高数 考研 无约束极值与有约束极值 第三节

合集下载

2016年与2015年考研数学(一、二、三)真题高数知识点考查对比

2016年与2015年考研数学(一、二、三)真题高数知识点考查对比

2016年与2015年考研数学(一、二、三)真题高数知识点考查对比为了让考生对今年数二有一个整体的把握以及对比去年有何改变,跨考教育数学教研室佟庆英老师将今年和去年的考研数学(一、二、三)真题中涉及到的高数知识点作如下对比,帮助考生自己心里有一个对比。

一、数学一
考题
序号
考查知识点解题思路点睛考查知识点解题思路点睛
1 反常积分敛散性利用反常积分的
性质
导数应用(拐点)
利用拐点的充分条

2 原函数存在性连续函数必有原
函数
二阶常系数微分
方程解的性质
利用二阶微分方程
解的性质计算
二、数学二
2 原函数存在性利用连续函数必
有原函数
间断点
首先计算出
f(x)的表达式,
在找出可疑间断
点,计算左右极
限即可
三、数学三。

考研用到的高数基础知识

考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。

2021考研数学高数必考的4个定理证明

2021考研数学高数必考的4个定理证明

2021考研数学高数必考的4个定理证明来源:文都图书高数是考研数学考察的重要科目,也是比较难的一门,其中有4个定理是高数的高频考点,我们一起来学习一下该如何运用这几个定理。

一、微分公式的证明2021年真题考了一个证明题:证明两个函数乘积的导数公式。

几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。

实际上,从授课的角度,这种在2021年前从未考过的基本公式的证明,一般只会在基础阶段讲到。

如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。

这里给2021考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。

先考量f(x)*g(x)在点x0处的导数。

函数在一点的导数自然用导数定义实地考察,可以按照导数定义写下一个音速式子。

该音速为“0分之0”型,但无法用洛必达法则,因为分子的导数不好算是(乘积的导数公式恰好就是要证的,无法用!)。

利用数学上常用的堆砌之法,提一项,减至一项。

这个“无中生有”的项要和前后都存有联系,易于加公因子。

之后分子的四项两两接合,除以分母后考量音速,不难得出结论结果。

再由x0的任意性,便获得了f(x)*g(x)在任一点的导数公式。

类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。

二、微分中值定理的证明这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求会证。

费马定理的条件存有两个:1.f'(x0)存有2.f(x0)为f(x)的极值,结论为f'(x0)=0。

考量函数在一点的导数,用什么方法?自然想起导数定义。

我们可以按照导数定义写下f'(x0)的音速形式。

往下如何推理小说?关键必须看看第二个条件怎么用。

高数(二)——二元函数的极值、概率论初步

高数(二)——二元函数的极值、概率论初步

二元函数的极值1.二元函数极值定义:某一个邻域内有定义,在设)0,0(),(y x y x z [])0,0(),(),0,0(),(y x z y x z y x z y x z ≥≤或若,)(),()0,0(值或极小的一个极大是则称y x z y x z 值点。

或极小的一个极大是称)(),()0,0(y x z y x ☆极大值和极小值统称为极值,极大值点和极小值点统称为极值点。

2.极值的必要条件:)0,0()0,0(),(y x y x y x f z 有极值,且在在点若=两个一阶偏导数存在,则:0)0,0(0)0,0(='='y x y f y x x f ,的点使)0,0(0)0,0()0,0(1y x y x y f y x x f ='='的驻点。

称为),(y x f z =的必要条件,定理的结论是极值存在2而非充分条件。

例:122+-=xyz ⎩⎨⎧===+='=-='0000202y x y yz x x z 解出驻点1)0,0(=z 112),0(0,0>+=≠=yy z y x 时,当112)0,(0,0<+-==≠xx z y x 时,当∴驻点不一定是极值点。

3.极值的充分条件:的某个领域内在设:函数)0,0(),(y x y x f y =为驻点,有二阶偏导数,且)0,0(y x [])0,0()0,0(2)0,0(y x yy f y x xx f y x xy f p ''⋅''-''=若:⎩⎨⎧⇒>''⇒<''<为极小值。

时,为极大值。

时,且当:)0,0(0)0,0()0,0(0)0,0(0y x f y x xx f y x f y x xx f p 不是极值。

当:)0,0(,0y x f p ⇒>不能确定。

高等数学第三章 第5节 函数的极值与最值

高等数学第三章 第5节 函数的极值与最值

极小值 f ( 3) 22.
9
f ( x ) x 3 3 x 2 9 x 5图形如下
M
m
10
例2. 求函数 f ( x) ( x 1) x 的极值 .
2 3
2 3
2 x 5 5 2 f ( x ) x ( x 1 ) x 解: 1) 求导数 3 3 3 x 2) 求极值可疑点 2 令 f ( x ) 0 , 得 x1 5 x2 0 导数不存在的点
所以 ( x0 , f ( x0 ))是y f ( x)的一个拐点。
18
因为当 x x0时, 有f ( x) f ( x0 ) 0,
当x x0时,有f ( x) f ( x0 ) 0,
所以f ( x0 )是f ( x )的极小值,

f ( x) f ( x0 ) 0 所以f ( x)单增,
y y
o
x0

x

x0
o
x
(是极值点情形)
7
y

y


o
x0
x
o
x0
x
(不是极值点情形)
求极值的步骤:
(1)确定函数的定义域;
(2) 求函数的驻点及导数不 存在的点 ; (3) 由定理判断极值点 ; (4) 求极值.
8
例1 求出函数 f ( x ) x 3 3 x 2 9 x 5 的极值. 解
x0不是f ( x)的极小值点。
19
二、最值的求法
若函数 f ( x) 在 [a, b] 上连续,则f ( x) 在 [a, b] 上的最大值与最小值存 在.
y
y

武忠祥教授高等数学考研第二三章

武忠祥教授高等数学考研第二三章

x
lim
______.
x0 f ( x02x) f ( x0 x)
【1】
【例 2】(2011年2,3)已知 f ( x) 在 x 0 处可导,且 f (0) 0,

lim
x0
x2
f
(
x) 2 x3
f
(
x3
)
(A) 2 f (0).
(B) f (0).
(C) f (0).
(D) 0.
【例3】(2013年,1)设函数 y f ( x) 由方程 y x e x(1 y)
2) ( x ) x 1
3) (a x ) a x ln a
5) (loga
x)
1 x lna
7) (sin x) cos x
4) (e x ) e x 6) (ln x ) 1
x 8) (cos x) sin x
9) (tan x) sec2 x
10) (cot x) csc2 x
第二章 导 数 与 微 分
2023最新整理收集 do
something
考试内容概要
(一)导数与微分的概念
1. 导数的概念
定义1(导数)
f ( x0 )
lim y lim x0 x x0
f ( x0 x) x
f ( x0 )
f ( x0 )
lim
x x0
f (x) x
f ( x0 ) x0
f ( x0 ) 0 定理9(极值的第一充分条件)
设 f ( x) 在 U( x0 , ) 内可导,且 f ( x0 ) 0(或 f ( x) 在 x0 处连续)
(1)若 x x0 时, f ( x) 0; x x0 时, f ( x) 0, 则 f 在 x0 处取极大值.

多元函数极值问题的解法研究

大学University 2021年第19期作者简介院徐莉(1984—),女,硕士,金华广播电视大学讲师,研究方向:应用数学和数学教学;周创(1995—),男,硕士,金华广播电视大学助教,研究方向:代数学和数学教学。

多元函数极值问题的解法研究徐莉,周创(金华广播电视大学,浙江金华321000)摘要:近几年,许多学者对多元函数进行了更深入的研究,有关多元函数方面的理论也逐渐完善,应用也越来越广泛。

多元函数极值问题的解法通常是研究的重点,故本文也进行了相关的分析和研究,分别是多元函数极值的概念、多元函数极值的判定、条件极值与拉格朗日乘数法以及多元函数极值问题的几种解法,并分别进行了相应的总结。

关键词:多元函数;极值问题;解法中图分类号:O174.1文献标识码:A 文章编号:1673-7164(2021)19-0145-04多元函数从一元函数演变过来,具有一元函数的某些基本性质,也具有自身的一些特性。

因此,在研究多元函数时应结合一元函数来研究。

解多元函数通常需要研究二元函数[1]。

多元函数极值问题的解法通常是研究的重点,当然也是学习高数的重点,通过阅读大量文献以及结合自身学习函数的实践经验,本文对多元函数极值问题的几种解法进行了分析探讨,并进行了相应的总结。

一、多元函数极值的概念值,也就是指多元函数在给定的范围内或者定义域内的最大值或者最小值。

多元函数的极值,是对于二元函数的极值来定义的。

假设函数z=f (x ,y )的定义域为D ,P 0(x 0,y 0)是D 内的点,如果存在某个定义域内的领域属于D ,该领域内的点与P 0不同,但是都存在f (x ,y )<f (x 0,y 0),则称f (x ,y )在点P 0(x 0,y 0)处有极大值,点P 0(x 0,y 0)称为函数f (x ,y )的极大值点;反之,则称f (x ,y )在点P 0(x 0,y 0)处有极小值,点P 0(x 0,y 0)称为函数f (x ,y )的极小值点[2]。

考研数一考点范围

考研数一考点范围考研数学一是研究生考试的一个科目,是所有研究生考试中最为难得科目之一。

好多考生都对此感到无从下手,因为考试的知识点非常复杂,需要一定的数学水平和学习方法。

因此,以下是考研数一考点范围,供考生参考。

1. 高数知识考研数学一考试的第一个考点就是高数知识,主要包括:(1)极限和连续(2)导数和微分(3)一元函数积分学(4)无穷级数(5)二元函数的极限、连续、偏导数和方向导数等。

这些知识点通常是高中和大学的数学课程,考生需要通过仔细学习和积累来掌握。

2. 线性代数线性代数是考研数学一中的重点学科。

其主要内容包括:(1)向量空间(2)矩阵运算(3)特征值和特征向量(4)线性方程组的解法(5)内积、正交和投影等。

这些内容对研究生数学基础的扎实程度有着重要的影响,需要进行认真的学习和掌握。

3. 概率论与数理统计(1)随机变量和概率分布(2)大数定理和中心极限定理(3)常见的离散型和连续型概率分布,如二项分布、正态分布等(4)假设检验、方差分析和回归分析等。

这些知识点需要细心认真地学习,熟练掌握各种概率分布的特征和应用。

4. 数学分析(1)函数序列和函数级数的收敛性(2)函数的一致连续性和一致收敛性(3)多元函数的极值、条件极值和最值(5)矢量场的散度、旋度和格林公式等。

这些知识点需要进行系统而深入的学习,多做习题和实验,以掌握常用方法和思路。

综上所述,考研数一考点范围非常广泛,这对考生的数学水平和学习方法都有一定的要求。

因此,考生需要通过科学、有目的的学习,练习和复习来提高自己的数学能力,并在考试中取得优异的成绩。

考研高数考点解析:极值之第二充分条件

考研高数考点解析:极值之第二充分条件
2017考研高数考点解析:极值之第二充分条件
以下是小编带来的2017考研高数考点解析:极值之第二充分条件,欢迎阅读。

求函数的极值点,我们可以借助极值点的'必要条件确定求解极值点的方向,即驻点和不可导点,然后再借助极值的第一充分条件判断该点是否为极值点。

但是,极值的第一充分条件在使用的过程中,需要判断导函数在某个区间的符号,有些题目中不容易判断出导函数符号,因此给大家再介绍另外一个求极值点的充分条件。

本题体现了考研数学的特点:综合性!一道4分的选择题,考查了极值的必要条件,第二充分条件以及复合函数求导法则!因此,提示大家在平时复习过程中,注意各个知识点之间的联系,观察哪些知识点经常会在一起考查等。

依靠学习过程中点点滴滴的积累,提高我们做数学题的综合性和熟练度!。

2013届高联高钻学员考研数学学习计划(基础阶段)数学一——高数(一).

总体说明:与高联专职教师交流后,计划在年里复习完高数,高数上下册共12章,这样分下来的话内容少的每周一章,内容多,需要花时间的重点章两周复习一章,高数以前基本都学习了一次,这次复习请你把教材仔细读一遍,边看边思考,理清头绪,概念的引出,定理、公理的推导证明都是要看的地方,书上的例题要看懂,及时做课后习题来巩固。

之前准备根据大家课表的空余时间,安排几点几分到几点几分看哪一节,但我想了下,这样不太合理,跟机器似的,可能我估计这部分完成的时间跟你的实际完成时间有差距,加上个人作息习惯和效率的因素,这样做可能误导你了。

因此,我给以周来安排复习工作,具体的时间分配你自己来安排,但自己要大体有个度,比如这章6节,那么周三晚上之前应该就是完成3节这个样子,考研是为自己考,这个自觉能力应当具备,要这么小的时间这么明确的任务也安排不好,我给你安排了几点几分到几点几分看什么的话,你落实也是形式,效果值得商榷。

要是你自制力很不好,需要我根据你课表来安排的话,跟我回复下,下次我具体安排。

要求:复习的内容课本要精看一遍,适当的做点笔记,遇到问题先要自己思考,不会的再联系答疑,高联有个QQ在线答疑的,课后要求做的题要动手做,不能看看好像会就算了,眼高手低是大忌,为了防止在做课后习题时边看答案变做,缺少思考,我每一章的习题答案会迟后几天发给你,请自觉的复习,细节决定成败。

第一单元、函数极限连续核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、值定理),会用这些性质本单元中我们应当学习——1.导数和微分的概念、关系,导数的几何意义、物理意义,会求平面曲线的切线方程和法线方程,函数的可导性与连续性之间的关系;2.导数和微分的四则运算法则,复合函数的求导法则,基本初等函数的导数公式,一阶微分形式的不变性;3.高阶导数的概念,会求简单函数的高阶导数;4.会求以下函数的导数:分段函数、隐函数、由参数方程所确定的函数、反函数;5.罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、泰勒(Taylor)定理、柯西(Cauchy)中值定理,会用这四个定理证明;6.会用洛必达法则求未定式的极限;7.函数极值的概念,用导数判断函数的单调性,用导数求函数的极值,会求函数的最大值和最小值;8.会用导数判断函数图形的凹凸性,会求函数图形的拐点,会求函数的水平、铅直和斜渐近线;希望在数学的复习过程中多思考,理解课本上的内容,力争都看懂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档