to the fatigue life of the blade is insufficient, so the strength design must try to increase the strength, to improve the blade fatigue life and reliability.The internal flow passage of centrifugal compressor inlet, rotor and stator which is very complex, is mainly due to the high pressure equipment of the engine, has great impact on the performance of the quality of its work on the engine. With the development of computer and digital calculation method, 3D computational fluid simulation software has been applied to numerical analysis of internal flow field of rotating machines. In this paper, the fluid flow characteristics in the compressor are simulated by using a series of ANSYS software, and the pressure and velocity distributions of some characteristic sections are obtained.Keywords: rotor blade; strength calculation; Fluent; axial flow compressor目录1 引言 (1)1.1 课题介绍 (1)1.2 研究方法 (1)1.2.1 直接计算法 (1)1.2.2 有限元分析法 (2)2 转子叶片 (2)2.1 叶身结构 (3)2.2 榫头结构 (5)2.3 叶片截面的几何特征 (7)3 叶片强度计算 (10)3.1 叶片受力分析 (10)3.2 离心拉应力计算 (10)3.3 离心弯应力计算 (12)3.4 气流弯应力计算 (15)3.5 叶片热载荷 (18)3.6 榫头强度计算 (18)4 压气机内气流场的模拟 (20)4.1 Fluent软件介绍 (20)4.2 双向流固耦合 (21)4.3 模型建立 (22)4.3.1 实体模型的建立 (23)4.3.2 ICEM CFD网格划分 (26)4.3.3 相关条件的设置 (27)4.4 运行结果和分析 (28)4.4.1 速度计算和分析 (28)4.4.2 压力场计算和分析 (30)5 结束语 (32)【参考文献】 (33)致谢 (34)附录1 相关英文文献: (36)附录2英文文献中文译文: (51)1 引言1.1课题介绍压气机是用来提高进入发动机内的空气压力,提供发动机工作时所需要的压缩空气,也可以为座舱增压、涡轮散热和其他发动机的启动提供压缩空气[1]。

其中转子的主要组成部分转子叶片是完成该功能的核心零件。

转子叶片工作在比较恶劣的环境中:它的转速大,可以高达每分钟数千转或者数万转,因此承受很大的离心负荷;转子叶片处于发动机进口处,易被从空气中吸入的外来物(金属类、砂石类、软物体类)撞击形成损伤;空气中往往会携带沙尘,这些沙尘会对叶片表面进行磨蚀,对叶片造成损害,使叶片叶身减薄,弦长减短。

压气机的类型一般可以分为三类:轴流式、离心式和混合式,本文研究的是轴流式压气机。

叶片的制造和加工技术对压气机的工作效率及安全可靠性起着很重要的影响,压气机工作叶片是航空发动机的事故频发的罪魁祸首,叶片的故障可以占总故障的40%以上。

压气机叶片强度设计包括叶片静强度、振动特性、蠕变/应力断裂寿命等。

由于压气机高速旋转而产生的离心力很大,榫头的强度不够,复杂的几何形状造成的表面不连续性,再加上安装时产生的误差,可能造成叶片松动,在严重时叶片脱落,轻者损坏压气机,重者造成整机的破坏。

蠕变会引起塑性变形,一旦变形量超过叶片和机匣之间的径向间隙,就会使叶片和机匣相碰,导致叶片损坏。

气流力会直接作用在工作叶片上,由于气流力是脉动的,这种脉动的性质就会使叶片发生振动。

如果在发生共振现象时,叶片会发生疲劳断裂。

气流力在叶片截面中产生的弯应力也会造成叶片的失效。

在叶片设计之中,首先遇到的问题是叶片结构的强度问题,叶片强度不足,可能会直接导致叶片的疲劳寿命不足,因此在强度设计中必须尽量增大强度,以提高叶片疲劳寿命和可靠性。

本论文在了解并学习压气机及转子叶片的相关知识基础上,分别求解出叶身的离心拉应力、离心弯应力、气流弯应力的大小以及计算出榫头的强度大小,并分析出在高温环境中叶片所产生的热力应变情况;同时采用软件仿真的方法,对压气机内部的流场进行模拟,以分析出压气机内部流体的流动情况。

这对在设计中增大强度具有指导意义。

1.2研究方法通过查阅大量资料,进行相关文献资料的搜集工作,了解转子叶片技术的现状。

对于叶片和内部气流场的分析,分别采用直接计算和有限元分析的方法对叶身和榫头并进行强度计算,以及对压气机内部流场进行模拟,以分析内部气体流动情况。

1.2.1 直接计算法这是一近似的求解受力大小的方法。

具体就是把叶片简化为悬臂梁,在通过各种力学公式和定理进行计算,以得出受力大小及分布的结果。

叶片工作的时候,叶片承受着气流的反作用力、叶片高速旋转所引起的离心力以及由温度变化所引起的热应力。

1.2.2 有限元分析法今年来,随着计算机性能的不断提升,以及数字计算方法的不断改进,这都使得有限元分析软件在压气机叶片研究方面得到充分利用。

本课题采用ANSYS和FLUENT在Workbench 中进行流固耦合(fluid solid interaction,简称FSI)模拟分析。

流固耦合模拟分析方法是指在模拟计算时候同时考虑相互作用力的分析方法。

在实际的物理场中,流体的高压使得固体发生变形,而固体的变形进一步影响流场的流动状态,两者相互作用影响,共同决定了最终的物理状态。

FSI按照载荷的施加方式的不同,可以分为两种:第一种就是单向流固耦合(Uni-Directional FSI),这种方法就是只着重考虑其中一种物理场对另一物理场的作用,而忽略后者的反作用;另外一种就是双向流固耦合(Bi- Directional FSI),在将流体的载荷施加在固体上后,再将固体的变形参数迭代到下一步的流体计算中,整个过程不断的反复进行,直到达到最终的收敛目标。

为了更好的对内流场的流动情况进行模拟,根据压气机内部的施加情况,即空气的物理状态的分析是流体力学,而叶片的结构变形是弹塑性力学,因此同时考虑流体和固体的耦合求解方式可以获得更加准确,更加符合实际情况的计算结果。

因此采用的双向流固耦合分析方式进行内流场的模拟分析。

2 转子叶片转子叶片又称动叶,是随同转子高速旋转的叶片,通过叶片的高速旋转实现气流与转子间的能量转换与气流方向改变的重要零件,它直接影响压气机的气动性能、工作可靠性、重量及成本等。

在轴流式压气机中,叶片以环状排列在气流通道内组成叶栅,每一圈的叶片就被称为一级工作叶片,每级叶片数目由几十片不等,随着压气机的级数的增加,一台航空发动机的压气机上有几百到上千片不等的叶片,例如WJ6发动机一共有10级,转子叶片共有458片,静子叶片共有620片。

转子叶片承受很大的离心力、较大的气动力和振动载荷,同时还要在一定的温度状态下工作,承受一定的热负荷。

因此转子叶片是直接影响发动机性能、可靠性和寿命的关键零件。

转子叶片的设计、材料选择和制造都有十分严格的要求,如叶身须保持准确的气动外形和很光滑的表面,材料内部不允许有缺陷,晶粒不得过大等。

相关文档
最新文档