分离技术与传质过程
传质分离过程试卷

传质分离过程试卷一、选择题(共10题,每题2分,共20分)1.以下不属于传质分离过程的是:– A. 蒸馏– B. 气体吸附– C. 曝气– D. 结晶2.传质分离过程中,分馏是利用物质的什么性质实现的?– A. 密度差异– B. 温度差异– C. 压力差异– D. 溶解度差异3.以下哪种传质分离过程利用了膜的选择性通透性?– A. 萃取– B. 吸附– C. 渗透– D. 结晶4.下列哪种传质分离过程主要利用了溶剂的不同挥发性?– A. 蒸馏– B. 萃取– C. 气体吸附– D. 结晶5.反渗透是一种什么类型的传质分离过程?– A. 物理传质分离过程– B. 化学传质分离过程– C. 生物传质分离过程– D. 不确定6.以下哪种传质分离过程是基于物质在溶液和固体表面之间的吸附作用?– A. 吸附– B. 渗透– C. 萃取– D. 结晶7.结晶是通过什么方式实现物质之间的分离?– A. 溶解度差异– B. 密度差异– C. 温度差异– D. 压力差异8.下列哪个条件对于蒸馏过程的实现是必要的?– A. 压力大于饱和蒸汽压力– B. 温度高于沸点– C. 设备具备分离精馏的结构– D. 所有选项都对9.萃取是一种利用分散相在连续相中的亲和性实现物质分离的过程,其中分散相也称为:– A. 溶液– B. 固相– C. 气相– D. 透析10.以下哪个选项不属于传质分离过程的应用?– A. 生活中的水的净化– B. 石油炼制过程中的裂化– C. 水果的蒸馏提取– D. 医药领域中的药物合成二、简答题(共4题,每题10分,共40分)1.请简要描述传质分离过程的定义及目的。
传质分离过程是指通过运用不同物质在不同条件下的传质特性,利用物质之间的差异来实现分离纯化目标物质的过程。
其目的是根据不同物质的传质特性,使混合物中的目标物质与其他物质进行分离,以达到提纯、浓缩、分级等目的。
2.传质分离过程的分类及其基本原理有哪些?传质分离过程可以分为物理传质分离和化学传质分离两大类。
精馏的传质原理

精馏的传质原理精馏是一种常用的分离技术,主要用于液体的分离和纯化。
它的传质原理是基于液体和气体的不同揉浆特性和蒸汽压之间的差异。
精馏通常由一个精馏塔、冷凝器和回流器组成。
精馏塔内部可以分为若干个塔板,塔板上有许多塔板孔和塔板瓶。
在塔板附近,进料通过换热,循环然后重新进入精馏塔。
在精馏过程中,原始混合物先被加热并注入到塔顶部。
由于热力学性质的差异,原始混合物中的成分会产生不同的蒸汽压。
高蒸汽压组分更易于转化为气体,而低蒸汽压组分更倾向于保持在液体状态。
原始混合物的气态组分进入塔顶部,与从底部升上来的冷凝液体相接触。
接触时,气体会被冷凝成液体并下降至下一个塔板。
这个过程被称为液体回流。
这是因为下降的液体会与从塔底回流上来的冷凝液体混合,分散和增强气液传质。
在精馏塔内部,气体和液体在塔板孔和塔板瓶之间进行交替的传质和相互质量转移。
气体通过塔板孔向上升起,并与下降的液体进行接触。
在接触过程中,气体和液体之间会发生物质的传递,液体会吸附气体中的某些组分,而污染物则会从液体中分离出来。
由于塔板瓶和塔板孔的结构设计,气液接触面积增大,气液混合程度加强,并能提供充足的传质路径。
这样,气体和液体之间的相互传质就会更加有效,从而实现混合物的分离和纯化。
随着混合物向下穿过精馏塔,组分的蒸汽压逐渐上升,到达一个特定的塔板时,液体中的污染物会被完全分离出来。
而在塔板上,纯净的组分则会升上塔顶,通过冷凝器进一步冷却并转化为液体,最后收集和收回。
精馏的传质原理基于组分的不同蒸汽压和液体流动性质之间的差异。
通过不断的气液传质和物质分离,精馏技术能够实现对混合物的分离和纯化,广泛应用于石油化工、化学工程和生物制药等行业中。
精馏技术的应用,不仅能够提高产品质量,还可以降低能源消耗和环境污染。
电渗析的工作原理

电渗析的工作原理
电渗析是一种涉及电化学和传质过程的分离技术,其工作原理可以描述为下述步骤:
1. 选择适当的溶剂系统:将需要分离的混合物溶解在所选的溶剂中,并添加相应的电解质以提供导电性。
2. 创建电场:将两个电极(阳极和阴极)分别插入溶液中,并在它们之间施加一个电流,以创建一个电场。
通常情况下,阳极为圆柱状,位于溶液的中心,阴极则环绕阳极。
3. 选择适当的电压:根据所需的分离效果,选择合适的电压。
过高的电压可能导致电解反应和电极腐蚀,而过低的电压可能导致分离效果不佳。
4. 进行电渗析:在电场的作用下,混合物中的各个成分受到迁移。
带有正电荷的组分会向阴极迁移,而带有负电荷的组分则向阳极迁移。
这种迁移是由于电泳运移和扩散两种传输方式共同作用的结果。
5. 分离收集:阴极和阳极分别收集迁移到它们上面的物质。
这样,混合物中的组分会逐渐分离,并可通过收集电极上的产物进行进一步处理或分析。
总的来说,电渗析通过施加电场来利用带电粒子在电泳运移和扩散的作用下的有选择性的迁移,实现混合物的成分分离。
第三章汽液传质分离过程

纯组分a、b作为不同精馏塔的 釜液采出。
.
选择中间沸点,并且与低沸点组分生成最低共沸物的物质 为共沸剂
Ta<Te<Tb, e-a生成最低共沸物T2<Ta。
xβ
若 xF < xα < xβ ,则应在1塔进料 物料衡算时,二塔塔釜多了一项水蒸气流量S。
假设1塔精馏段气相流量为V1液 相流量为L1。
在1塔精馏段的第n块塔板及2塔 釜出口之间作物料横算:
V1SL1B2
S
V 1y n 1 S L 1 x n B 2 x B 2
所以得1塔精馏段操作线方程:
yn1V L1 1xnV B1 2xB2
S (33)5
V1
.
假设1塔提馏段气相流量为V1’液 相流量为L1’。
在1塔提馏段的第n块塔板及1塔 塔釜出口之间作物料横算:
L'1V1' B1
L '1xnV 1'yn1B 1xB 1
S
所以得1塔提馏段操作线方程:
yn1V L1'1' xnV B11' xB1(332)
定节点。
.
2)a、b形成最高共沸物的情况 选择比原共沸温度更高的沸点且不形成共沸物的物质为共
沸剂
T2<Te, e-b和e-a均不形成共沸物。
e的加入使三角相图分为两个蒸 馏区域。
a、b分别位于不同区域,均为不 稳定节点。
纯组分a、b作为不同精馏塔的塔 顶馏出液采出。
纯组分e作为塔釜液采出。
分离技术

型分离技术,如膜分离、泡沫分离、超临界流体萃取以及耦合技术等得到重视和发展。
1.2化工分离技术的多样性由于化工分离技术的应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。
按机理划分,可大致分成五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离)体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等,它们的特点和设计方法有所不同。
K e l l e y[3]于1987年总结了一些常用分离方法的技术成熟度和应用成熟度的关系图(图1)。
十余年来,化工分离技术虽然有了很大的发展,但图中指出的方向仍可供参考。
例如,萃取、吸收、结晶等仍是当前使用最多的分离技术[4-5]。
液膜分离虽然构思巧妙,但由于技术上的局限性,仅在药物缓释等方面得到有限的应用。
图1分离过程的技术和应用成熟度[3]Fig.1 The technology and use maturity of the separating process 2传统分离技术精馏虽然是最早期的分离技术之一,几乎与精馏同时诞生的传统分离技术,如吸收、蒸发、结晶、干燥等,经过一百多年的发展,至今仍然在化工、医药、冶金、食品等工业中广泛应用并起着重要作用。
2.1精馏技术精馏是关键共性技术,已经被广发应用了200多年,从技术和应用的成熟程度考虑,目前仍然是工厂的首选分离方法[6]。
精馏市场的经济效益至今仍是令人刮目相看的。
而近年来,随着相关学科的渗透、精馏学科本身的发展及经济全球化的冲击,我国精馏技术正向新一代转变,以迎接所面临的挑战。
其特征[7]为:(1)精馏学科正由传统的依靠经验、半经验过渡到凭半理论以至理论;(2)精馏过程正由传统的单一分离过程过渡到耦合和复杂的优化分离过程,以提高分离效率和节能;(3)由对环境造成严重污染的一代向注重环保的一代转变;(4)由走加工的道路向技术集成创新型转变;(5)通过我国自己的技术进步解决装置大型化、长周期运行,通过创新解决精馏技术问题,以降低成本、提高国际竞争力。
制药分离工程知识点总结

制药分离工程知识点总结制药分离工程是制药工业中的一个重要领域,它涉及到原料药的提取、分离纯化、结晶、干燥等过程。
在这个过程中,需要应用到许多分离工程的原理和技术。
本文将对制药分离工程的知识点进行总结,包括分离原理、分离技术、设备选型等方面进行阐述,以期为制药分离工程的实践工作提供参考。
一、分离原理1. 传质基本原理在分离工程中,传质是一个基本的概念。
它涉及到物质在不同相(气、液、固)之间进行传递的过程。
传质基本原理包括扩散、对流、吸附、分配等过程。
2. 分离原理分离原理是指根据物质在不同相中的性质进行分离的原理。
例如,萃取是利用两种不同溶剂对物质的不同溶解度进行分离;结晶是利用物质在溶剂中的溶解度随温度、浓度变化的原理进行分离。
3. 平衡分离原理平衡分离原理是指在达到平衡状态时,物质的分配相对稳定,不易再发生变化的原理。
在制药分离工程中,需要根据平衡分离原理进行操作,以达到预期的分离效果。
二、分离技术1. 萃取技术萃取技术是一种利用两种或两种以上的不同溶剂,使有机成分转移到有机相,而部分或全部杂质则留在水相中的技术。
在制药分离工程中,萃取技术可以用于提取天然产物、分离分析等方面。
2. 结晶技术结晶技术是指通过溶液中溶剂浓度的变化,使溶解度超过饱和度,溶质析出结晶过程。
在制药分离工程中,结晶技术常用于药物的纯化与固化。
3. 蒸馏技术蒸馏技术是一种利用溶液物质在液相与气相之间的平衡关系,通过升华凝结、再冷凝回收的技术手段,实现液体中组分的分离。
在制药分离工程中,蒸馏技术常用于溶剂回收、水蒸气蒸馏分离等方面。
4. 结合物理化学分离技术结合物理化学分离技术是指利用物质在不同相中的特性差异,通过物理或物理化学方法进行分离的技术。
其中包括吸附分离、离子交换分离、膜分离等。
三、设备选型1. 萃取设备在萃取工程中,可以使用液液萃取、固液萃取等设备。
典型的设备包括萃取塔、萃取槽、浸提设备等。
2. 结晶设备在结晶工程中,可以使用搅拌结晶槽、冷凝结晶槽、真空挥发结晶槽等设备。
分离工程

分离工程1 分离技术的诞生与发展 最早的分离技术可以追朔到中国夏,商朝的酿酒业中的蒸酒技术;古人制糖和盐 掌握了蒸发浓缩和结晶技术;用蒸馏方法从煤焦油中提取油品。
十八世纪英国工业革 命,使化学工业这个巨人真正诞生和发展起来,随之分离工程也诞生并发展起来。
1901 年英国学者戴维斯在其著作《化学工程手册》中首先确定了分离操作的概念, 1923 年美国学者刘易斯和麦克亚当斯合著出版了《化工原理》,从而确立了分离工程 理论。
2 分离工程简介 分离工程就是使混合物得以分离成为二种或 二种以上的较纯物质的—门工程技术、 它是化学工 程学科的一个重要分支。
分离过程可分为机械分离 和传质分离两大类。
2.1 机械分离 机 械分 离过程 的对 象都是 两相 或两相 以上 的 非均相混合物,只要用简单的机械方法就可将两相分离,而两相间并无物质传递现象 发生常见的机械分离有过滤、沉降、离心分离等。
过滤:用滤纸或其他多孔材料分离悬浮在液体或气体中固体颗粒、有害物质的一 种方法。
2.2 传质分离 传质分离过程的特点是相间传质,可以 在均相中进行,也可以在非均相中进行。
传 质分离可分为: 1)平衡分离过程如精馏、吸收、萃取、 结晶、吸附等,借助分离剂使均相混合物系 统变成两相系统,再利用混合物中各组分在 处于相平衡的两相中的不等同分配而实现分 离。
精馏:一种利用回流使液体混合物得到 高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、 化工、轻工、食品、冶金等部门 吸收:物质从一种介质相进入另一种介质相的现象。
萃取:利用化合物在两种互不相溶 (或微溶 )的溶剂中溶解度或分配系数的不同,使 化合物从一种溶剂内转移到另外一种溶剂中而提取出来的过程。
物理吸附吸附:当流体与多孔 固体接触时, 流体中某一 组 分 或 多 个 组 分 在 固 体表 面处产生积蓄, 此现象称 为 吸 附 。
吸 附 方 式 有 物理 吸附和化学吸附。
分离过程知识点

三、名词解释1、分离过程 : 将一混合物转变为组成互不相同的两种或几种产品的那些操作。
2、分离工程: 研究分离过程中分离设备的共性规律,分离与提纯的科学。
3、传统分离过程的绿色化:对过程(如蒸馏、干燥、蒸发等)利用系统工程的方法,充分考虑过程对环境的影响,以环境影响最小(或无影响)为目标,进行过程集成。
4、传质分离过程:一类以质量传递为主要理论基础、用于各种均相混合物分离的单元操作。
可分为平衡分离过程和速率分离过程两大类,遵循物质传递原理。
5、平衡分离过程:大多数扩散分离过程是不相溶的两相趋于平衡的过程,而两相在平衡时具有不同的组成,这些过程称为平衡分离过程。
6、速率控制分离过程::利用溶液中不同组分在某种推动力的作用下,经过某种介质时的传质速率差异而实现分离的过程。
7、泡点温度:是指液体在恒定的外压下,加热至开始出现第一个气泡时的温度。
8、露点温度:在恒压下冷却气体混合物,当气体混合物开始凝聚出第一个液滴时的温度。
9、汽化率:液体汽化所减少的质量占原液体质量的比率。
10、液化率:e=液化量/总加入量=L/F11、分离因子: 表示任一分离过程所达到的分离程度 表示组分i 及j 之间没有被分离 表示组分i 富集于1相,而组分j 富集于2相表示组分i 富集于2相,而组分j 富集于1相12、分离剂 : 在两种相同的或不同的材料之间、材料与模具之间隔离膜,使二者间不发生粘连,完成操作后易于分离的液剂。
种类为:(1)石膏分离剂(2)树脂分离剂(3)蜡分离剂 (4)其他分离剂如硅油、凡士林等。
13、固有分离因子: αij 称为固有分离因子,也称相对挥发度,它不受分离设备的影响。
14、机械分离过程:分离对象为两相以上的混合物,通过简单的分相就可以分离,而相间并无物质传递发生。
15、膜分离:是利用液体中各组分对膜的渗透速率的差别而实现组分分离的单元操作。
16、关键组分:由设计者指定浓度或提出分离要求的两个组分称为关键组分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离技术与传质过程
在化学工程领域,分离技术和传质过程是两个核心概念。
分离
技术是指将复杂混合物中的组分分离出来的工艺过程,而传质过
程则是指物质在不同相之间的传输现象。
这两个概念的密切联系,决定了化学工程的发展方向和应用范围。
在传质过程中,分子扩散和质量传递是两个基本概念。
分子扩
散是指物质在同种相中从高浓度区域向低浓度区域传输的现象,
而质量传递是指物质在不同相中由高浓度向低浓度传输的现象。
这两个过程都是重要的传质现象,在化工生产中有广泛的应用。
分离技术一般是指将混合物中的成分分离出来,以达到纯化产品、回收价值元素或去除有害物质的目的。
分离技术主要包括物
理分离和化学分离两种方法。
物理分离方法包括蒸馏、萃取、吸附、膜分离等,而化学分离方法主要是指离子交换、铁矾吸附、
化学凝聚等。
在化学工程的实践中,分离技术和传质过程密不可分。
许多分
离技术的实现都需要传质过程的支持。
例如,蒸馏是利用液体和
气体之间的相互传质现象而实现的。
萃取法是利用不同物质在溶
剂中的溶解度差异而实现的。
吸附技术是利用吸附剂与被吸附物
质之间的物理吸附作用而实现的。
而利用膜分离技术分离物质,也是利用物质在膜中的传质现象实现的。
另一方面,传质过程的研究和发展也推动了分离技术的进步。
例如,膜分离技术的发展和广泛应用,大大促进了分离技术的提高和创新。
膜分离技术是利用膜的半透性质将混合物中的物质分离出来,这种技术具有分离效果好、操作简便、能耗低等优点。
目前,膜分离技术在饮用水净化、废水处理、食品饮料加工等领域中得到了广泛的应用。
总之,分离技术和传质过程是化学工程中两个重要的概念,相辅相成的关系决定了化工生产的成败。
在化学工程实践中,我们需要充分发挥两个概念的优点,相互融合,进行创新。
同时,我们也需要加强研究和推广分离技术和传质过程的发展,为化学工程的可持续发展做出新的贡献。