锂离子电池三元镍钴锰正极材料研究现状综述
三元正极材料范文

三元正极材料范文三元正极材料是指由锂、镍、钴和锰等元素组成的复合材料,常见的包括锂镍钴锰氧化物(LiNiCoMnO2)和锂镍钴铝锰氧化物(LiNiCoAlMnO2)。
作为锂离子电池中的重要组成部分,三元正极材料具有高能量密度、长循环寿命、高安全性等优点,因此在电动汽车、手机、笔记本电脑等领域得到广泛应用。
三元正极材料的主要成分是锂镍钴锰氧化物,又称为NCM。
NCM材料具有优良的电化学性能,高比容量和较高的工作电压。
其中锂元素是锂离子电池的正极活性材料,而镍、钴、锰等金属元素提供了反应反应中所需的价电子。
NCM材料在Li+的插入和脱插过程中能够实现高效的反应,保持较高的容量,并具有较好的循环稳定性。
三元正极材料的优点之一是高比容量。
比容量是指单位质量或单位体积材料能够存储的锂离子数量,也是衡量电池性能的一个重要指标。
相比于其他正极材料,三元正极材料具有更高的比容量,能够存储更多的锂离子,从而提供更高的能量密度。
三元正极材料的另一个优点是长循环寿命。
循环寿命是指电池能够进行的充放电循环次数,也是衡量电池寿命的一个重要指标。
三元正极材料具有较好的结构稳定性和电化学稳定性,能够在多次充放电循环中保持较高的容量和稳定的性能。
这使得三元正极材料的电池能够在长期使用过程中保持较长的寿命。
三元正极材料还具有较高的安全性。
锂离子电池的安全性是一个重要的考量因素,因为电池在使用过程中可能会发生过热、短路、爆炸等危险情况。
三元正极材料的使用可以提高电池的安全性能,因为锰元素具有较高的热稳定性和热耐受性,能够有效防止因电池过热引发的火灾和爆炸。
尽管三元正极材料具有以上的优点,但也存在一些问题和挑战。
例如,三元正极材料中的钴元素是一种稀有金属,资源有限且成本较高。
因此,需要寻找替代材料来降低成本和减少对稀有金属的依赖。
此外,三元正极材料在高温环境下会有容量衰减的问题,需要通过改变材料结构和添加其他化合物来改善高温性能。
总之,三元正极材料是一种在锂离子电池中应用广泛的正极材料,具有高比容量、长循环寿命和高安全性等优点。
ncm三元材料

ncm三元材料NCM三元材料,即镍钴锰三元材料,是一种新型的高能量密度锂离子电池正极材料。
随着新能源汽车市场的迅速发展,NCM三元材料作为锂离子电池的重要组成部分,备受关注。
本文将就NCM三元材料的结构特点、性能优势以及应用前景进行详细介绍。
首先,NCM三元材料的结构特点主要体现在其由镍、钴、锰三种金属元素组成的化学配方上。
这种特殊的化学配方使得NCM三元材料具有较高的比容量和能量密度,能够满足电动汽车对于高能量密度的需求。
同时,NCM三元材料还具有较好的循环稳定性和热稳定性,能够有效延长电池的使用寿命。
其次,NCM三元材料在性能优势方面表现突出。
相比于传统的钴酸锂正极材料,NCM三元材料在比容量、循环寿命和安全性等方面都有明显的优势。
特别是在提高电池能量密度和降低成本方面,NCM三元材料更是具备了巨大的潜力。
这也是为什么越来越多的电池制造商和汽车厂商开始采用NCM三元材料作为电池正极材料的原因之一。
最后,NCM三元材料的应用前景十分广阔。
随着新能源汽车市场的快速增长,对于高能量密度、高循环寿命和安全性能优异的锂离子电池需求不断增加。
而NCM三元材料正是能够满足这些需求的理想选择。
因此,可以预见,NCM三元材料在电动汽车、储能系统等领域的应用将会越来越广泛。
综上所述,NCM三元材料作为一种新型的高能量密度锂离子电池正极材料,具有明显的结构特点、性能优势和广阔的应用前景。
随着技术的不断进步和市场需求的持续增长,相信NCM三元材料必将在未来发展中发挥重要作用,成为新能源汽车领域的重要材料之一。
三元材料镍钴锰的作用

三元材料镍钴锰的作用
1.高容量:镍钴锰材料具有较高的比容量,可以存储更多的锂离子。
相比于传统的钴酸锂材料,镍钴锰材料的比容量更高,能够存储更多的锂
离子,从而提高电池的能量密度。
2.高循环性能:镍钴锰材料的高循环性能是其作为正极材料的重要优
势之一、循环寿命是衡量电池性能的重要指标,而镍钴锰材料在循环过程
中能够保持较好的容量和功率保持性能,减少了电池循环过程中的容量衰减,提高了电池的使用寿命。
3.高能量密度:镍钴锰材料具有较高的能量密度,可以存储更多的能量。
能量密度是电池能够储存的能量的量度,能量密度越高,电池的续航
能力就越好。
镍钴锰材料的高能量密度使得电池能够在相同体积和重量下
存储更多的能量,从而提高了电池的续航能力。
4.良好的热稳定性:镍钴锰材料具有较好的热稳定性和安全性能。
在
高温下,镍钴锰材料能够保持较好的电化学性能,不会因为温度升高而出
现剧烈的容量衰减。
此外,镍钴锰材料的热耐受性良好,不易发生过热、
过放电等危险情况,提高了电池的安全性。
5.可调变化:镍钴锰材料可以通过调整镍、钴、锰的比例来改变其性能。
可以通过适当调整镍、钴、锰的比例,优化材料的结构和性能来满足
不同应用需求。
总结起来,三元材料镍钴锰作为锂离子电池的正极材料,具有高容量、高循环性能、高能量密度、良好的热稳定性和可调变化的特点。
它在电动车、手机、笔记本电脑等领域得到广泛应用,并且在未来发展中有着较大
的潜力。
三元正极材料简介

车等领域,市场需求旺盛。
发展趋势
技术创新
随着电动汽车市场的快速发展, 三元正极材料技术不断创新,性 能不断提升,成本不断降低。
环保趋势
随着环保意识的提高,三元正极 材料生产过程中的环保要求越来 越高,企业需要加强环保投入。
产业链整合
三元正极材料产业链较长,涉及 矿产、化学品、电池等多个领域 ,企业需要加强产业链整合,提 高竞争力。
电压平台
三元正极材料具有较高的电压 平台,有助于提高电池的能量
密度。
物理性能
晶体结构
三元正极材料具有稳定的晶体结构,能够提 高材料的机械性能和热稳定性。
密度
高密度三元正极材料能够减小电池体积,提 高能量密度。
颗粒形貌
颗粒形状和大小可控,有助于提高电极的制 备工艺和电化学性能。
硬度
适当的硬度有助于提高电极的加工性能和循 环寿命。
应用
广泛应用于电动汽车、混合动力汽车、电动自行车、智能手机、平板电脑等领域。
02
三元正极材料的性能
电化学性能
高能量密度
三元正极材料具有较高的能量 密度,能够提供更长的电动汽
车续航里程。
循环寿命
经过多次充放电循环,三元正 极材料的性能衰减较低,保证 了电池的长寿命。
倍率性能
三元正极材料具有良好的倍率 性能,允许电池在大电流下快 速充电和放电。
提高其电化学性能。
成本控制的挑战与解决方案
要点一
挑战
要点二
解决方案
三元正极材料成本较高,包括材料成本、生产成本、回收 成本等,这限制了其在电动汽车等大规模应用领域的发展 。
通过降低原材料成本、提高生产效率、开发低成本回收技 术等方法,可以降低三元正极材料的成本。例如,采用价 格较低的镍、钴、锰等替代材料,开发新型的合成方法, 提高生产效率,同时开发有效的回收技术,实现三元正极 材料的循环利用,降低其生命周期成本。
锂离子电池三元高镍正极材料的改性及电化学性能研究

锂离子电池三元高镍正极材料的改性及电化学性能研究摘要:为了提高锂离子电池的性能,本研究采用了化学共沉淀法制备了三元高镍正极材料。
随后,对其进行了改性处理,包括高温焙烧、表面修饰和掺杂等方法,并研究了不同改性方法对其电化学性能的影响。
结果表明,采用掺杂方法改性的三元高镍正极材料具有更好的电化学性能,其中最佳掺杂剂为钴和铁,能够显著提高其比容量和循环寿命。
关键词:锂离子电池;三元高镍正极材料;改性;电化学性能引言锂离子电池是目前最广泛应用的一种可充电电池,具有高能量密度、长循环寿命等优点。
其中正极材料是决定电池性能的关键因素之一,而三元高镍正极材料由于具有高的比容量和低的成本,在近年来受到了广泛的研究。
然而,其电化学性能仍存在一些缺陷,如循环寿命短、容量衰减等问题。
因此,如何改善其性能成为了当前研究的重要方向之一。
方法本研究采用化学共沉淀法制备了三元高镍正极材料,其中镍、钴、锰的质量比为5:3:2。
随后,对其进行了高温焙烧、表面修饰和掺杂等方法进行改性处理。
结果与讨论通过扫描电镜和透射电镜等实验手段对样品进行了形貌和结构表征,发现掺杂元素的引入能够显著改变材料的颗粒形貌和晶体结构。
同时,改性后的三元高镍正极材料具有更优异的电化学性能,在充放电容量、循环寿命等方面均有明显提高。
其中,采用掺杂方法改性的样品具有最佳的性能表现,钴和铁掺杂元素的引入能够显著提高其比容量和循环寿命,且其性能稳定性较高。
结论本研究通过对三元高镍正极材料进行改性处理,发现掺杂方法能够显著提高其电化学性能,其中最佳掺杂元素为钴和铁。
该研究为提高锂离子电池性能提供了新思路和方法。
离子电池是目前最常用的可充电电池之一,在诸多领域得到广泛应用,比如移动通信、电动汽车、储能系统等。
其中,三元高镍正极材料由于其高比容量、低成本等优点而备受研究者们的关注,然而其电化学性能仍存在不足之处,主要体现在循环寿命短、容量衰减等方面。
因此,如何提高该材料的性能成为当前研究的热点问题之一。
锂离子电池正极材料层状镍钴锰复合材料LiNi_xCo_yMn_zO_2的研究

收稿日期5作者简介女,6年生,副教授,张家口市,5基金项目河北省科学技术研究与发展计划项目(53);张家口市科学技术研究与发展指令计划(B )锂离子电池正极材料层状镍钴锰复合材料LiNi x Co y Mn z O 2的研究王甫丽王克柏永清刘朴薛红丹河北建筑工程学院数理系摘要层状镍钴锰复合材料LiNi x Co y Mn z O 2具有比商业化锂离子电池正极材料LiCoO 2低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注.本文重点介绍了近年来层状镍钴锰复合正极材料合成方法及掺杂、包覆改性方面的研究成果,并简要概括了目前存在的问题及材料未来的研究趋势.关键词锂离子电池;正极材料;层状LiN i x Co y Mn z O 2中图分类号TQ1310引言目前,锂离子电池正极材料主要有钴酸锂、镍酸锂、锰酸锂及磷酸亚铁锂四个系列,钴酸锂仍是市场主流,但是钴资源有限、价格昂贵、钴有毒和安全性能差等缺点限制其今后的大规模应用;镍酸锂的实际容量较钴酸锂高,Ni 的价格较钴便宜,但镍酸锂制备困难,热稳定性差;锰酸锂具有原料丰富、价格低廉、环境友好、热稳定性好的优势,但锰酸锂的容量低,循环性能差;磷酸亚铁锂价格低廉、资源丰富、循环性能良好、热稳定性优、环境友好,但导电性差、密度低.这些材料自身都有明显不足,制约其进一步应用[12].1999年Liu 等[3]首次报道了层状LiNi 1X Y Co X Mn Y O 2(0<X<05,0<y<05)的镍钴锰三元过渡金属复合氧化物,该氧化物为LiCoO 2/LiNiO 2/LiMnO 2共熔体,具有LiCoO 2的良好循环性能、LiNiO 2的高比容量和LiMnO 2的安全性.2001年T.Ohzuku 等[4]首次合成了具有优良性能的层状NaFeO 2结构的LiNi 1/3Co 1/3Mn 1/3O 2,镍钴锰三元复合材料的研究因此受到特别关注[58].层状镍钴锰三元复合材料一定程度综合了LiCoO 2、LiNiO 2、LiMnO 2的优势,弥补了不足,改善了材料性能,降低了成本[6].本文就近年来层状镍钴锰三元复合材料的制法、性能方面的研究状况进行综述,并简要概述了锂离子电池正极材料的发展趋势.1制备方法11固相法固相合成技术是合成金属氧化物常用的方法,将反应物按计量比混合研磨,压片或造粒,然后置于高温炉中在空气或氧气气氛下烧结.固相合成法具有操作简便,易于工业化生产的优点,是目前产业化生产的主要方法.Ren 等[9]以Co 3O 4,MnO 2,Ni(OH )2,LiOH H 2O 为原材料,固相合成了层状N aFeO 2结构LiNi 1/3Co 1/3Mn 1/3O 2.SEM 图显示,产物平均粒径约为1m,呈无规则聚集状,比表面积12146m 2/g.2546V 电压范围,200mA /g 电流密度下充放电结果显示:产物具有187mAh/g 的初始放电容量,循环30次容量损失17%.于凌燕等[10]以H 2C 2O 42H 2O,LiOH H 2O,乙酸镍,乙酸锰为原料,固相法合成了层状第28卷第4期2010年12月河北建筑工程学院学报JOURNAL O F HEBEI INSTITUTE OF ARCHI TECTU RE A ND CIVIL EN GINEERING Vol 28No 4Dec.2010:2010-07-2:19707024:09211409110094NaFeO 2结构Li[Li 067Mn 0583Ni 025]O 2,该材料粒径60100nm,2544V 之间05C(100mA/g)充放电循环试验,可逆比容量在120mAh/g 以上,如将截止电压高达46V,比容量最高可达234mAh/g.固相法缺点在于合成过程中,各组分难以均匀共混,受热不均匀,需反复研磨和烧结,延长了合成时间,造成能量的浪费,生产效率降低;所得产物粒径较大,不均匀,直接影响材料的电化学性能;气氛、温度、时间、原料等因素对制备的正极材料晶体结构和电化学性能有着重要的影响;产物的粒径分布不易控制,均匀性、一致性和重现性较差.12共沉淀法共沉淀法可以使原材料进行分子级接触,是一种优良的合成方法.pH 值、搅拌速率以及配合物试剂种类、浓度的选择决定了最终产物的性能,具有操作复杂,重现性差的特点.共沉淀法在合成特定形貌的正极材料中被广泛应用[6].卢华权等[11]以Ni(NO 3)2,Mn(NO 3)2为原料,以草酸铵为沉淀剂,不同PH 值(40,55,70,85)下所得沉淀分别与LiNO 3研磨,450烧结6h,压片,800煅烧12h,得结晶良好的LiNi 05Mn 05O 2,电化学性能测试证明:PH =70时合成的材料电化学性能更好,01C 倍率下,材料首次放电比容量达到了185mAh/g,循环20次后,放电比容量仍保持在160mAh/g.钟辉等[12]采用沉淀喷雾造粒法造前驱体,于750在空气中煅烧20h 合成Li(Ni 1/3Co 1/3Mn 1/3)O 2正极材料,XRD 、SEM 、粒度分析、电性能测试表明:该材料是NaFeO 2结构,2842V,2845V 充放电首次放电容量分别为1735和1854mAh/g,首次放电效率分别为90%和838%,40次循环后容量保持96%和84%.13溶胶凝胶法溶胶一凝胶法过程螯合物的形成,同样可使各组分进行分子级接触,使产物一次结晶完全.不但可以降低灼烧温度和减少结晶时间,还能得到粒径较小且分布均匀的产品.戴长松等[13]采用溶胶凝胶法制备了锂离子电池正极材料LiNi 05Co 025Mn 025O 2,XRD 、XPS 、SEM 测试表明:层状结构明显,产品结晶粒度均匀;充放电测试表明:在恒流充电模式下,充电截止电压由435V 升至475V,首次放电容量由179mAh/g 升至201mAh/g,50次循环放电后,容量保持率由7495%升至7848%;在先恒流再恒压的充电模式下,首次放电容量为212mAh/g,50次循环放电后,容量保持率升至8771%;EIS 测试表明:随着充电截止电压的增大,该材料的传荷电阻变小.温建武等[14]以Li(NO 3)2H 2O 、Ni(NO 3)24H 2O 、Mn(NO 3)24H 2O 和Mn(CH 3COO)24H 2O 为原料,以目标产物LiNi 1/3Co 1/3Mn 1/3O 2化学计量比配成05mol/L 水溶液,加入丙烯酸水溶液,然后将混合液置于Co60射线(强度5575Gg/min)辐照2h 的凝胶物质,150烘干20h,研磨,500预烧15h,研磨,在不同温度(850,900,950)煅烧10h,得产物.测试结果表明:900样品层状结构最好,电化学性能最佳,首次放电容量达184mA h/g,01C 和2845V,30次循环放电,容量保持874%.14熔融盐法熔融盐法是利用低共熔混合熔融盐做反应物或兼作熔剂,反应则是在固液态间进行,离子扩散速度显著加快,可以有效降低反应温度和时间,改善材料晶体结构和性能,合成出符合计量比以及结晶发育良好的正极材料[15].汤宏伟等[16]利用低共融混合锂盐038LiOH 062LiNO 3与自制前驱体Ni 08Co 02x Al x (OH )2(0X 015)按一定摩尔比混合,经过3个恒温阶段烧结,(2003h,6005h,85015h)的LiNi 08Co 02x Al x O 2(0X 015),XRD 、SEM 、电性能测试表明:材料具有规整的层状NaFeO 2结构,振实密度达297g/cm3,02C 放电倍率和3043V,首次放电容量达1675mAh/g,循环性能良好.复合物的组成对材料电性能的影响复合物中各成分元素含量不同直接影响材料的结构、热稳定性、循环性能及倍率放电能力,另外,钴含量还直接决定材料价格106河北建筑工程学院学报第28卷2.郭瑞等[17]采用共沉淀法合成锂离子电池正极材料LiCo 2x N i 052x Mn 05X O 2(2x=01,02,033,05),对产物进行了XRD 、SEM 、充放电和DSC 测试,以考察不同钴含量2x 对材料的结构、电化学性能和热稳定性的影响,结果表明:随着材料中钴含量2x 的提高,材料的晶格参数和晶胞体积逐渐减小,材料的循环性能和倍率放电能力得到改善,特别当2x=033时,材料有良好的电化学性能:首次放电容量为175mAh/g,30次循环后容量保持率为891%,同时其具有最好的热稳定性.Kim 等[18]研究了Li 过量对于三元材料Li[Lix(Ni z Co 12z Mn z )1x ]O 2的影响.作者发现过量的Li 能有效抑制充放电过程中的体积变化,尽管过量Li 的贡献没有高含量Co 的贡献大.当Co 含量低时,适度过量的Li 能有效抑制阳离子混排,改善材料的循环性能和倍率性能.在28V~45V 的充放电区间内,Li 105(Ni 037Co 023Mn 040)095O 2首次放电容量达到175mAh/g,50次循环后容量保持率为96%,比Li(N i 034Co 022Mn 044)O 2的性能更为优异.国海鹏等[19]采用Co 2+浓度递增的金属离子(Ni 2+,Co 2+,Mn 2+)混合液分次共沉淀制得Ni 1/2Co 1/6Mn 1/3(OH )2前驱体,与LiOH H 2O 研磨混合,空气气氛下450预烧48h,升温至一定温度(700、750、800、850),恒温烧结12h,室温冷却,研磨的产物LiNi 1/2CO 1/6Mn 1/3O 2.电化学性能测试证明800的梯度材料具有最佳电化学性能,2542V,01C 倍率放电50次后,材料的容量仍保持在1712mAh/g.,其中含量较高的Mn 作为材料骨架起到稳定晶体结构的作用,并能大幅度降低成本,Ni 含量占过渡金属的50%,保证了材料具有较高首次比容量.在不加大成本较高的Co 用量的前提下,通过合成具有Co 含量梯度的正极材料,使Co 在材料粒子中的含量由内到外递增,改善材料的充放电性能.戴长松等[13]对其溶胶凝胶法合成的LiNi 05Co 025Mn 025O 2进行XRD 、XPS 表征表明:Co 、Mn 以+3、+4价形式存在,Ni 以+2、+3价存在,且Ni 2+、N i 3+含量比为11,在2848V 扫描范围内,该材料发生Ni 2+/Ni 3+和Co 3+/Co 4+两对电化学反应,Mn 则主要起稳定晶体结构的作用.3复合材料的改性研究为了进一步改善材料性能,研究者们通过掺杂和包覆等手段进行材料改性.31掺杂改性半径接近的元素,适当的掺杂比例和均匀的掺杂能使材料的结构更稳定,改善材料的循环性能和热稳定性.杨平等[20]采用草酸盐前驱体合成Ti 4+、Mg 2+掺杂正极材料Li(NiM l/3Co l /3x Mn l /3)M x O 2(M=T i,Mg).利用XRD 和SEM 对其结构和形貌进行表征,并采用循环伏安、交流阻抗、恒流/恒压充放电测试其电化学性能.结果表明:Ti 4+、Mg 2+掺杂后晶胞体积增大,大倍率充放电时LiNi l /3Co l /3Mn l /3O 2的电化学反应阻抗Rct 降低,其大倍率充放电性能得到改善,Ti 2+掺杂效果更好;当掺杂量x=0025时,材料晶型完整,具有单一的a NaFeO 2层状结构;1C 倍率时Li(Ni l/3Co l/3-0025Mn l/3)Ti 0025O 2的第二循环放电容量为1432mA h/g,2C 时为1280mA h/g,经100次循环后容量分别为1325和1158mA h/g,容量保持率为9253%和9047%.曹千等[21]将Co Ni (Mn+M)=111(M=Cr,Zr )的硝酸盐溶解于适量水中,氮气保护气氛中缓慢滴加25%氨水和氢氧化钠溶液,然后将沉淀过滤、洗涤、干燥、研磨,乙醇浸润和过量7%的氢氧化锂球磨混合,所得前驱体在480煅烧5h 除去有机物,最后在850下二次煅烧12h.通过少量Cr 、Zr 代替复合材料中Mn 实验,产品进行XRD 、SEM 、CV 、EIS 、充放电测试证明:少量Cr 掺杂,不会影响材料层状晶型,层状结构良好;一定范围掺杂可提高材料电化学过程的可逆性,降低材料的电荷传递阻抗,提高材料的充放电容量和循环性能.而Zr 替代Mn 则对材料性能影响不明显.可能原因是:Cr 、Mn 离子半径接近,而Zr 则较大(r C r =055,r Mn =053,r Zr =160).国海鹏等[19]对梯度材料L N 6M 3O 进行了F 掺杂改性,结果表明,在不牺牲容量的情况下,产物的振实密度得以提升,达到,接近商业化L O 3材料包覆改性吴晓彪等[]以过渡金属乙酸盐和氢氧化锂为原料,采用共沉淀方法制备了锂离子电池富锂正极材107第4期王甫丽等锂离子电池正极材料层状镍钴锰复合材料LiN i x Co y Mn z O 2的研究Co i i 1/2Co 1/n 1/2241g cm 1iCo 2.222料Li[Li (02)Mn (054)Ni (013)Co (013)]O 2并对该材料进行表面包碳.X 射线衍射技术(XRD)、扫描电子显微技术(SEM)实验数据表明,该材料具有层状NaFeO 2结构,包碳后材料结构没有变化,表面覆盖上一层纳米级别的颗粒.电化学性能测试结果表明该材料包碳后在01C(1C=180mA/g),20~48V 电位范围内首次放电比容量高达2590mAh/g.包碳后首次放电比容量,倍率性能,循环性能均得到提高;采用电化学阻抗谱(EIS)研究包碳前后该材料的传荷阻抗,结果显示碳包覆材料的传荷阻抗明显减小,电子电导率得到提高,从而提高电化学性能.Kim 等[23]以蔗糖溶液为碳源,加入LiNi 1/3Co 1/3Mn 1/3O 2后在350下处理1h,得到表面包覆有纳米厚度碳层的样品.与不包覆的样品相比,1%残碳的样品有着更优异的循环性能和倍率性能,而3%残碳的样品的表现出相对较差的电化学性能.同时,包覆后的样品的热稳定性均有所提高.4存在的问题和未来研究方向与钴酸锂相比,镍钴锰复合材料性能得到了一定程度改善,但实际使用容量仍低于理论容量,循环稳定性和高电压充电时安全隐患仍存在,粉体的填充性不理想,昂贵的N i 、Co 元素比例较高,合成工艺较为繁复.未来的研究关键在于:优化掺杂、包覆的改性手段,降低钴含量,降低产业化成本,提高材料的振实密度、改善高低温和高截止电压下的循环稳定性能和倍率性能;探索适合产业化生产的方法、工艺;开发合成有特殊形貌的纳米镍钴锰正极材料的方法、工艺,解决纳米电极材料中粒子的团聚问题.参考文献[1]Kisuk K,Yiag S M,et aL Elect rodes with high capacit y for Recha rgeable lithium batteries.Science,2006,311:977[2]廖文明,戴永年,姚耀春等.4种正极材料对锂离子电池性能的影响及其发展趋势.材料导报,2008,22(10):45~49[3]Liu Z L,Yu A S,Lee J Y.Synthesis and Char act er ization of LiNi1X YCoX MnYO 2as the Cathode Materials of Sec ondary Lithium Batter ies.J.P ower Sources,1999,81/82:41619[4]Ohzuku T,Makimur a yer ed lithium insertion mater ial of LiCo 1/3Ni 1/3Mn 1/3O 2for lithium ion batt eries.Chem Lett,2001,30:642[5]谭龙,刘浩文.锂离子电池正极材料LiNi 1/3Co 1/3Mn 1/3O 2的研究进展.化学世界,2010,2:122~126[6]唐爱东,王海燕,黄可龙,等.锂离子电池正极材料层状Li Ni Co Mn O 的研究.化学进展,2007,19(09):1313~1321[7]田华,叶乃清.正极材料LiNi 1/3Co 1/3Mn 1/3O 2的结构性能及制备技术研究.材料导报,2008,22(专辑X).238~241[8]刘智敏.锂离子电池正极材料层状LiNixCo 12xMn x O 2的合成与改性研究.中南大学博士学位论文,2009[9]Ren H B,Wang Y R,Li D C,et a1.Solid State Ionies,2008,178:1969~1974[10]于凌燕,仇卫华,连芳等.锂离子电池正极材料Li[Li 0.167Mn 0583Ni 025]O 2的合成与性能研究.电化学,2008,14(02):135~139[11]卢华权,吴锋,苏岳峰等.草酸盐共沉淀法制备锂离子电池正极材料LiNi 0.5Mn 05O 2及其电化学性能.物理化学学报,2010,26(01):51~56[12]钟辉,许惠.层状Li(Ni 1/3Co 1/3Mn 1/3)O 2正极材料的合成与电化学性能研究.化学学报,2007,64(02):147151[13]戴长松,葛吴,王殿龙等.层状正极材料LiNi 05Co 025M n 025O 2的结构及电化学行为.无机化学学报,2007,23(03):432~438[14]温建武,滕元成,李玉香等.锂离子电池正极材料LiNi 1/3Co 1/3Mn 1/3O 2的合成及性能研究.电子元件与材料,2009,28(12):30~32[15]KIM J H ,Myung ST,Sun Y K.Molten salt synthesis of LiNi 05Mn 15O 4spinel for 5V class cat hode mater ial of li ion secondar y battery.Electr ochim Act a,2004,49:219~227[16]汤宏伟,朱志红,常照荣.熔融盐法合成高密度锂离子电池正极材料LiNi 08Co 02x Al x O 2.稀有金属材料工程,2010,39(02):333~337[]郭瑞,史鹏飞,程新群等钴含量对锂离子电池正极材料L x N 5x M 5x O 的性能影响稀有金属,,33(3)3~35[]KIM M ,KUM G I N,OI T Sy ,S ,f O L +x (N z z M z )x O (z=x=)y S y D y M 108河北建筑工程学院学报第28卷17.iCo 2i 02n 02.20090:71718J A A CH H .nt hesis tr ucture and Electrochemical Character istics o verlithiated i 1i Co 12n 120104and 0001Posit ive Electrodes P repared b pra r ing ethod.J.Elect rochem.Soc,2008,155(01):A82~A89[19]国海鹏.层状锂离子电池正极材料LiNi 1/2Co 1/6Mn 1/3O 2的制备及性能研究.北京化工大学硕士学位论文,2008[20]杨平,张传福,戴曦等.正极材料Li(Ni 1/3Co 1/3X Mn 1/3)M x O 2(M =Ti,M g)的合成及性能.中国有色金属学报,2009,19(01):101~107[21]曹千.锂离子电池正极材料.复旦大学硕士论文,2008[22]吴晓彪,董志鑫,郑建明等.锂离子电池正极材料Li[Li (02)Mn (054)Ni (013)Co (013)]O 2的碳包覆研究.厦门大学学报(自然科学版),2008,增刊:224~227[23]KIM H S,KONG M Z,KIM K,et al.Effect of car bon coating on LiNi 1/3Mn 1/3Co 1/3O 2cathode mater ial for lithium secondary batter ies.J.Power Sour ces,2007,171:917~921Layered Nickel/Cobalt/Manganese ComplexusLiNi x Co y Mn z O 2as Cathode Materials for Lithium Ion BatteryWan g Fu li ,Wa ng Ke ,Ba i Y on gqin g,Liu Pu ,Xu e Hon gda nDepartment of Mat hematics and P hysics,H ebei Institute of Architecture and Civil Engineer ingAbstr act Layered nickel/cobalt/manganese complexus LiNi x Co y Mn z O 2has attr acted mor e and moreattentions from scientists for its excellent properties,such as lower cost,lower toxicity and high er ther mal stability than LiCoO 2as a cathode material.Various synthesis methods,doping and surface modification approaches ar e introduced in detail.T he achievements of this scientific re search area in r ecently years are displayed,and the current main problems and further resear ch trend of the materials are also pointed out.Key words lithium ion batter y;cathode materials;layered structure LiNi x Co y Mn z O 2109第4期王甫丽等锂离子电池正极材料层状镍钴锰复合材料LiN i x Co y Mn z O 2的研究。
镍钴锰三元锂离子电池正极材料优缺点的重新评价

镍钴锰三元锂离子电池正极材料优缺点的重新评价Title: Reevaluating the Pros and Cons of Nickel Cobalt Manganese (NCM) Lithium-Ion Battery Cathode MaterialsIntroduction:Lithium-ion batteries have become the preferred energy storage option due to their high energy density, long cycle life, and low self-discharge rate. Among the various cathode materials used in these batteries, nickel cobalt manganese (NCM) compounds have gained significant attention. However, this article aims to reevaluate the pros and cons of NCM cathode materials to provide a more comprehensive understanding of their advantages and limitations.1. Background of NCM Cathode Materials:- Brief explanation of the composition and structure of NCM compounds.- Overview of the role of NCM cathodes in lithium-ion batteries. - Discussion on the increasing demand for NCM cathode materials in various applications.2. Advantages of NCM Cathode Materials:- High energy density: Highlighting the ability of NCM compounds to store a large amount of energy, leading to longer battery life and extended device usage.- Improved power output: Exploring how NCM cathodes facilitate faster charging and discharging rates, enabling quick device functionality.- Enhanced thermal stability: Discussing the improved thermal management of NCM cathodes, ensuring battery safety even under extreme conditions.- Cost-effectiveness: Analyzing the cost efficiency of NCM cathode materials compared to other alternatives in the industry.3. Limitations and Challenges of NCM Cathode Materials:- Capacity fading: Addressing the issue of capacity degradation over multiple charge-discharge cycles, which affects the overall lifespan and performance of NCM cathodes.- Voltage instability: Exploring the tendency of NCM cathode materials to exhibit voltage fluctuations during operation, affecting battery reliability.- Material scarcity: Discussing the dependence of NCM cathode materials on limited resources such as cobalt, which raisesconcerns about sustainability and future supply chain stability. - Safety concerns: Highlighting the potential for thermal runaway and electrolyte decomposition associated with NCM cathodes, necessitating advanced safety measures.4. Reevaluating the Pros and Cons:- Balanced assessment: Providing an in-depth analysis of the advantages and limitations discussed in the previous sections to determine the overall value proposition of NCM cathode materials.- Comparisons with alternative cathode materials: Evaluating NCM cathodes against other commonly used cathode materials such as lithium iron phosphate (LFP) and nickel cobalt aluminum (NCA), considering their respective strengths and weaknesses.- Future prospects and ongoing research: Reflecting on the current research efforts to address the limitations of NCM cathode materials and exploring potential breakthroughs that could revolutionize their performance.Conclusion:In conclusion, the reevaluation of NCM cathode materials has shed light on their diverse advantages and limitations. WhileNCM cathodes offer high energy density, improved power output, and enhanced thermal stability, concerns remain regarding capacity fading, voltage instability, material scarcity, and safety issues. It is essential to consider the specific requirements of each application and weigh the pros and cons before deciding on the suitability of NCM cathode materials. Ongoing research and technological advancements hold great potential for overcoming existing challenges and further improving the performance of NCM cathodes in future lithium-ion battery applications.。
镍钴锰三元材料

镍钴锰三元材料镍钴锰(NCM)三元材料是一种重要的正极材料,可用于锂离子电池。
它由镍(Ni)、钴(Co)和锰(Mn)三种金属元素组成,具有较高的能量密度和较长的循环寿命,因此在电动汽车和便携式设备中得到了广泛的应用。
首先,镍钴锰三元材料具有较高的能量密度。
由于镍和钴的高比容量,NCM材料能够存储更多的锂离子,因此具有较高的能量密度。
这意味着使用NCM材料制造的电池能够储存更多的能量,从而延长设备的使用时间。
这对于电动汽车等需要长时间连续使用的设备来说尤为重要。
其次,镍钴锰三元材料具有较长的循环寿命。
通过适当的材料合成和结构设计,NCM材料可以实现优异的循环稳定性。
这意味着电池可以进行更多的充放电循环,而且在每个循环中能量衰减较小。
这使得NCM电池更加耐用,具有更长的使用寿命。
此外,镍钴锰三元材料具有较好的安全性能。
相比于其他材料,NCM材料在高温下具有较高的热稳定性,不易发生热失控等危险情况。
因此,使用NCM电池的设备相对安全可靠。
然而,镍钴锰三元材料也存在一些问题。
首先,由于钴的成本较高,NCM材料的生产成本相对较高。
另外,NCM材料的镍含量较高,导致其对环境的影响较大。
因此,研究人员正在努力降低NCM材料的成本,减少对环境的负面影响。
总的来说,镍钴锰三元材料是一种优秀的正极材料,具有较高的能量密度、较长的循环寿命和较好的安全性能。
它在电动汽车和便携式设备等领域有广泛的应用前景,并且正在不断改进和发展。
随着技术的不断进步,相信镍钴锰三元材料会为电池行业带来更大的突破和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档 三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNil/3Col/3Mnl/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMnxCoyNi1-x-yO2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2 层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMnxCoyNi1-x-yO2结构中, Ni2+
的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNixCo1-x-y
O2 ,LiMnxCoyNi1-x-yO2 中这种位错由于Ni 含量的降低而显著减少。同
时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸实用文档 锂的高安全性及低成本等优点,利用分子水平的掺杂、包覆和表面修饰等方法来合成锰镍钴等多元素协同的复合正极材料,因其良好的研究基础及应用前景而成为近年来研究热点之一。对于LiMnxCoyNi1- x-yO2 材料来说,各元素的比例对其性能有显著的影响。Ni的存在能使LiMnxCoyNi1-x-yO2的晶胞参数a和c值分别增加, c/a减小,晶胞体积增大,有助于提高材料的可逆嵌锂容量。但过多Ni2+的存在又会因为位错现象而使材料的循环性能变差。Co 能有效稳定复合物的层状结构并抑制3a与3b位置阳离子的混合,即减小Li层与过渡金属层的阳离子混合,从而使锂离子的脱嵌更容易,并能提高材料的导电性以及改善其充放电循环性能; 但随Co 的比例增大,晶胞参数中的c和a值分别减小(但c/ a值增加) ,晶胞体积变小,导致材料的可逆嵌锂容量下降。而引入Mn后,除了能大幅度降低成本外,还能有效改善材料的安全性能。但Mn 的含量太高则容易出现尖晶石相,从而破坏材料的层状结构。 LiNi1/3Co1/3Mn1/3O2的电化学特征 LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料在充电过程中的反应有以下特征: (1)在3.75-4.54V之间有两个平台且容量可以充到250Ma.h/g,为理论容量的91%。 (2)通过XANES和EXAFS分析得到3.9V左右为Ni2+/Ni3+,在3.9V-4.1V之间为Ni3+/Ni4+。当高于4.1V时,Ni4+不再参与反应。 (3)Co3+/Co4+与上述两个平台都有关。 实用文档 (4)充到4.7V时Mn4+没有变化,因此Mn4+只是作为一种结构物质而不参与反应。 通过其在3.0-4.5V的循环伏安图可以看出LiNi1/3Co1/3Mn1/3O2第一次在4.289V有一不可逆阳极氧化峰,对应于第一次不可逆容量。在3.825V有一阳极氧化峰,这一对氧化还原峰在反复扫描时,峰电位和峰强度都保持不变,说明这种材料具有良好的稳定性。 合成方法对LiNi1/3Co1/3Mn1/3O2电化学性能的影响 LiNi1/3Co1/3Mn1/3O2的制备方法主要有固相法,共沉淀法,溶胶-凝胶法和喷雾热解法。 固相法 固相法是将计量比例的锂盐,镍和钴及锰的氧化物或盐混合,在高温下处理,由于固相法中Ni,Co,Mn的均匀混合需要相当长的时间,因此一般要在1000℃以上处理才能得到性能良好的LiNi1/3Co1/3Mn1/3O2
正极材料。通过EXAFS研究,发现首次放电效率小是由于在放电过程
中,Ni4+没有完全还原成Ni3+造成的。 金属乙酸盐与锂盐混合烧结—有机盐 Cheng等人将充分混合的化学计量的LiCH3COO•2H2O、Ni(CH3COO)
2 •4H2O、Mn(CH3COO)2•4H2O 和Co(CH3COO)2•4H2O混合物加热到400 ℃得到前驱体。球磨1h,然后在空气中加热到900℃并保温20h得到LiNi1/3Co1/3Mn1/3O2 粉末,在充电电流密度为20mAh/g 时,首次充电容量为176 mAh/g ,上限电压达4. 5V ,在50℃下循环35 次容量保持率为81 %以上,显示出较好的循环性能。 实用文档 金属氧化物与锂盐混合烧结 Zhaoxiang Wang等人将化学计量的Ni2O3(85%)、Co2O3 (99%) 和MnO2与7%过量的LiOH•H2O充分混合后在850~1100℃烧结24h得到纯相的LiNi1/3Co1/3Mn1/3O2,其晶格参数为a=0.28236nm , c =1.44087 nm,XRD 衍射图谱说明产物具有a-NaFeO2型层状结构,晶型完美,电化学性能测试表现出良好的电化学性能。 金属氢氧化物与锂盐混合烧结 Naoaki等人将Ni(OH)2、Co(OH)2和Mn(OH)2按Co∶Ni∶Mn =0.98∶1.O2∶0.98 充分混合,球磨,在150℃下预热1h ,然后在空气中加热到1000℃烧结14h得到LiNi1/3Co1/3Mn1/3O2 ,其晶格参数为a= 0.2862nm, c=1.4227nm与计算的理论结果(a = 0.2831 nm , c = 1.388nm)接近,LiNi1/3Co1/3Mn1/3O2的晶胞体积为100.6×10-30m3 ,其值在LiCoO2 和LiNiO2之间。组装成实验电池后,在30℃下,在充电电流密度为0.17 mA/cm2时,在2.5~4.6 V放电,充电容量为200mAh/g ,并表现出优异的循环性能。 共沉淀法 用氢氧化物作沉淀剂 Lee 等人以NiSO4、CoSO4、MnSO4和NaOH为原料,以NH4OH为络合剂合成球形Ni1/3Co1/3Mn1/3(OH)2前驱体,然后与LiOH•H2O充分混合,烧结得到层状球形的LiNi1/3Co1/3Mn1/3O2粉末。组装成实验电池,2.8~4.3V,2.8~4.4和2.8~4.5V电压范围内LiNi1/3Co1/3Mn1/3O2放电比容量分别为159 ,168 mAh/g和177 mAh/g ,并且在30℃时在20 mAh/g的实用文档 电流密度下具有优异的循环性能。 用碳酸盐作沉淀剂 禹筱元等人采用共沉淀法以NH4HCO3和Na2CO3为沉淀剂合成Ni、Mn、Co三元共沉淀前驱体,然后与Li2CO3球磨混合,在950℃下热处理20h ,冷却到室温得产物为球形或近球形形貌,颗粒均匀的LiNi1/3Co1/3Mn1/3O2正极材料。测得LiNi1/3Co1/3Mn1/3O2 材料的晶格常数为a=0.2866nm, c=1.4262nm电性能测试表明Li/LiNi1/3 Co1/3Mn1/3O2 在2.8~4.6 V、0.1 C下的首次放电比容量为190.29 mAh/g,在2.75~4.2V、1 C下的初始放电比容量为145.5 mAh/g ,循环100次后容量保持率为98.41 %。 溶胶-凝胶法 溶胶-凝胶法是将有机或无机化合物经溶液,水解等过程形成溶胶,在一定条件下凝胶化等过程而发生固化,然后经热处理制备固体氧化物的方法。此法制备的产物具有化学成分均匀、纯度高、颗粒小、化学计量比可以精确控制等优点,有利于材料晶体的生成和生长,可以降低反应温度,缩短反应时间。Kim等人,将Ni(CH3COO)2•4H2O、Mn (CH3COO)2•4H2O和Co(CH3COO)2•4H2O溶解到蒸馏水中,用乙醇酸作为络合剂,在反应过程中滴加NH4OH 来调节pH 值在7.0~7.5之间,然后将反应体系在70~80℃下蒸发得到粘性的透明胶体。将胶体在450℃于空气中烘5 h得到粉末,球磨后于950℃烧结,并保温20 h ,淬冷至室温,得到非化学计量的Li [Li0.1Ni0.35–x/2CoxMn0.55–x/2]O2(0≤x ≤0.3)。经电性能测试,在2.5~4.6V之间循环有较高的放电容量为:184~实用文档 195 mAh/g ,表现出优异的电化学性能。 喷雾热解法 De-Cheng等人用喷雾干燥法制备Li/LiNi1/3Co1/3Mn1/3O2。将用蒸馏水溶解的LiNO3,Ni(CH3COO)2•4H2O、Mn(CH3COO)2•4H2O和Co(CH3COO)2
•4H2O 作为最初的溶液。将溶液抽到微型的喷雾干燥仪中,制得前驱
体。首先将前驱体加热到300℃,然后于900℃烧结,并保温20h得到LiNi1/3Co1/3Mn1/3O2粉末,在充电电流密度为20mAh/g时, 首次充电容量为208mAh/g ,充电电压达4.5 V,在50℃下循环35次容量保持率为85%以上,显示出较好的循环性能。 LiNil/3Col/3Mnl/3O2的修饰改性 由于Ni2+与Li+半径相近,在LiNil/3Co1/3Mnl/3 O2中仍然存在阳离子混排现象,导致电化学性能变差。为了消除或抑制阳离子混排现象,GH.Kim等选择Mg分别对LiNil/3Co1/3Mn1/3O2中Ni、Co、Mn元素进行取代。Mg取代过渡金属在不同程度上减少了阳离子混排现象。当掺杂Mg取代部分的Ni或Co位时,会导致容量的减少,循环性能变差。当掺杂Mg取代部分的Mn位时,材料LiNil/3CO1/3Mnl/3O2的比容量、循环性能和在高氧化态下的热稳定性都得到提高。掺杂Ti可以提高材料LiNiO2在充电状态下的热稳定性,因此研究者在LiNi1/3Co1/3Mn1/3O2
中引进Al、Ti元素,实验结果表明,掺杂Al、Ti对LiNil/3Co1/3Mnl/3O2
的结构没有改变,随着Al、Ti掺杂量的增加,只有参数有轻微的变
小。掺杂Al、Ti取代部分Co会升高放电电压平台,提高材料在4.3V下的热稳定性。Ti的加入同样可以提高LiNil/3Co1/3 Mnl/3O2材料在4.3V