转基因技术的基本概念
遗传学的知识点

遗传学的知识点遗传学是生物学的一个重要分支,研究生物个体间遗传信息的传递和变化规律。
它涉及到基因、DNA、染色体等多个方面的知识点。
本文将以这些知识点为基础,介绍遗传学的相关内容。
一、基因的概念和结构基因是生物体内控制遗传信息传递和表达的基本单位。
它由DNA分子组成,位于染色体上。
基因的结构包括启动子、编码区和终止子等部分。
启动子是基因的起始位置,编码区是基因的主要部分,包含了编码蛋白质所需的信息,而终止子则是基因的结束位置。
二、DNA的结构和功能DNA是遗传物质的载体,它是由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞状嘧啶)组成的双螺旋结构。
DNA的功能主要包括遗传信息的传递和复制。
在细胞分裂过程中,DNA会复制自身,并将遗传信息传递给下一代细胞。
三、染色体的结构和遗传规律染色体是细胞内DNA的组织形式,它包含了许多基因。
人类细胞中有23对染色体,其中一对是性染色体。
染色体的结构分为染色质和着丝粒两部分。
遗传学的研究发现,染色体遵循着孟德尔的遗传规律,即显性和隐性基因的遗传。
四、遗传变异和突变遗传变异是指在基因或染色体水平上的遗传信息的改变。
它包括基因突变、染色体结构变异和染色体数目变异等。
基因突变是指基因序列发生改变,包括点突变、插入突变和缺失突变等。
染色体结构变异是指染色体的部分区域发生改变,如倒位、易位等。
染色体数目变异是指染色体数目发生改变,如三体综合征等。
五、遗传性疾病的研究遗传学的一个重要应用领域是研究遗传性疾病。
遗传性疾病是由基因突变引起的疾病,如先天性心脏病、遗传性癌症等。
通过遗传学的研究,可以了解疾病的遗传方式、致病基因和相关的遗传机制,为疾病的预防和治疗提供依据。
六、遗传工程和转基因技术遗传工程是利用遗传学的原理和方法对生物体进行基因改造的技术。
其中,转基因技术是一种常用的遗传工程方法,它将外源基因导入到目标生物体中,使其具有特定的性状或功能。
转基因技术在农业、医学和工业等领域有着广泛的应用。
《基因工程及其技术》 知识清单

《基因工程及其技术》知识清单一、基因工程的概念基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在分子水平上进行的操作,它打破了物种之间的界限,能够让不同物种的基因在人为的作用下进行重组和交流。
二、基因工程的基本工具1、“分子手术刀”——限制性核酸内切酶(简称限制酶)限制酶主要是从原核生物中分离纯化出来的。
它能够识别双链DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
2、“分子缝合针”——DNA 连接酶根据来源不同,DNA 连接酶可以分为两类:E·coli DNA 连接酶和T4DNA 连接酶。
E·coli DNA 连接酶只能将双链 DNA 片段互补的黏性末端之间连接起来,而 T4DNA 连接酶既可以“缝合”双链 DNA 片段互补的黏性末端,又可以“缝合”双链 DNA 片段的平末端,但连接平末端的效率相对较低。
3、“分子运输车”——载体基因工程中常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。
载体需要具备的条件包括:能够在受体细胞中复制并稳定保存;具有一至多个限制酶切点,供外源 DNA 片段插入;具有标记基因,便于重组 DNA 的鉴定和选择。
三、基因工程的基本操作程序1、目的基因的获取目的基因是指人们所需要的编码蛋白质的结构基因。
获取目的基因的方法主要有从基因文库中获取、利用 PCR 技术扩增以及通过化学方法人工合成。
2、基因表达载体的构建这是基因工程的核心步骤。
基因表达载体的组成包括目的基因、启动子、终止子以及标记基因等。
启动子是 RNA 聚合酶识别和结合的部位,驱动基因转录出 mRNA;终止子是转录终止的信号;标记基因的作用是便于筛选含有目的基因的受体细胞。
3、将目的基因导入受体细胞将目的基因导入植物细胞常用的方法有农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞则通常采用感受态细胞法(用 Ca2+处理细胞)。
dna重组的基本类型及特点

dna重组的基本类型及特点
DNA重组是指通过改变DNA分子的序列和组合方式,创造新的DNA 分子的过程。
它是生物学中一种重要的基因工程技术,经过多年的发展和完善,已经成为人类改造生命的重要手段之一。
DNA重组的基本类型包括:基因克隆、DNA片段重组、基因修饰
和转基因技术。
其中,基因克隆是指将一个完整的基因拷贝到另一个载体上,形成一个新的DNA分子;DNA片段重组是指将多个DNA片段重新组合,形成一个新的DNA序列;基因修饰是指对已有的基因进行改造,使其表达方式或功能得到优化;转基因技术是一种通过将外源基因嵌入到宿主细胞中,使其表达而获得新的性状或功能的技术。
DNA重组的特点包括:高效、精准和可控性强。
通过DNA重组技术,科学家们可以针对特定的基因或DNA序列进行精确的改造和修饰,使其表达方式或功能得到优化。
此外,DNA重组技术具有高度的可控性,可以控制新的DNA分子在宿主细胞中的表达和功能,为人类创造出更多的生物医药、农业和工业应用奠定了基础。
总之,DNA重组技术是一种非常重要的基因工程技术,具有基因克隆、DNA片段重组、基因修饰和转基因技术等多种形式。
它具有高效、精准和可控性强等特点,已经成为人类改造生命的重要手段之一。
- 1 -。
生物学知识点 基因工程

生物学知识点基因工程基因工程是生物学中的一个重要分支,它涉及到对基因的操作和改造,以达到改良生物体的目的。
本文将介绍基因工程的基本概念、技术方法以及应用领域。
一、基因工程的概念与原理基因工程是指通过对生物体的基因进行人为的操作和改造,以达到改良生物体的目的的一门学科。
其基本原理是利用现代分子生物学的技术手段,对生物体的基因进行剪接、克隆、转移等操作,从而实现对生物体特性的调控和改变。
基因工程的核心技术是基因重组技术,即将不同生物体的基因进行重组,形成新的基因组合,然后将其导入目标生物体中,使其表达出新的特性。
基因重组技术主要包括以下几个步骤:1. DNA提取:从生物体中提取出含有目标基因的DNA片段。
2. 基因剪接:利用限制酶将目标基因与载体DNA进行剪接,形成重组DNA。
3. 转化:将重组DNA导入到宿主细胞中,使其表达出目标基因。
4. 选择与筛选:通过选择性培养基或标记基因等方法,筛选出带有目标基因的转基因细胞或生物体。
5. 鉴定与分析:对转基因细胞或生物体进行鉴定和分析,确认其是否成功表达目标基因。
二、基因工程的应用领域1. 农业领域:基因工程在农业领域的应用十分广泛。
通过基因工程技术,可以改良农作物的抗病性、耐逆性和产量等性状,提高农作物的品质和产量。
例如,转基因水稻可以提高抗虫性和耐盐碱性,转基因玉米可以提高抗除草剂和杂草的能力。
2. 医学领域:基因工程在医学领域的应用主要包括基因治疗和基因诊断。
基因治疗是指利用基因工程技术,将正常的基因导入到患者体内,以治疗遗传性疾病或其他疾病。
基因诊断是指通过对患者的基因进行检测和分析,以确定患者是否携带某种疾病的遗传基因。
3. 环境保护领域:基因工程可以应用于环境污染治理和生物修复。
通过基因工程技术,可以改造微生物,使其具有降解有机污染物的能力,从而实现对环境污染物的清除和修复。
4. 工业领域:基因工程在工业领域的应用主要包括生物制药和生物能源。
转基因方法

转基因方法一、基因枪法:1、综述:基因枪法又称为高速微弹法、微粒抢法、微粒轰击法,是由康奈尔大学的Sanford等于1987年首次研制出的火药引爆基因枪,并与该校工程技术专家Wolf及Kallen合作研究出的一种基因转移的新方法。
1990年美国杜邦公司推出商品基因枪PDS-1000系统。
在此期间,高压放电、压缩气体驱动等各种基因枪相继出现,并都在重复的实践中得到改进和发展。
其改进的核心是粒子加速系统,以提高射弹的可控度,即粒子速度和射入的浓度等。
2、基本原理:其基本原理是将外源DNA包被在微小的金粒或钨粒表面,然后在高压的作用下微粒被高速射入受体细胞或组织。
微粒上的外源DNA进入细胞后,整合到植物染色体上,得到表达,从而实现基因的转化。
根据基因枪的动力系统,可将它们分为三种类型:一类是以火药爆炸力为加速动力,其显著特征是塑料子弹和阻挡板。
塑料子弹前端载放已沉淀有DNA的钨金粉。
当火药爆炸时,塑料子弹带着钨金粉向下高速运动,至阻挡板时,塑料子弹被阻遏,而其前端的钨金粉粒子继续以高速向下运动,击中样品室的靶细胞。
其粒子的速度主要是通过火药的数量及速度调节器控制,不能做到无级调整,可控度较低。
第二类是以高压气体作为动力,如以氦气、氢气、氮气等。
其工作原理是把载有DNA 的钨金粉喷洒在一张微粒载片上,电极间悬滴众着微水滴。
在压缩空气的冲击下,微水滴雾状喷射,驱动载片。
当载片受阻于金属筛网时,载有DNA的钨金粒继续向下冲击射入细胞。
第三类是以高压放电为驱动力。
其最大优点是可以无级调速,通过变化工作电压,粒子速度及射入浓度可准确控制,使载有DNA的钨金粉粒子能到达具有再生能力的细胞层。
3、步骤:(1)微粒体的洗涤。
取60-100mg钨或金粉,溶于1ml无水乙醇中,用超声波振荡洗涤。
微粒体处理后可在密闭条件下室温贮存一周。
离心除去乙醇,密闭贮存于室温中,备用,保存时间不要超过一周。
(2)DNA微粒载体的制备。
简述基因工程的基本原理与过程

简述基因工程的基本原理与过程
基因工程是指对生物(动植物)基因进行人工改造,从而改变目标物
种的表型的研究。
基因工程的基本原理是从一个生物体中获取想要的基因,利用质粒或载体将基因定向插入到一个受体生物体中,从而达到特定目的
的一种科学技术。
基因工程的基本过程可以分为四步:
第一步,基因挖掘,即寻找有用的基因,使用某种筛选及分子生物学
技术来获得有用的基因序列;
第二步,基因克隆,即将找到的基因进行复制,可以进行测序,将基
因克隆到载体上;
第三步,转基因,又称基因转移,即将载体上的基因转移到另一个生
物体,以及将病毒中的基因植入到植物体中;
第四步,基因变异,其方法有化学物质诱变、热诱变、物理诱变等,
在把基因转移至另一生物体之后,还可以进行基因变异,以获得不同的表型。
基因工程-转基因概况

பைடு நூலகம்
美国 阿根廷 加拿大 澳大利亚 其他
我国转基因作物的概况
我国是最早开始研究转基因作物的国家之一。 正在进行中间实验的转基因作物 48种,涉及作物 11种, 其中水稻、小麦、玉米、西红柿、白菜、甜瓜、香木瓜、 花生和广藿香等为转基因食品植物。 正在进行环境释放试验的转基因作物 49种,其中水稻、 玉米、大豆、马铃薯、西红柿、甜椒和线辣椒为转基因 食品植物。
基因工程
の 转基因生物的安全问题
主要内容
一、转基因动植物的概况 二、转基因动植物的基本方法
三、基因工程的应用
四、转基因动植物及生物安全 五、预想
六、基因编辑新技术
一、转基因动植物的概况
转基因作物是指科学家在实验中,把作物的基因加以改变, 再制造出具备新特征的作物。转基因与杂交是完全不同的 概念。杂交只能在同类之间发生,如圆皱豌豆杂交。而转 基因则可以提取不同种类植物甚至动物的基因,将其移植 到植物上。
高产奶率和高质量皮毛的动物等。
3.食品工业:开辟新的食物来源。用微生物来生产人类所需要的
营养物质。
(三)基因工程与环境保护
1.环境检测:如用DNA探针可以检测饮用水中病毒的含量,特点
是快速,灵敏,精确。
2.环境净化:科学家用基因工程的方法培育出了能同时分解四种
烃类化合物的“超级细菌”以及“吞噬”汞和降解土壤中 DDT的细菌, 还有能够净化镉污染的植物等。
转基因动物
将外源重组基因转染并整合到动物受体细胞基因组中,从而形成在 体内表达外源基因的动物,称为转基因动物。转基因动物表达系统, 包括外源基因、表达载体和受体细胞等,基因组的转移则是细胞核 移植和动物克隆技术,人工合成与设计基因、全基因乃至基因组的 转基因技术是合成生物学。 遗传的基本物质是 DNA,基因则是位于染色体上有遗传效应的 DNA片 段,对于储存在生物全套染色体中的全部遗传信息,可称其为基因 组。由于不同种类、不同个体的生物基因组成是不同的,因此对动 物个体来说,非自身的基因成分属于外源基因,如果把外源基因整 合或导入动物染色体基因中,那么这个外源基因就被称为转基因 (transgene)(即转移来的基因),这种动物就是转基因动物 (transgenic animals)。
拟南芥转基因实验报告(3篇)

第1篇一、实验目的1. 掌握拟南芥转基因技术的基本原理和方法。
2. 熟悉转基因操作流程,包括目的基因的克隆、转化、筛选和鉴定等步骤。
3. 了解转基因技术在植物基因功能研究中的应用。
二、实验原理拟南芥(Arabidopsis thaliana)是一种广泛应用的植物模式生物,具有生长周期短、繁殖速度快、基因组序列已完全解析等特点,使其成为研究植物生长发育、基因调控和生物技术的理想材料。
转基因技术是将外源基因导入植物基因组中,使其在植物细胞中表达,从而改变植物性状或赋予其新的功能。
本实验采用农杆菌介导的转基因方法,将目的基因导入拟南芥基因组中。
实验流程包括以下步骤:1. 目的基因的克隆:从基因库或基因组DNA中提取目的基因,通过PCR技术扩增目的基因片段。
2. 载体构建:将目的基因克隆到载体上,如T载体或pBI121载体。
3. 农杆菌转化:将重组载体与农杆菌共培养,使农杆菌感染拟南芥细胞。
4. 植物再生:将感染了重组载体的拟南芥叶片接种到含有抗生素的培养基上,筛选出含有目的基因的转基因植株。
5. 鉴定:通过PCR、Southern blotting等方法对转基因植株进行鉴定。
三、实验材料1. 拟南芥野生型植株(Col-0)2. 农杆菌(Agrobacterium tumefaciens)菌株E. coli JM1093. 目的基因片段4. T载体或pBI121载体5. PCR试剂、限制性内切酶、DNA连接酶等6. 培养基、抗生素、琼脂糖等四、实验步骤1. 目的基因的克隆:根据目的基因的序列设计引物,进行PCR扩增。
将扩增产物与T载体连接,转化E. coli JM109感受态细胞,筛选阳性克隆。
2. 载体构建:将目的基因克隆到pBI121载体上,进行酶切和连接反应。
将连接产物转化E. coli JM109感受态细胞,筛选阳性克隆。
3. 农杆菌转化:将重组载体与农杆菌共培养,使农杆菌感染拟南芥叶片。
将感染后的叶片接种到含有抗生素的培养基上,筛选出含有目的基因的转基因植株。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转基因技术的基本概念:(来源:生命经纬)(一)转基因技术的定义将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。
人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。
经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。
(二)几种常用的植物转基因方法遗传转化的方法按其是否需要通过组织培养、再生植株可分成两大类,第一类需要通过组织培养再生植株,常用的方法有农杆菌介导转化法、基因枪法;另一类方法不需要通过组织培养,目前比较成熟的主要有花粉管通道法。
1.农杆菌介导转化法农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。
根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。
因此,农杆菌是一种天然的植物遗传转化体系。
人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。
农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。
2.基因枪介导转化法利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织和细胞中,然后通过细胞和组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。
与农杆菌转化相比,基因枪法转化的一个主要优点是不受受体植物范围的限制。
而且其载体质粒的构建也相对简单,因此也是目前转基因研究中应用较为广泛的一种方法。
3.花粉管通道法在授粉后向子房注射合目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。
该方法于80年代初期由我国学者周光宇提出,我国目前推广面积最大的转基因抗虫棉就是用花粉管通道法培育出来的。
该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。
(三)常用的动物转基因技术1.显微注射法在显微镜下,用一根极细的玻璃针(直径1-2微米)直接将DNA注射到胚胎的细胞核内,再把注射过DNA的胚胎移植到动物体内,使之发育成正常的幼仔。
用这种方法生产的动物约有十分之一是整合外源基因的转基因动物。
2.体细胞核移植方法先在体外培养的体细胞中进行基因导入,筛选获得带转基因的细胞。
然后,将带转基因体细胞移植到去掉细胞核的卵细胞中,生产重构胚胎。
重构胚胎经移植到母体中,产生的仔畜百分之百是转基因动物。
(四)转基因技术与传统技术的关系自从人类耕种作物以来,我们的祖先就从未停止过作物的遗传改良。
过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用,通过随机和自然的方式来积累优良基因。
遗传学创立后近百年的动植物育种则是采用人工杂交的方法,进行优良基因的重组和外源基因的导入而实现遗传改良。
因此,转基因技术与传统技术是一脉相承的,其本质都是通过获得优良基因进行遗传改良。
但在基因转移的范围和效率上,转基因技术与传统育种技术有两点重要区别。
第一,传统技术一般只能在生物种内个体间实现基因转移,而转基因技术所转移的基因则不受生物体间亲缘关系的限制。
第二,传统的杂交和选择技术一般是在生物个体水平上进行,操作对象是整个基因组,所转移的是大量的基因,不可能准确地对某个基因进行操作和选择,对后代的表现预见性较差。
而转基因技术所操作和转移的一般是经过明确定义的基因,功能清楚,后代表现可准确预期。
因此,转基因技术是对传统技术的发展和补充。
将两者紧密结合,可相得益彰,大大地提高动植物品种改良的效率。
国内外转基因动植物研究和产业化现状(一)转基因农作物研究和产业化1983年世界首例转基因植物培育成功,标志着人类用转基因技术改良农作物的开始。
1986年转基因农作物获得批准进入田间试验,1994年美国Calgene公司培育的延熟保鲜的转基因番茄被批准商品化生产,2000年全世界转基因农作物的种植面积达4,420万公顷,发展速度非常迅猛。
据不完全统计,转基因研究至少在35科120种植物中获得了成功,所涉及到的性状包括抗虫、抗病毒、抗细茵、抗真菌、抗除草剂、抗逆境、品质改良,以及对生长发育的调控以提高产量潜力等。
根据“经济合作与发展组织”(OECD)的数据,从1986年到2000年的15年间,OECD国家共批准10,313例转基因生物进入田间试验,其中植物占总数的98.4%,细菌占1.0%,病毒占0.3%,真菌占0.2%,动物占0.1%。
在全部被批准的10,313例田间试验中,美国占总数的71.1%。
全球范围内转基因农作物的种植面积近年来呈逐年大幅度增长的趋势,1996年为170万公顷,1997年为1,100万公顷,1998年增加到2,780万公顷,1999年进一步增加到3,990万公顷,虽然受到国际上关于GMO争议的影响,2000年的种植面积仍有增加,达4,420万公顷。
种植面积在100万公顷以上的有大豆、玉米、棉花和油菜,所用的主要为抗除草剂基因和抗虫基因。
尤其值得指出的是,根据1999年的数据分析,美国该年种植转基因大豆面积为1,500万公顷,占全国大豆面积的50%;转基因玉米的种植面积为1,030万公顷,占全国玉米面积的33%。
目前我国有6种转基因植物被批准进入商品化生产,包括我国自己培育的耐储存番茄(1997)、抗虫棉(1997)、观赏植物矮牵牛(1997)、抗病毒甜椒(1998)、抗病毒番茄(1998),以及美国孟三都公司培育的抗虫棉(1997)。
在上述转基因作物中,种植面积最大的是抗虫棉,到2000年底止,国产抗虫棉的累计推广面积达37万公顷,减少农药用量达80%,创造效益7.7亿元人民币。
根据山东省2000年的统计,抗虫棉的推广减少农药用量1,300多吨。
孟三都公司的抗虫棉也有很大面积的种植。
从整体水平看,我国在转基因作物研究技术方面的进展与国际上基本同步,在发展中国家中居领先地位。
但与国际先进水平相比,我们的差距仍然很大,主要表现在拥有自主知识产权的基因很少,因此缺乏后劲;产业化滞后,活力不足。
(二)转基因动物研究和产业化国际上从九十年代初开始花费大量人力和财力研究和开发动物乳腺生物反应器技术,取得大量成果。
从2001年起,将会有抗胰蛋白酶因子、C蛋白、凝血酶Ⅲ、葡萄糖苷酶和乳转铁蛋白等5-6种产品陆续上市,年产值约10亿美元。
从1995年起又大量投资开发体细胞克隆技术,研发重点是生产干细胞,用于组织修补等治疗性目的。
我国在转基因鱼的研究和开发上处于国际领先地位,已生产出生产性能优良的转基因鱼,对生态环境无不良影响,现已通过中试和安全评价试验,具备了投入商品生产的条件。
我们已较好地建立了动物乳腺生物反应器和体细胞克隆技术平台。
动物乳腺生产的IBDV疫苗和干扰素,将在“十五”期间完成中试,创造商业生产条件。
转基因技术对我国农业发展的意义和前景(一)我国农业生产中的一些主要问题第一,主要作物的病虫危害逐年加重,每年喷施的大量农药既加重了农民负担,使农民增产不增收,又严重破坏了人类赖以生存的生态环境,还造成了食物中的大量农药残留,危害人类健康。
因此,增加品种的抗虫性,减少农药的施用量是一个十分紧迫的问题。
第二,高产品种需肥量大。
目前我国大部分地区作物生产的施肥量已经超过了土地的承受能力,大量施肥除加重农民负担外,土壤退化、江河湖海的富营养化正成为农业和环境可持续发展的严重障碍。
培育肥料高效利用的品种,在保持高产稳产的同时降低肥料用量也已迫在眉睫。
第三,水资源日趋短缺。
除西北长期缺水、华北旱灾频繁外,旱灾在长江流域发生的频率近年也有很大提高。
据统计,我国农业耗水约占全国总耗水量的70%,而水稻的用水几乎占整个农业耗水的70%,在水资源日益短缺的今天,培育耐旱品种,降低水稻的用水对国民经济乃至人类社会的生存和发展均有着十分重要的意义。
第四,我国北方的盐碱地面积很大,南方热带、亚热带土壤普遍为酸性,铝离子的毒害是一个严重问题。
这些不良环境对作物的种植和产量潜力的发挥均有限制作用。
第五,我国的主要作物的品质较差,既不能适应人民生活水平提高的要求,且又因其偏低的售价影响了农民的积极性,亟待改良。
第六,近二十年来各种作物产量均现徘徊局面,新育出的品种在产量潜力上没有大的突破。
(二)转基因技术在我国农作物改良中的前景近年来,国内外应用转基因技术培育出了抗虫性强的棉花、玉米、水稻等。
抗虫棉花在国内外已大面积种植,抗虫玉米在国外已有很大的种植面积,它们的推广大幅度地降低了农药的用量。
抗虫水稻为我国独有,已完成了中间试验,具备了产业化的条件。
国外已培育出氮肥高效利用的转基因小麦,磷肥利用效率明显提高的转基因烟草。
近年国内外均已鉴定分离出一些与氮、磷肥料利用效率有关的基因,将这些基因导入到其它作物,将可能有效地提高各种作物的肥料利用效率,降低肥料用量。
随着分子生物学研究的进展,国际上已获得了不少调节植物水分状态使植物耐旱的基因,这些基因的利用将会培育出耐旱农作物品种。
近年在耐盐碱、耐铝毒分子生物学研究取得了很好的进展,已分别培育出耐盐碱、耐铝毒的转基因植物。
转基因技术的应用将在不久的将来培育出耐盐碱、耐铝毒的作物新品种。
应用转基因技术培育的耐储藏保鲜番茄,在国内外都率先获准进行商品化生产。
国内已培育出直链淀粉含量明显降低、蒸煮和食味品质明显改善的水稻。
瑞士科学家培育的富含维生素A的“金米”由于其科学意义和政治意义,近年在国际上更是引起了轰动。
在食品的营养品质、微量元素的改良方面,转基因技术预期将会发挥重要作用。
应用转基因技术修饰植物的生理生化代谢途径,可以大幅度地提高作物的生产力,改进产量潜力。
例如我国科学家通过转基因技术培育的延缓叶片衰老的水稻,单株生产力显著提高。
此外,转生长激素基因的鱼、猪表现出快速生长、饵料利用效率提高、品质改良等优点,既提高产出,又可降低养殖成本。
对我国畜牧业、渔业的发展和人民生活水平的改善,均会起到保障作用。
转基因农作物的安全性及管理(一)转基因作物的安全性近年来,转基因作物的安全性已成了公众关心的焦点之一,现针对本人接触到的国内外公众和媒体对转基因作物安全性的一些常见的疑虑,作一些讨论。
1.转基因食品的安全性转基因食品是否安全?这是人们对转基因食品的主要担心。