2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

合集下载

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

空间几何体的三视图(基础型) [知识整合]
一个物体的三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主) 视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对 正、高平齐、宽相等”.
[考法全练] 1.一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是( )
面 ABCD 是正方形且和球心 O 在同一平面内,当此四棱锥的体积取得最大值时,
其表面积等于 8+8 3,则球 O 的体积等于( )
A.323π
B.32
2π 3
C.16π
16 2π D. 3
【解析】 (1)如图,由题意知圆柱的中心 O 为这个球的球心,于是, 球的半径 r=OB= OA2+AB2= 12+( 3)2=2.故这个球的表面 积 S=4π r2=16π .故选 D.
(2)求空间几何体体积的常用方法 ①公式法:直接根据相关的体积公式计算. ②等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容 易,或是求出一些体积比等. ③割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算 体积的几何体.
[对点训练] 1.(2019·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之 一圆弧),则该几何体的表面积为( )
第二部分 高考热点 分层突破
专题三 立体几何 第1讲 空间几何体的三视图、表面积及体积数学 Nhomakorabea01
做高考真题 明命题趋向
02
研考点考向 破重点难点
03
练典型习题 提数学素养
[做真题] 1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分 叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构 件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 ()

2020年高考数学三轮题型突破 1 选择题突破 题型10 空间几何体的三视图、体积、表面积与传统文化(学生版)

2020年高考数学三轮题型突破 1 选择题突破 题型10 空间几何体的三视图、体积、表面积与传统文化(学生版)

第一篇主题10 空间几何体的三视图、体积、表面积与传统文化【主题考法】本主题的题型为选择填空题,主要考查简单几何体的三视图、由三视图求原几何体的表面积、体积、文科求体积占多数,理科则求面积居多,考查与简单几何体有关的传统文化,考查空间想象能力、运算求解能力,难度为中档或以下试题,分值为5分.【主题回扣】1.概念理解(1)四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.(2)三视图①三视图的正(主)视图、侧(左)视图、俯视图分别是从几何的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.②三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样. 2.柱、锥、台、球体的表面积和体积侧面展开图 表面积体积 直棱柱 长方形S =2S 底+S 侧 V =S 底·h 圆柱 长方形 S =2πr 2+2πrl V =πr 2·l 棱锥 由若干三角形构成S =S 底+S 侧 V =13S 底·h 圆锥 扇形 S =πr 2+πrl V =13πr 2·h 棱台 由若干个梯形构成S =S 上底+S 下底+S 侧 V =13(S +SS ′+S ′)·h 圆台扇环S =πr ′2+π(r +r ′)l +πr 2V =13π(r 2+rr ′+r ′2)·h球 S =4πr 2S =43πr 3【易错提醒】1.在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主. 2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数13. 3.忽视三视图的实、虚线,导致几何体的形状结构理解错误.【主题考向】考向一 空间几何体的三视图【解决法宝】在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.在处理三视图问题时,要根据“长对正,宽相等、高平齐”的原则由三视图确定对应几何体中的量,或由几何体确定三视图中的量.例1【2020届陕西省二质检】某三棱锥的三视图如图所示,其俯视图是一个等腰直角三角形,在此三棱锥的六条棱中,最长棱的长度为( )正视图 仰视图 俯视图 A . B . C .D .【分析】 【解析】考向二 几何体的表面积【解决法宝】利用三视图求解几何体的表面积,关键是确定几何体的形状和相关数据,计算出各个面的面积,再求和即为表面积,掌握应用三视图的“长对正、高平齐、宽相等”.例2【2020山西长治3月在线综合测试】如图是某几何体的三视图,则它的表面积为( )A.172++9 B.17+22+11 C.172++8 D.217+22+11【分析】【解析】、考向三几何体的体积【解决法宝】1.求简单几何体的体积,要选择适当的底面和高,然后应用公式进行计算.2.求几何体的体积的常用方法有割补法和等积变换法.(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、椎体等,分别求出柱体、椎体等的体积,从而得出几何体的体积.(2)等体积转化法:利用三棱锥的每一个面可做底面.①求体积时,可选择容易计算的方式来求解;②利用“等积性”可求“点到面的距离”.3.利用三视图为载体求解几何体的体积,关键是是根据三视图想象原几何体的形状构成,并从三视图图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.例3【2020山西大同3月模拟】某几何体的三视图如图所示,则该几何体的体积为( )A.4 B.2 C.6 D.7 3【分析】【详解】考向四简单几何体与传统文化【解决法宝】认真阅读题目,将传统文化给出的题目转化为数学语言给出问题,得到题中给出的几何体和有关的数据,转化为几何问题,再利用有关知识解决相关问题.例4【2020届四川成都石室天府中学第四次质检】阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为( )A.4πB.16πC.36πD.64 3π【分析】【解析】【主题集训】1.【2019届第一次全国大联考(新课标Ⅰ卷)】如图所示为某三棱锥的三视图,若该三棱锥的体积为,则图中x的值为( )A.B.C.4 D.2.【2020四川成都石室中学一模】一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2 ,则此四棱锥最长的侧棱长为( )A. B. C. D.3.【2020届全国大联考三4月联考】下图是某几何体的三视图,该几何体的体积为( )A.112B.16C.13D.124.【2020届陕西汉中期末】某几何体的三视图如图所示,则该几何体的表面积为( )A.3244π+B.5244π+C.24π+D.384π+5.【2020届陕西省宝鸡市模拟检测(二)】《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A.4πB.8πC.642+D.8 3π6.【2019届安徽省合肥市二质检】如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A.2对B.3对C.4对D.5对7.【2020中学生标准学术能力诊断性测试测】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A.27πB.28πC.29πD.30π8.【2020福建福清3月线上教学质量检测】如图,如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的表面积是( )A .225+B .425+C .235+D .435+9.【2020贵州铜仁一中期末】某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )A .22B .52C .62D .3。

2020届高考数学(理)大一轮复习:专题突破练(5) 立体几何的综合问题

2020届高考数学(理)大一轮复习:专题突破练(5) 立体几何的综合问题

专题突破练(5)立体几何的综合问题2.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AB=2,BC=1,AC=5,若规定正视方向垂直平面ACC1A1,则此三棱柱的侧视图的面积为()45C.5 D.6答案C折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°5.[2018·河南豫东、豫北十校测试]鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,原为木质结构,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90度榫卯起来,若正四棱柱体的高为4,底面正方形的边长为1,则该鲁班锁的表面积为 ( )A.48 B .60 C .72 D .846.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A.2 B .4 C .6 D .8答案 B解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.选B.7.[2017·湖北黄冈中学二模]一个几何体的三视图如图所示,其中正视图是边长为2的等边三角答案 B解析 由三视图可知,该几何体是半圆锥,其展开图如图所示,则依题意,点A ,M 的最短距离,即为线段AM .∵P A =PB =2,半圆锥的底面半圆的弧长为π,∴展开图中的∠BPM =πPB=π2, π5π5π答案 B解析 如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R=x R,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S 取最大值,S max =94πR 2.选B.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A.0个 B .1个 C .2个 D .3个10. [2017·东北三省三校二模]已知三棱柱ABC -A 1B 1C 1,侧棱BB 1⊥平面ABC ,AB =2,AC =3,AA 1=14,AC ⊥BC ,将其放入一个水平放置的水槽中,使AA 1在水槽底面内,平面ABB 1A 1与水槽底面垂直,且水面恰好经过棱BB 1,现水槽底面出现一个小洞,水位下降,则在水位下降过程中,几何体露出水面部分的面积S 关于水位下降的高度h 的函数图象大致为( )答案 A1x 时,正四棱锥的体积最大,则x 为 ( )A .0.5B .0.8C .0.2D .1答案 C二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.10514.如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以64πR315.如图,用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个巢,将半径为1的球体放入其中,则球心与巢底面的距离为__________.3+12解析 由题意知,折起后原正方形顶点间最远的距离为1,如图中的DC ;折起后原正方形顶点到底面的距离为12,如图中的BC .由图知球心与巢底面的距离OF =1-122+12=3+12. 16.[2017·安徽黄山第二次质检]如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′,DD ′交于点M ,N ,设BM=x ,x ∈[0,1].给出以下五个命题:①当且仅当x =0时,四边形MENF 的周长最大;17.[2017·河南洛阳月考]如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.(1)若点P为AA的中点,求证:平面B CP⊥平面B C P;值;若不存在,说明理由.解(1)证明:如图,以C为原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(2,0,0),B1(0,4,4),C1(0,0,4),P(2,0,2),B(0,4,0),→→118.719.[2018·广东韶关调研]已知四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,∠ABC(2)由(1)得AE,AD,AP两两垂直,连接AM,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.520.[2017·湖北黄冈期末]如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA与平面AB C所成角的正弦值的大小;1故以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,。

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得不规则几何体的表面积.命题角度二 空间几何体的体积(1)(20xx·河北衡水中学四调)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A .2 000π9B .4 000π27C .81πD .128π(2)(一题多解)如图,在直角梯形ABCD 中,AD =AB =4,BC =2,沿中位线EF 折起,使得∠AEB 为直角,连接AB ,CD ,则所得的几何体的表面积为________,体积为________.【解析】 (1)小圆柱的高分为上下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,体积V 单调递增;当53<h<5时,V ′<0,体积V 单调递减.所以当h =53时,小圆柱的体积取得最大值,即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. (2)如图,过点C 作CM 平行于AB ,交AD 于点M ,作CN 平行于BE ,交EF 于点N ,连接MN .由题意可知ABCM ,BENC 都是矩形,AM =DM =2,CN =2,FN =1,AB =CM =22,所以S △AEB =12×2×2=2,S 梯形ABCD =12×(2+4)×22=62,S 梯形BEFC =12×(2+3)×2=5,S 梯形AEFD =12×(3+4)×2=7,在直角三角形CMD 中,CM =22,MD =2, 所以CD =23.又因为DF =FC =5,所以S △DFC =12×23×2=6,所以这个几何体的表面积为2+62+5+7+6=14+62+6.所以AS 为三棱锥S -ABC 的高,所以V S ­ABC =13×6×2×12×23=43,故选C.2.(20xx·江苏南通联考)已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.解析:如图,取BC 中点O ,连接AO .因为正三棱柱ABC -A 1B 1C 1的各棱长均为2,所以AC =2,OC =1,则AO =3.因为AA 1∥平面BCC 1B 1,所以点D 到平面BCC 1B 1的距离为3. 又S △BB 1C 1=12×2×2=2,所以VD ­BB 1C 1=13×2×3=233.答案:233与球有关的切、接问题[典型例题]A.12B.14C.16D.112解析:选C.V A ­BC 1M =V C 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.3.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( ) A .10 B .103 C .102D .53解析:选B.设圆锥的底面半径为r ,高为h .因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr =20π,所以r =10,所以h =202-102=103.4.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163π C.323π D .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA2+AB2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.5.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1,则点B 到平面D 1AC 的距离等于( )A.33B.63C .1 D.2解析:选B.如图,连接BD 1,易知D 1D 就是三棱锥D 1­ABC 的高,AD 1=CD 1=5,取AC 的中点O ,连接D 1O ,则D 1O ⊥AC ,所以D 1O =AD21-AO 2=3.设点B 到平面D 1AC 的距离为h ,则由V B ­D 1AC =V D 1­ABC ,即13S △D 1AC ·h =13S △ABC ·D 1D ,又S △D 1AC =12D 1O ·AC =12×3×22=6,S △ABC =12AB ·BC =12×2×2=2,所以h =63.故选B. 6.在三棱锥S -ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S -ABC 的体积为932,则该三棱锥的外接球半径是( ) A .1B .2C .3D .4解析:选C.取SC 的中点O ,连接OA ,OB ,则OA =OB =OC =OS ,即O 为三棱锥的外接球球心,设半径为r ,则13×2r ×34r 2=932,所以r =3. 7.(20xx·安徽省江南十校3月检测)我国南北朝时期的科学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体在等高处的水平截面的面积恒等,那么这两个几何体的体积相等.利用此原理求以下几何体的体积:如图,曲线y =x 2(0≤y ≤L )和直线y =L 围成的封闭图形绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1(三棱柱ABC -A 1B 1C 1),其中AC ⊥平面α,BB 1C 1C ∥α,EFPQ ∥α,AC =L ,AA 1⊂α,AA 1=π,Z 1与Z 在等高处的截面面积都相等,图中EFPQ 和BB 1C 1C 为矩形,且PQ =π,FP =l ,则几何体Z 1的体积为( )A .πL 2B .πL 3C.12πL 2D.12πL 3 解析:选C.由题意可知,在高为L 处,几何体Z 和Z 1的水平截面面积相等,为πL ,所以S 矩形BB 1C 1C =πL ,所以BC =L ,所以V 三棱柱ABC -A 1B 1C 1=S △ABC ·π=12πL 2,故选C. 8.(20xx·××市七校联合考试)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .63D .43解析:选B.由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2,所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP2-OF2=23.因为△OPF ∽△DPE ,所以OF DE =PF PE,得DE =23,AD =3DE =63,AB =23AD =12.故选B. 9.(多选)下列说法正确的是( )A .用一个平面截一个球,得到的截面是一个圆面B .圆台的任意两条母线延长后一定交于一点C .有一个面为多边形,其余各面都是三角形的几何体叫作棱锥D .若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥解析:选ABD.在A 中,用一个平面截一个球,得到的截面是一个圆面,故A 正确;在B 中,由圆台的概念知圆台的任意两条母线延长后一定交于一点,故B 正确;在C 中,依照棱锥的定义,其余各面的三角形必须有公共的顶点,故C 错误;在D 中,若六棱锥的底面边长都相等,则底面为正六边形,由过底面中心和顶点的截面知,若以正六边形为底面,侧棱长一定大于底面边长,故D 正确.10.(多选)在正方体上任意选择4个顶点,它们可能是如下几种几何图形的4个顶点,这些几何图形可以是( )A .矩形B .有三个面为等腰直角三角形,有一个面为等边三角形的四面体C .每个面都是直角三角形的四面体D .每个面都是等边三角形的四面体解析:选ABCD.4个顶点连成矩形的情形显然成立;图(1)中四面体A 1­D 1B 1A 是B 中描述的情形;图(2)中四面体D -A 1C 1B 是D 中描述的情形;图(3)中四面体A 1­D 1B 1D 是C 中描述的情形.正三棱锥的高为18-12=6.答案:614.(20xx·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以圆柱的体积为π×⎝⎛⎭⎫122×1=π4. 答案:π415.(20xx·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC于点F .由题意知PE =PF =3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH 为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为2.答案:216.(20xx·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=33.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81。

2020届新课标高考二轮复习名师精品课件1-5-1第1讲 空间几何体的三视图、表面积、体积

2020届新课标高考二轮复习名师精品课件1-5-1第1讲 空间几何体的三视图、表面积、体积

调研 2 空间几何体的表面积、体积 a.圆锥的侧面积 1.(2018·全国Ⅱ,16,5 分)已知圆锥的顶点为 S,母线 SA, SB 所成角的余弦值为78,SA 与圆锥底面所成角为 45°.若△SAB 的 面积为 5 15,则该圆锥的侧面积为_4_0___2_π__.
解析:如图,∵SA 与底面成 45°角,Fra bibliotek专题五 立体几何
第1讲 空间几何体的三视图、 表面积、体积
重点要点排查报告
[记牢方能用活] 一、空间几何体的三视图 1.三视图为三个三角形,一般对应三棱锥; 2.三视图为两个三角形、一个四边形,一般对应四棱锥; 3.三视图为两个三角形、一个圆,一般对应圆锥; 4.三视图为两个矩形、一个四边形,一般对应直四棱柱; 5.三视图为两个矩形、一个圆,一般对应圆柱.
A.2 17 B.2 5 C.3 D.2
解析:先画出圆柱的直观图,根据题图的三视图可知,点 M, N 的位置如图 1 所示.
图1
图2
圆柱的侧面展开图及 M,N 的位置(N 为 OP 的四等分点)如 图 2 所示,连接 MN,则图中 MN 即为 M 到 N 的最短路径.
ON=14×16=4,OM=2, ∴|MN|= OM2+ON2= 22+42=2 5. 故选 B.
小提示: 利用底面半径与母线的关系,以及△SAB 的面积值求出底面 半径是解题的突破口,把条件转化为方程,从而寻求 l 和 r 之间 的关系.
b.球内接棱锥体积的最值问题 2.(2018·全国Ⅲ,10,5 分)设 A,B,C,D 是同一个半径为 4 的球的球面上四点,△ABC 为等边三角形且其面积为 9 3,则 三棱锥 D-ABC 体积的最大值为( B ) A.12 3 B.18 3 C.24 3 D.54 3

2020版高三数学二轮复习(全国理)讲义:专题5 第1讲 空间几何体的三视图、表面积及体积

2020版高三数学二轮复习(全国理)讲义:专题5   第1讲 空间几何体的三视图、表面积及体积

A.1
B.2
C.3
D.4
[解析] 选 C.将四棱锥三视图转化为直观图,如图,
侧面共有 4 个三角形,即△PAB,△PBC,△PCD,△PAD,
由已知,PD⊥平面 ABCD,又 AD⊂ 平面 ABCD,
所以 PD⊥AD,同理 PD⊥CD,PD⊥AB,
所以△PCD,△PAD 是直角三角形.
因为 AB⊥AD,PD⊥AB,PD,AD⊂ 平面 PAD,PD∩AD=D,
名称
体积
棱柱
V 棱柱=Sh (S 为底面积,h 为高)
棱锥
V 棱锥=!!!!
1Sh 3
(S 为底面积,h 为高)
棱台
V
棱台
=1h(S+ 3
SS′+S′)
(S、S′为底面积,h 为高)
圆柱
V 圆柱=πr2h (r 为底面半径,h 为高)
圆锥
V 圆锥=!!!!
1πr 2h 3
(r 为底面半径,h 为高)
(3)掌握球及球的截面的性质.
预测 2020 年命题热点为:
(1)已知空间几何体的三视图,求空间几何体的体积、表面积.
(2)已知空间几何体中各元素间的关系,求几何体的体积、表面积.
(3)给出球体与多面体,利用球的性质求解球的体积、表面积等.
知识整合 Zhi shi zheng he 1.柱体、锥体、台体、球的表面积与体积
的对应点为 A,圆柱表面上的点 N 在侧视图上的对应点为 B,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径
的长度为( B ) A.2 17 C.3
B.2 5 D.2
[解析] 选 B.将三视图还原为圆柱,M,N 的位置如图 1 所示,将侧面展开,最短路径为 M,N 连线的距离, 所以 MN= 42+22=2 5.

高中数学知识点:空间几何体的三视图精选全文完整版

高中数学知识点:空间几何体的三视图精选全文完整版

可编辑修改精选全文完整版
高中数学知识点:空间几何体的三视图
1.三视图的概念
把一个空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形很难把握几何体的全貌,因此我们需要从多个角度进行投影,这样才能较好地把握几何体的形状和大小.通常,我们总是选择三种投影.
(1)光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;
(2)光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;
(3)光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.
几何体的正视图、侧视图和俯视图统称为几何体的三视图.
2.三视图的画法规则
画三视图时,以正视图为准,俯视图在正视图的正下方,侧视图在正视图的正右方,正、俯、侧三个视图之间必须互相对齐,不能错位.
正视图反映物体的长度和高度,俯视图反映物体的长度和宽度,侧视图反映物体的宽度和高度,由此,每两个视图之间有一定的对应关系,根据这种对应关系得到三视图的画法规则:
(1)正、俯视图都反映物体的长度——“长对正”;
(2)正、侧视图都反映物体的高度——“高平齐”;(3)俯、侧视图都反映物体的宽度——“宽相等”.。

2020版高考数学大二轮复习第二部分专题3立体几何第1讲空间几何体的三视图、表面积与体积课件文

2020版高考数学大二轮复习第二部分专题3立体几何第1讲空间几何体的三视图、表面积与体积课件文

22π A. 3
25π C. 3
23π B. 3
26π D. 3
解析:由几何体的三视图,可确定该几何体为一个大球的34,和一个小球的14组合而成, 由题意可得,大球的半径为 2,小球的半径为 1,所以该几何体的体积为34×43π×23+14 ×43π×13=235π.故选 C.
答案:C
[题后悟通] 1.求几何体的表面积的方法 (1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化, 这是解决立体几何的主要出发点. (2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、 锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.
2.与球有关的组合体的常用结论
(1)长方体的外接球
①球心:体对角线的交点.
②半径:r= a2+2b2+c2(a,b,c 为长方体的长、宽、高). (2)正方体的外接球、内切球
①外接球:球心是正方体中心,半径
r=
3 2 a(a
为正方体的棱长).
②内切球:球心是正方体中心,半径 r=a2(a 为正方体的棱长).
以选择题与填空题为主,考查空间几何体的 1.根据三视图求几何体的表面积与体积.
表面积与体积的计算,涉及空间几何体的结 2.根据几何体求其表面积与体积.
构特征、三视图等内容,要求考生要有较强
的空间想象能力和计算能力,广泛应用转化
与化归思想.
[题组练透]
1.(2019·大连模拟)已知圆锥的母线长为 6,母线与轴的夹角为 30°,则此圆锥的体积
4.已知一个四棱锥的正(主)视图和俯视图如图所示,其中 a+b=10.则该四棱锥的高的 最大值为________.
解析:如图所示, 由题意知,平面 PAD⊥平面 ABCD,设点 P 到 AD 的距离为 x, 当 x 最大时,四棱锥的高最大, 因为 PA+PD=a+b=10>6, 所以点 P 的轨迹为一个椭圆, 由椭圆的性质得,当 a=b 时,x 取得最大值 52-32=4,即该四棱锥的高的最大值为 4. 答案:4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五 第1讲
1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )
A .3π
B .4π
C .2π+4
D .3π+4
解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×
1
2×π×12+π×1×2+2×2=3π+4.故选D.
2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )
A .163-
16π
3
B.163-16π3
C .83-8π
3
D.83-8π3
解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V
三棱柱
=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连
接分三角形为3个全等的小三角形,由三角形面积可得1
2×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =23
3
.
故V 圆柱=πr 2h =π×⎝⎛

⎫2332
×4=16π3.
∴几何体的体积V =V 三棱柱-V 圆柱=163-16π
3
.故选A.
3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )
A.1
8 B.1
7 C.1
6 D.15
解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=5
6a 3.
它们的体积之比为1
5
.故选D.
4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )
A .1+ 3
B .2+3
C .1+2 2
D .2 2
解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×3
4
×(2)2=2+ 3.
5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )
A.32π
3 B .4π C .2π
D.4π3
解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =
⎝⎛⎭⎫222+⎝⎛⎭
⎫222=1,球的体积V =4π3r 3=4π3.故选D.
6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π
3
,那么这个三棱柱的体积是( D )
A .963
B .163
C .24 3
D .48 3
解析 如图,设球的半径为R ,
由43πR 3=32π
3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·3
2a =2,所以a =43, 所以V =
3
4
×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1
上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )
A .66
B .68
C .70
D .72
解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+
54=66.
故所求几何体EFC 1DBC 的体积为66.
8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.
解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定
理得2CM =BC sin ∠CAB =5,则CM =5
2.所以R =OC =
OM 2+CM 2=
41
2
,则外接球的表面积为S =4πR 2=41π.
9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 8
3
π m 3.
解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径
和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×
1
3π×12×1+π×12×2=8
3
π (m 3).
10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =
16
3
.
(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)
解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =1
3
×22×2,即V =23-13×22×2=163
.。

相关文档
最新文档