高考数学专题—立体几何(三视图还原求几何体表面积与体积)

合集下载

立体几何三视图及体积表面积的求解

立体几何三视图及体积表面积的求解

立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。

4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。

二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。

名师伴你行高考数学理二轮复习课件:空间几何体的三视图表面积及体积

名师伴你行高考数学理二轮复习课件:空间几何体的三视图表面积及体积


体 周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙


角处堆放米(如图,米堆为—个圆锥的四分之一),米堆底部的弧
题 限

热 点
长为
8
尺,米堆的高为
5
尺.问米堆的体积和堆放的米各为多
训 练
考 向
少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算

破 出堆放的米约有 ( )


解析:
由四棱锥的三视图可知,其直观
题 限

热 图如图所示,

训 练
考 向
其中 PA⊥平面 ABCD,四边形 ABCD 为正方形,由此可知

破 PC 是最长的棱,连接 AC,则 PC= AC2+PA2= 22+12= 3.
第一部分 专题四 第13讲 第9页
名师伴你行 ·高考二轮复习 ·数学 ·理
(1)答案:A

考 真
解析:由三视图可知该几何体是一个正方体截去两个全等的

体 小正三棱锥后的图形,如图所示.





热 点
训 练




第一部分 专题四 第13讲 第35页
名师伴你行 ·高考二轮复习 ·数学 ·理
(2)答案:B

考 真
解析:由三视图知,几何体是一个组合体,上面是一个正四

体 棱锥,四棱锥的底面是一个对角线为 4 的正方形,侧棱长是 3,

题 体 验
则VV12=________.





点 考 向
答案:41

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。

2018年高考理科数学复习课件:第一部分 层级一 送分专题(五) 空间几何体的三视图、表面积与体积

2018年高考理科数学复习课件:第一部分 层级一 送分专题(五) 空间几何体的三视图、表面积与体积

棱的长度为
()
A.3 2
B.2 3
C.2 2
D.2
解析:在正方体中还原该四棱锥如图所示, 从图中易得最长的棱为 AC1= AC2+CC21= 22+22+22=2 3. 答案:B
[准解·快解·悟通]
快 看到三视图,想到常见几何体的三视图,进而还原空间几 审 何体.(注:三视图中的正视图也叫主视图,侧视图也叫左 题 视图)
2 2
,△BCD的面积为
3 4
×12=
3 4
.由VA-BCD=VB-ACD得
1 3
S△BCD·h=
1 3
S△ACD·AB,即
1 3
×
43×h=13×12×
2 2

22,解得h=
66,即三棱锥A-BCD
的高h=
6 6.
答案:A
5.某三棱锥的三视图如图所示,该三棱锥的表面积是( )
3.(2017·浙江高考)某几何体的三视图如图
所示(单位:cm),则该几何体的体积
(单位:cm3)是
()
A.π2+1
B.π2+3
C.32π+1
D.32π+3
解析:由几何体的三视图可得,该几何体是一个底面半径为
1,高为3的圆锥的一半与一个底面为直角边长为 2的等腰直
角三角形,高为3的三棱锥的组合体,故该几何体的体积V=
(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、 准 锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几 解 何体的表面积. 题 2.活用求空间几何体体积的常用方法
(1)公式法:直接根据相关的体积公式计算. (2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得 体积计算更容易,或是求出一些体积比等. (3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形, 转化为易计算体积的几何体.

高考数学复习:空间几何体的三视图、表面积及体积

高考数学复习:空间几何体的三视图、表面积及体积

高考数学复习:空间几何体的三视图、表面积及体积A组1.(文)如图所示是一个物体的三视图,则此三视图所描述物体的直观图是(D)[解析]先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确.(理)如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是(C)[解析]由直观图和俯视图知,正视图中点D1的射影是B1,所以正视图是选项C中的图形,选项A中少了虚线,故不正确.2.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(C)A .20πB .24πC .28πD .32π[解析] 该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r =2,底面圆的周长c =2πr =4π,圆锥的母线长l =22+(23)2=4,圆柱的高h =4,所以该几何体的表面积S 表=πr 2+ch +12cl =4π+16π+8π=28π,故选C.3.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( D )A .100πB .2563πC .4003πD .5003π[解析] 因为切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=5003π,即该西瓜的体积为5003π.4.某几何体的三视图如图所示,则该几何体的表面积为( B )A .18+2πB .20+πC .20+π2D .16+π[解析] 由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的14圆柱体,其表面积相当于正方体五个面的面积与两个14圆柱的侧面积的和,即该几何体的表面积S =4×5+2×2π×1×1×14=20+π.故选B.5.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( C )A .2B .4+22C .4+4 2D .4+62[解析] 由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其直观图如图所示,其中AB=AA 1=2,BC =AC =2,∠C =90°,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+4 2.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为__16__.[解析] 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =13SD 1DE ·AB =13×12×1×1×1=16.7.已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为2π__. [解析] 如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,所以AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD . 依题意,其棱长为1,外接球的半径R =32, 所以外接球的体积V =43πR 3=43π·(32)3=32π.8.(2017·江苏卷)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是__32__.[解析] 设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32.9.下图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD =AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B-CEPD的体积.[解析](1)该组合体的三视图如图所示.(2)∵PD⊥平面ABCD,PD⊂平面PDCE,∴平面PDCE⊥平面ABCD.∵四边形ABCD为正方形,∴BC⊥CD,且BC=DC=AD=2.又∵平面PDCE∩平面ABCD=CD,BC⊂平面ABCD.∴BC⊥平面PDCE.∵PD⊥平面ABCD,DC⊂平面ABCD,∴PD⊥DC.又∵EC∥PD,PD=2,EC=1,∴四边形PDCE为一个直角梯形,其面积:S梯形PDCE=12(PD+EC)·DC=12×3×2=3.∴四棱锥B-CEPD的体积V B-CEPD=13S梯形PDCE·PD=13×3×2=2.10.(文)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C.(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.[解析](1)取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1= 3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC= 3.故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.(理)如图,四棱锥P-ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.[解析](1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面P AD,AD⊂平面P AD,故BC∥平面P AD.(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD , 平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD . 因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27,所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P -ABCD 的体积V =13×2(2+4)2×23=4 3.B 组1.(文)某三棱锥的三视图如图所示,则该三棱锥的体积为( D )A.60 B.30C.20 D.10[解析]由三视图画出如图所示的三棱锥P-ACD,过点P作PB⊥平面ACD于点B,连接BA,BD,BC,根据三视图可知底面ABCD是矩形,AD=5,CD=3,PB=4,所以V三棱锥P-ACD =13×12×3×5×4=10.故选D.(理)已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(B)A.43 cm 3 B .83 cm 3C .2 cm 3D .4 cm 3[解析] 由三视图可知,该几何体为底面是正方形,且边长为2 cm ,高为2 cm 的四棱锥,如图,故V =13×22×2=83(cm 3).2.三棱锥A -BCD 内接于半径为2的球O ,BC 过球心O ,当三棱锥A -BCD 体积取得最大值时,三棱锥A -BCD 的表面积为( D )A .6+4 3B .8+23C .4+6 3D .8+43[解析] 由题意,BC 为直径,△BCD 的最大面积为12×4×2=4,三棱锥A -BCD 体积最大时,AO ⊥平面BCD ,三棱锥的高为2,所以三棱锥A -BCD 的表面积为4×2+2×12×22×6=8+4 3.3.三棱锥P -ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( C )A.4π3 B .4π C .8πD .20π[解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =32×3×23=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π.故选C.4.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( B )A .2 2B .2 3C .4D .26[解析] 如图,四面体的直观图是棱长为2的正方体ABCD -MNPQ 中的三棱锥Q -BCN ,且QB =22+(22)2=23,NC =QN =QC =22,四面体Q -BCN 各面的面积分别为S △QBN =S △QBC =12×2×22=22,S △BCN =12×2×2=2,S △QCN =34×(22)2=23,面积最大为2 3.5.(2019·昆明摸底)古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为( A )A .63πB .72πC .79πD .99π[解析] 由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为π×32×5+12×43π×33=63π.6.已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D -ABC ,当三棱锥D -ABC 的体积取最大值时,其外接球的体积为__43π__.[解析] 当平面DAC ⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD ,又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.7.如图,半径为4的球O 中有一内接圆柱,则圆柱的侧面积最大值是__32π__.[解析] 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =4cos α,圆柱的高为8sin α.所以圆柱的侧面积为32πsin2α.当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,所以圆柱的侧面积的最大值为32π.8.(2019·惠州二调)如图,某几何体的三视图是三个全等的等腰直角三角形,且直角边长都等于1,则该几何体的外接球的体积为2π__.[解析]还原几何体为如图所示的三棱锥A-BCD,将其放入棱长为1的正方体中,如图所示,则三棱锥A-BCD外接球的半径R=32,该几何体的外接球的体积V=43πR3=32π.9.(文)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED.(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.[解析](1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE.又BD⊂平面BED,BE⊂平面BED,BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V E-ACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.(理)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH//平面AEF;(3)求多面体ABCDEF的体积.[解析](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又因为平面BDEF⊥平面ABCD,平面BDEF ∩平面ABCD =BD , 且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)证明:在△CEF 中,因为G ,H 分别是CE ,CF 的中点, 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF .设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (3)解:由(1),得AC ⊥平面BDEF , 又因为AO =2,四边形BDEF 的面积S BDEF =3×22=62, 所以四棱锥A -BDEF 的体积V 1=13×AO ×S BDEF =4.同理,四棱锥C -BDEF 的体积V 2=4. 所以多面体ABCDEF 的体积V =V 1+V 2=8.。

高三数学二轮复习:立体几何

高三数学二轮复习:立体几何
板块三 专题突破 核心考点
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是

解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题—立体几何(三视图还原求表面积、体积)基础知识点:一、面积公式:圆柱(底面半径为r,母线长为l)圆锥(底面半径为r,母线长为l)圆台(上、下底面半径分别为r′,r,母线长为l)侧面展开图底面面积2π底S r=2π底S r=22,ππ上底下底S r S r='=侧面面积2π侧S rl=π侧S rl=()π侧S l r r='+表面积()2π表S r r l=+()π表S r r l=+()22π表S r r r l rl='++'+二、体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高)2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高)213π圆锥V r h=(r为底面半径,h为高)基本方法:一、构造长方体或正方体—将还原后的几何体放在长方体或正方体中,一方面有利于计算,另一方面可检查还原是否正确例1、如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为()A.B.C.D.4【答案】A【解析】由三视图可得,该几何体是如图所示的三棱柱挖去一个三棱锥,故所求几何体的体积为,故选A.236727611ABB DCC-E FCG-()111232221112326⎛⎫⨯⨯⨯-⨯⨯⨯⨯=⎪⎝⎭例2、若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于( )A .B .C .D .【答案】A【解析】由三视图知几何体是底面为边长为3,4,5的三角形, 高为5的三棱柱被平面截得的,如图所示,截去的是一个三棱锥,底面是边长为3,4,5的直角三角形,高为3的棱锥, 如图蓝色线条的图像是该棱锥,三棱锥上底面外接圆半径圆心设为半径为, 球心到底面距离为,设球心为, 由勾股定理得到,,故选A .例3、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为( )34π32π17π172π52M r 32O 2222253342224h R r ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2434S R =π=πA .B .C .D .【答案】C【解析】还原几何体如图所示三棱锥由(如下左图),将此三棱锥补形为直三棱柱(如上右图),在直三棱柱中取的中点,取中点, ,,故答案为C .例4、一个四棱锥的三视图如图所示,则该几何体的表面积为( )A .B .C .D .【答案】B【解析】根据三视图,画出原空间结构图如下图所示:∴表面积为,∴故选B . 例5、已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,,,且32π16π36π72π1B BCD -111B C D BCD -111BC D BCD -1BC BC 、12O O、12O O O 3R ==2244336S R =π=⨯=π表6+8+6+8+111111111111DA D DA B DB C DC D A B C D S S S S S S =++++11112222222282222=⨯⨯+⨯⨯⨯⨯⨯⨯+⨯=+a b,则此三棱锥外接球表面积的最小值为( )A .B .C .D .【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为2,,,∴此三棱锥的外接球即为长方体的外接球, 且球半径为,∴三棱锥外接球表面积为, ∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B . 二、三线交轨法—三视图即由三种视觉方向形成,故可以在平面图形的端点处形成一条线,然后在线上取合适的点例6、如图为某几何体的三视图,则该几何体的表面积是A .B .C .D .()520,02a b a b +=>>174π214π4π5π1111ABCD A B C D -11A CB D -1111ABCD A B C D -ab 1111ABCD A B C D-R ==()()22222144514a b a ππ=π++=π-+⎝⎭1a =12b =214π【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.例7、某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16【答案】B例8、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于()A. B. C. D.【答案】B【解析】由三视图可知,该几何体的直观图如图所示,由直观图可知,最长的棱为.例9、祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.例10、某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( )A.1B.2C.3D.4【答案】C【解析】由该四棱锥的三视图,得其直观图如图.由正视图和侧视图都是等腰直角三角形,知PD ⊥平面ABCD,所以侧面PAD 和PDC 都是直角三角形.由俯视图为直角梯形,易知DC ⊥平面PAD.又AB ∥DC,所以AB ⊥平面PAD,所以AB ⊥PA,所以侧面PAB 也是直角三角形. 易知PC=2√2,BC=√5,PB=3,从而△PBC 不是直角三角形.故选C.例11、一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17C.16D.15【答案】D【解析】由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a,则V 正方体=a 3,V 截去部分=16a 3,故截去部分体积与剩余部分体积的比值为16a 3∶56a 3=1∶5.例12、某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323cm 3D.403cm 3【答案】C【解析】由题中三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm,正四棱锥的高为2 cm,则该几何体的体积V=2×2×2+13×2×2×2=323(cm 3),故选C.例13、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6√2B.6C.4√2D.4【答案】B【解析】如图所示的正方体ABCD-A 1B 1C 1D 1的棱长为4.取B 1B 的中点G,即三棱锥G-CC 1D 1为满足要求的几何体,其中最长棱为D 1G,D 1G=√(4√2)2+22=6.例14、如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由所给三视图可知该几何体是一个三棱柱(如图).例16、已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A.108 cm3B.100 cm3C.92 cm3D.84 cm3【答案】B【解析】由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm3).故选B.。

相关文档
最新文档