新高考数学高频考点揭秘与仿真测试习题专题24三角函数的图象和性质1正弦型文含解析
2024届新高考数学复习:专项(三角函数的图象与性质)历年好题练习(附答案)

2024届新高考数学复习:专项(三角函数的图象与性质)历年好题练习[基础巩固]一、选择题1.如图,函数y =3 tan ⎝⎛⎭⎫2x +π6 的部分图象与坐标轴分别交于点D ,E ,F ,则△DEF 的面积为( )A .π4 B .π2 C .π D .2π2.函数y =2sin ⎝⎛π6x -π3 (0≤x ≤9)的最大值与最小值之和为( ) A .0 B .1C .2-3D .3 -23.已知函数f (x )=2a cos ⎝⎛⎭⎫2x -π3 (a ≠0)的定义域为⎣⎡⎦⎤0,π2 ,最小值为-2,则a 的值为( )A .1B .-1C .-1或2D .1或24.[2022ꞏ全国甲卷(文),5]将函数f (x )=sin (ωx +π3 )(ω>0)的图象向左平移π2 个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A. 16 B .14C .13 D .125.设函数f (x )=cos ⎝⎛⎭⎫ωx +π6 在[-π,π]的图象大致如图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3 D .3π26.[2022ꞏ新高考Ⅰ卷,6]记函数f (x )=sin ⎝⎛⎭⎫ωx +π4 +b (ω>0)的最小正周期为T .若2π3 <T <π,且y =f (x )的图象关于点⎝⎛⎭⎫3π2,2 中心对称,则f ⎝⎛⎭⎫π2 =( ) A .1 B .32C .52 D .37.已知函数f (x )=sin x +a cos x (a ∈R )满足f (0)=f ⎝⎛⎭⎫π2 ,则函数g (x )=(3 -1)sin x +f (x )的图象的一条对称轴方程是( )A .x =2π3B .x =π4C .x =-π3 D .x =-2π38.已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6 对称,则函数g (x )=sin x +a cos x 的图象( )A.关于直线x =π3 对称B .关于点⎝⎛⎭⎫23π,0 对称 C .关于点⎝⎛⎭⎫π3,0 对称D .关于直线x =π6 对称9.[2021ꞏ新高考Ⅰ卷]下列区间中,函数f (x )=7sin ⎝⎛⎭⎫x -π6 单调递增的区间是( ) A .⎝⎛⎭⎫0,π2 B .⎝⎛⎭⎫π2,π C .⎝⎛⎭⎫π,3π2 D .⎝⎛⎭⎫3π2,2π 二、填空题10.函数f (x )=2cos x +sin x 的最大值为________.11.设函数f (x )=cos ⎝⎛⎭⎫ωx -π6 (ω>0),若f (x )≤f ⎝⎛⎭⎫π4 对于任意的实数x 都成立,则ω的最小值为________.12.[2023ꞏ新课标Ⅰ卷]已知函数f (x )=cos ωx -1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是________.[能力提升] 13.(多选)将函数f (x )=cos ⎝⎛⎭⎫ωx -π2 (ω>0)的图象向右平移π2 个单位长度后得到函数g (x )的图象,且g (0)=-1,则下列说法正确的是( )A .g (x )为奇函数B .g ⎝⎛⎭⎫-π2 =0 C .当ω=5时,g (x )在(0,π)上有4个零点D .若g (x )在⎣⎡⎦⎤0,π5 上单调递增,则ω的最大值为5 14.[2023ꞏ全国甲卷(理)]函数y =f (x )的图象由函数y =cos (2x +π6 )的图象向左平移π6 个单位长度得到,则y =f (x )的图象与直线y =12 x -12 的交点个数为( )A .1B .2C .3D .4 15.[2022ꞏ全国乙卷(理),15]记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=32 ,x =π9 为f (x )的零点,则ω的最小值为________.16.[2023ꞏ新课标Ⅱ卷]已知函数f (x )=sin (ωx +φ),如图,A ,B 是直线y =12 与曲线y=f(x)的两个交点,若|AB|=π6,则f(π)=________.参考答案1.A 在y =3 tan ⎝⎛⎭⎫2x +π6 中,令x =0,可得D (0,1);令y =0,解得x =k π2 -π12 (k ∈Z ),故E ⎝⎛⎭⎫-π12,0 ,F ⎝⎛⎭⎫5π12,0 .所以△DEF 的面积为12 ×π2 ×1=π4 .故选A. 2.C ∵0≤x ≤9,∴-π3 ≤π6 x -π3 ≤76 π,∴-3 ≤2sin ⎝⎛⎭⎫π6x -π3 ≤2,∴函数的最大值与最小值之和为2-3 . 3.C ∵0≤x ≤π2 ,∴-π3 ≤2x -π3 ≤23 π.∴-12 ≤cos ⎝⎛⎭⎫2x -π3 ≤1,又f (x )的最小值为-2, 当a >0时,f (x )min =-a =-2,∴a =2. 当a <0时,f (x )min =2a ,∴a =-1.4.C (通解)将函数f (x )=sin (ωx +π3 )的图象向左平移π2 个单位长度得到y =sin (ωx +π2ω+π3 )的图象.由所得图象关于y 轴对称,得π2 ω+π3 =k π+π2 (k ∈Z ),所以ω=2k +13 (k ∈Z ).因为ω>0,所以令k =0,得ω的最小值为13 .故选C.(快解)由曲线C 关于y 轴对称,可得函数f (x )=sin (ωx +π3 )的图象关于直线x =π2 对称,所以f (π2 )=sin (πω2 +π3 )=±1,然后依次代入各选项验证,确定选C.5.C 方法一 设函数f (x )的最小正周期为T ,由题图可得T <π-⎝⎛⎭⎫-4π9 且T2 >⎝⎛⎭⎫-4π9 -(-π),所以10π9 <T <13π9 ,又因为|ω|=2πT ,所以1813 <|ω|<95 .由题图可知f ⎝⎛⎭⎫-4π9 =0,且-4π9 是函数f (x )的上升零点,所以-4πω9 +π6 =2k π-π2 (k ∈Z ),所以-49 ω=2k -23 (k ∈Z ),所以|ω|=32 |3k -1|(k ∈Z ).又因为1813 <|ω|<95 ,所以k =0,所以|ω|=32 ,所以T =2π|ω| =2π32=4π3 .故选C.方法二(五点法) 由函数f (x )的图象知,ω×⎝⎛⎭⎫-4π9 +π6=-π2 ,解得ω=32 ,所以函数f (x )的最小正周期为4π3 ,故选C.6.A 因为2π3 <T <π,所以2π3 <2π|ω| <π.又因为ω>0,所以2<ω<3.因为y =f (x )的图象关于点(3π2 ,2)中心对称,所以b =2,3π2 ω+π4 =k π,k ∈Z ,所以ω=-16 +23 k ,k ∈Z .令2<-16 +23 k <3,解得134 <k <194 .又因为k ∈Z ,所以k =4,所以ω=52 .所以f (x )=sin (52 x +π4 )+2,所以f (π2 )=sin (5π4 +π4 )+2=1.故选A.7.D 由f (0)=f ⎝⎛⎭⎫π2 ,得sin 0+a cos 0=0+a =1,解得a =1,所以f (x )=sin x +cos x ,所以g (x )=(3 -1)sin x +f (x )=(3 -1)sin x +sin x +cos x =3 sin x +cos x =2sin ⎝⎛⎭⎫x +π6 .令x +π6 =k π+π2 (k ∈Z ),得x =k π+π3 (k ∈Z ),令k =-1,得函数g (x )的图象的一条对称轴是x =-2π3 .故选D.8.A ∵f (x )的图象关于直线x =π6 对称,∴f (0)=f ⎝⎛π3 ,∴1=32 a +12 ,解得a =33 ,∴g (x )=sin x +33 cos x =233 sin ⎝⎛⎭⎫x +π6 ,又g ⎝⎛⎭⎫π3 =233 sin π2 =233 取得最大值,故A 正确,通过逐个检验,可知B 、C 、D 均不正确.9.A 因为函数y =sin x 的单调递增区间为⎝⎛⎭⎫2k π-π2,2k π+π2 ()k ∈Z , 对于函数f ()x =7sin ⎝⎛⎭⎫x -π6 ,由2k π-π2 <x -π6 <2k π+π2 ()k ∈Z , 解得2k π-π3 <x <2k π+2π3 ()k ∈Z ,取k =0,可得函数f ()x 的一个单调递增区间为⎝⎛⎭⎫-π3,2π3 , 则⎝⎛⎭⎫0,π2 ⊆⎝⎛⎭⎫-π3,2π3 ,⎝⎛⎭⎫π2,π ⊄⎝⎛⎭⎫-π3,2π3 ,A 选项满足条件,B 不满足条件; 取k =1,可得函数f ()x 的一个单调递增区间为⎝⎛⎭⎫5π3,8π3 ,⎝⎛⎭⎫π,3π2 ⊄⎝⎛⎭⎫-π3,2π3 且⎝⎛⎭⎫π,3π2 ⊄⎝⎛⎭⎫5π3,8π3 ,⎝⎛⎭⎫3π2,2π ⊄⎝⎛⎭⎫5π3,8π3 ,CD 选项均不满足条件.故选A.10.5答案解析:∵f (x )=22+12 sin (x +φ)=5 sin (x +φ), ∴f (x )max =5 . 11.23答案解析:∵f (x )≤f ⎝⎛⎭⎫π4 对任意的实数x 都成立,∴f ⎝⎛⎭⎫π4 =1,∴π4 ω-π6 =2k π,k ∈Z ,∴ω=8k +23 (k ∈Z ),又ω>0,∴当k =0时,ω取得最小值23 .12.[2,3)答案解析:方法一 函数f (x )=cos ωx -1在区间[0,2π]有且仅有3个零点,即cos ωx =1在区间[0,2π]有且仅有3个根,因为ω>0,x ∈[0,2π],所以ωx ∈[0,2ωπ],则由余弦函数的图象可知,4π≤2ωπ<6π,解得2≤ω<3,即ω的取值范围是[2,3).方法二 函数f (x )=cos ωx -1在区间[0,2π]有且仅有3个零点,即cos ωx =1在区间[0,2π]有且仅有3个根,根据函数y =cos x 在[0,2π]上的图象可知,cos x =1在区间[0,2π]有2个根,所以若cos ωx =1在区间[0,2π]有且仅有3个根,则函数y =cos ωx 在[0,2π]内至少包含2个周期,但小于3个周期,即⎩⎨⎧2×2πω≤2π3×2πω>2π,又ω>0,所以2≤ω<3,即ω的取值范围是[2,3).13.BD 由题意得f (x )=cos ⎝⎛⎭⎫ωx -π2 =sin ωx ,则g (x )=sin ω⎝⎛⎭⎫x -π2 ,g (0)=sin ⎝⎛⎭⎫-π2ω =-1,即sin π2 ω=1,cos π2 ω=0.对于A 项,g (x )=sin ⎝⎛⎭⎫ωx -π2ω =sin ωx cos π2 ω-cos ωx ꞏsin π2 ω=-cos ωx ,又g (x )的定义域为R ,故g (x )为偶函数,A 错误.对于B 项,g ⎝⎛⎭⎫-π2 =-cos π2 ω=0,B 正确.对于C 项,当ω=5时,g (x )=-cos 5x ,由5x =π2 +k π,k ∈Z ,得x =π10 +k π5 ,k ∈Z ,因为x ∈(0,π),所以x 可以取π10 ,3π10 ,π2 ,7π10 ,9π10 ,即当ω=5时,g (x )在(0,π)上有5个零点,C 错误.对于D 项,由2k π≤ωx ≤2k π+π,k ∈Z ,得2k πω ≤x ≤2k πω +πω ,k ∈Z ,则函数g (x )在区间⎣⎡⎦⎤2k πω,2k πω+πω (k ∈Z )上单调递增,因为g (x )在⎣⎡⎦⎤0,π5 上单调递增,所以π5 ≤πω ,解得0<ω≤5,即ω的最大值为5,故D 正确.综上所述,正确的说法为BD.14.C 把函数y =cos ⎝⎛⎭⎫2x +π6 的图象向左平移π6 个单位长度后得到函数f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6 =cos ⎝⎛⎭⎫2x +π2 =-sin 2x 的图象.作出函数f (x )的部分图象和直线y =12 x -12 如图所示.观察图象知,共有3个交点.故选C.15.3答案解析:因为T =2π|ω| ,ω>0,所以ω=2πT .由f (T )=32 ,得cos (2π+φ)=32 ,即cos φ=3.又因为0<φ<π,所以φ=π6 .因为x =π9 为f (x )的零点,所以ωπ9 +π6 =k π+π2 ,k ∈Z ,解得ω=9k +3,k ∈Z .又因为ω>0,所以当k =0时ω取得最小值,ω的最小值为3.16.-3对比正弦函数y =sin x 的图象易知,点⎝⎛⎭⎫2π3,0 为“五点(画图)法”中的第五点,所以2π3 ω+φ=2π ①.由题知|AB |=x B -x A =π6 ,⎩⎨⎧ωx A +φ=π6ωx B +φ=5π6,两式相减,得ω(x B -x A )=4π6 ,即π6 ω=4π6 ,解得ω=4.代入①,得φ=-2π3 ,所以f (π)=sin ⎝⎛⎭⎫4π-2π3 =-sin 2π3 =-32 .。
2025年新人教版高考数学一轮复习讲义含答案解析 第四章 §4.5 三角函数的图象与性质

2025年新人教版高考数学一轮复习讲义含答案解析§4.5三角函数的图象与性质课标要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]-π2,知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(π,0),(2π,0).(2)在余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)|π方程常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是12个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则φ=kπ+π2(k∈Z);若为奇函数,则φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则φ=kπ(k∈Z);若为奇函数,则φ=kπ+π2(k∈Z).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数y=sin x,x∈[0,2π],y=cos x,x∈[0,2π]的五个关键点是零点和极值点.(×)(2)函数y=sin x图象的对称轴方程为x=2kπ+π2(k∈Z).(×)(3)若f(2x+T)=f(2x),则T是函数f(2x)的周期.(×)(4)函数y=tan x在整个定义域上是增函数.(×)2.(多选)已知函数f(x)=x∈R),下列结论正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间0,π2上单调递增C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数答案ABC解析由题意得f(x)=-cos x,对于A,T=2π1=2π,故A正确;对于B,因为y=cos x在0,π2上单调递减,所以函数f(x)在0,π2上单调递增,故B正确;对于C,f(-x)=-cos(-x)=-cos x=f(x),所以函数f(x)是偶函数,所以其图象关于直线x=0对称,故C 正确,D 错误.3.函数f (x )=2tan x ()π+π6,k ∈Z+π6,k ∈Z+π6,k ∈Z 答案D解析令2x -π3=k π2,k ∈Z ,解得x =k π4+π6,k ∈Z ,所以函数f (x )=2tanx +π6,k ∈Z .4.(必修第一册P213T4改编)函数y =3-2cos ______,此时x =________.答案53π4+2k π(k ∈Z )解析函数y =3-2cos 3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).题型一三角函数的定义域和值域例1(1)函数y =cos x -32的定义域为()A.-π6,π6B.k π-π6,k π+π6(k ∈Z )C.2k π-π6,2k π+π6(k ∈Z )D .R 答案C解析由cos x -320,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6(k ∈Z ).(2)如果函数f (x )=+32+a 在区间-π3,5π6上的最小值为3,则a 的值为()A.3+12B.32C.2+32D.3-12答案A解析因为当x ∈-π3,5π6时,x +π3∈0,7π6,所以-12,1,当x =5π6时,sin 有最小值-12.可得f (x )=+32+a 的最小值为-12+32+a =3,解得a =3+12.思维升华三角函数值域的不同求法(1)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域.(2)把sin x 或cos x 看作一个整体,转换成二次函数求值域.(3)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1(1)函数y =tan ()|x ≠π4|x ≠3π4|x ≠π4+k π,k ∈Z|x ≠3π4+k π,k ∈Z 答案D解析函数y =令x -π4≠π2+k π,k ∈Z ,解得x ≠3π4+k π,k ∈Z ,∴函数y |x ≠3π4+k π,k ∈Z(2)函数f (x )=cos 2x +6cos ()A .4B .5C .6D .7答案B解析因为f (x )=cos 2x +=cos 2x +6sin x =1-2sin 2x +6sin x=-x +112,又sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值5.题型二三角函数的周期性、对称性与奇偶性例2(1)(多选)(2023·合肥模拟)已知函数f (x )=sin x (sin x -cos x ),则下列说法正确的是()A .函数f (x )的最小正周期为πB -π8,y =f (x )图象的对称中心C y =f (x )图象的对称中心D .直线x =5π8是y =f (x )图象的对称轴答案AD解析f (x )=sin x (sin x -cos x )=sin 2x -sin x cos x =1-cos 2x 2-12sin 2x =-22sin x +12,T =2π2=π,故A 正确;当x =-π8时,2x +π4=0,此时x 0,-π8,B 错误;当x =π8时,2x +π4=π2,此时x 1,则函数关于直线x =π8对称,故C 错误;当x =5π8时,2x +π4=3π2,此时x 1,则函数关于直线x =5π8对称,故D 正确.(2)已知函数f (x )=2cos +π4+φ∈-π2,π2,则φ的值为________.答案π4解析由已知,得π4+φ=k π+π2(k ∈Z ),所以φ=k π+π4(k ∈Z ),又因为φ∈-π2,π2,所以当k =0时,φ=π4符合题意.思维升华(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)对称轴、对称中心的求法:对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.跟踪训练2(1)(多选)下列函数中,最小正周期为π的是()A .y =cos|2x |B .y =|cos x |C .y =xD .y =x答案ABC解析A中,y=cos|2x|=cos2x,最小正周期为π;B中,由图象知y=|cos x|的最小正周期为π;C中,y=cosxT=2π2=π;D中,y=tanxT=π2.(2)(2023·日照模拟)已知函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,则f________.答案3解析函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,π,φ=π2+kπ,k∈Z,∵|φ|<π2,∴ω=2,φ=π6,故f(x)=x则f×π4+=3.题型三三角函数的单调性命题点1求三角函数的单调区间例3(1)(2022·北京)已知函数f(x)=cos2x-sin2x,则()A.f (x)-π2,-B.f (x)-π4,C.f(x)D.f(x)答案C解析依题意可知f(x)=cos2x-sin2x=cos2x.对于A 选项,因为x -π2,-2x πf (x )=cos 2x -π2,-单调递增,所以A 选项不正确;对于B 选项,因为x -π4,2x -π2,f (x )=cos 2x -π4,调,所以B 选项不正确;对于C 选项,因为x 2x f (x )=cos 2x 以C 选项正确;对于D 选项,因为x 2x f (x )=cos 2x 以D 选项不正确.(2)函数f (x )=sin 2________.答案k π-π12,k π+5π12,k ∈Z解析f (x )=sin 2g (x )=sin x 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调递减区间为k π-π12,k π+5π12,k ∈Z .延伸探究若例3(2)中的函数不变,求其在[0,π]上的单调递减区间.解令A =k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =0,5π12∪11π12,π,∴f (x )在[0,π]上的单调递减区间为0,5π12和11π12,π.命题点2根据单调性求参数例4已知f (x )=sin(2x -φφ在0,π3上单调递增,且f (x )φ的取值范围是()A.π6,B.π6,C.π3,D.π4,答案B解析由x ∈0,π3,可得2x -φ∈-φ,2π3-φ,又由0<φ<π2,且f (x )在0,π3上单调递增,可得2π3-φ≤π2,所以π6≤φ<π2.当x 2x -φφ,7π4-由f (x )上有最小值,可得7π4-φ>3π2,所以φ<π4.综上,π6≤φ<π4.思维升华(1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3(1)设函数f (x )=2f (x )在0,π2上的单调递减区间是()A.0,π8B.0,π4C.π4,π2 D.π8,π2答案D解析由已知f (x )=x 得2k π≤2x -π4≤2k π+π,k ∈Z ,则k π+π8≤x ≤k π+5π8,k ∈Z ,又x ∈0,π2,∴f (x )在0,π2上的单调递减区间为π8,π2.(2)若f (x )=cos x -sin x 在[-a ,a ]上单调递减,则a 的最大值是()A.π4B.π2C.3π4D .π答案A解析f(x)=cos x-sin x=2cos由题意得a>0,因为f(x)=2cos[-a,a]上单调递减,a+π4≥0,+π4≤π,>0,解得0<a≤π4,所以a的最大值是π4.课时精练一、单项选择题1.若函数y=3cosωxω>0)两对称中心间的最小距离为π2,则ω等于() A.1B.2C.3D.4答案A解析因为函数y=3cosωxω>0)两对称中心间的最小距离为π2,所以T2=π2,则T=π,所以T=2π2ω=π,解得ω=1.2.(2023·焦作模拟)已知函数f(x)=xf(x)在[-2,0]上()A.单调递增B.单调递减C.先增后减D.先减后增答案D解析∵x∈[-2,0],∴2x-π6∈-4-π6,-π6,∵-3π2<-4-π6<-π<-π6<0,∴函数f (x )=cos x [-2,0]上先减后增.3.已知函数f (x )=a =f b =f c =f a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .c >a >bD .b >a >c 答案A解析a =f 2cos 13π42,b =f 2cos π3,c =f 2cos 5π12,因为y =cos x 在[0,π]上单调递减,又0<13π42<π3<5π12<π,所以a >b >c .4.(2023·全国乙卷)已知函数f (x )=sin(ωx +φ)x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,则f ()A .-32B .-12 C.12 D.32答案D 解析因为直线x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,所以T 2=2π3-π6=π2,不妨取ω>0,则T =π,ω=2πT=2,由题意知,当x =π6时,f (x )取得最小值,则2×π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f (x )=x则f =32.5.(2023·抚州模拟)已知函数f (x )=sin|x |-cos 2x ,则下列结论错误的是()A .f (x )为偶函数B .f (x )的最小正周期为πC .f (x )的最小值为-98D .f (x )的最大值为2答案B 解析因为f (-x )=sin|-x |-cos(-2x )=sin|x |-cos 2x =f (x ),所以f (x )是偶函数,则A 正确;若f (x )的最小正周期为π,则f (x +π)=f (x )恒成立,即sin|x +π|-cos 2(x +π)=sin|x |-cos 2x ,即sin|x +π|=sin|x |恒成立,而当x =π2时,sin 3π2≠sin π2,所以“f (x )的最小正周期为π”是错误的,则B 错误;由f (x )是偶函数,只需考虑x ≥0时的最值即可,当x ≥0时,f (x )=sin x -cos 2x =2sin 2x +sin x-1=x -98,因为sin x ∈[-1,1],所以x -98∈-98,2,即f (x )的值域为-98,2,则C 和D 正确.6.(2023·安康模拟)记函数f (x )=b (ω∈N *)的最小正周期为T ,若π2<T <π,且y =f (x )的最小值为1.则y =f (x )图象的一个对称中心为()-π12,答案C 解析由函数的最小正周期T 满足π2<T <π,得π2<2πω<π,解得2<ω<4,又因为ω∈N *,所以ω=3,所以f (x )=x b ,又函数y =f (x )的最小值为1,所以b =2,所以f (x )=x 2,令3x +π4=k π,k ∈Z ,解得x =k π3-π12,k ∈Z ,-π12,k ∈Z ),只有C 符合题意(k =2).二、多项选择题7.(2024·株洲模拟)下列关于函数f (x )=cos x +a sin x (a ≠0)的说法正确的是()A .存在a ,使f (x )是偶函数B .存在a ,使f (x )是奇函数C .存在a ,使f (x +π)=f (x )D .若f (x )的图象关于直线x =π4a =1答案AD 解析函数f (x )=cos x +a sin x =1+a 2sin(x +θ),其中sin θ=11+a 2,cos θ=a1+a 2,θ∈(0,π),当a =0时,f (x )=cos x 为偶函数,故A 正确;对于B ,无论a 取何值,函数f (x )=1+a 2sin(x +θ)都不可能为奇函数,故B 错误;对于C ,f (x +π)=1+a 2sin(x +π+θ)=-1+a 2sin(x +θ)≠f (x ),故C 错误;对于D ,当x =π4时,函数f (x )取得最大值或最小值,故22+22a =±1+a 2,解得a =1,故D 正确.8.(2023·西安模拟)已知函数f (x )=sin(ωx +φ>0,0<|φ且f-f 1,则()A .ω=3B .φ=-π6C .ω=2D .φ=π6答案CD解析因为函数f (x )=sin(ωx +φ>0,0<|φ所以T 2=12·2πω≥2π3-π6=π2,所以0<ω≤2,因为f f 1,所以++1,所以π6ω+φ=π2+2k 1π,2π3ω+φ=3π2+2k 2π,k 1,k 2∈Z ,故π2ω=π+2(k 2-k 1)π,所以ω=2+4(k 2-k 1),k 2,k 1∈Z ,因为0<ω≤2,k 2-k 1∈Z ,所以ω=2,则φ=π6+2k 1π,k 1∈Z ,又0<|φ|<π2,所以φ=π6.三、填空题9.函数y =sin x -cos x 的定义域为________.答案2k π+π4,2k π+5π4(k ∈Z )解析方法一要使函数有意义,必须使sin x -cos x ≥0.在同一直角坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).方法二要使函数y =sin x -cos x 有意义,即使sin x -cos x ≥0,即2sin 0,即2k π≤x -π4≤2k π+π(k ∈Z ),即原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).10.写出一个同时满足下列两个条件的函数f (x )=________.①∀x ∈R ,f f (x );②∀x ∈R ,f (x )≤f 答案-cos 4x (答案不唯一)解析由∀x ∈R ,f f (x )可知,函数的周期为π2,由∀x ∈R ,f (x )≤f x =π4处取到最大值,则f (x )=-cos 4x 满足题意,一方面根据余弦函数的周期公式,T =2π4=π2,满足∀x ∈R ,f f (x ),另一方面,f cos π=1=f (x )max ,满足∀x ∈R ,f (x )≤f11.若函数f (x )=7sin在区间π2,a 上单调,则实数a 的最大值为________.答案7π5解析因为x ∈π2,a ,所以x +π10∈3π5,a +π10,又3π5在y =sin x 的单调递减区间π2,3π2内,所以a +π10≤3π2,解得a ≤7π5,所以a 的最大值为7π5.12.已知sin x +cos y =14,则sin x -sin 2y 的最大值为________.答案916解析∵sin x +cos y =14,sin x ∈[-1,1],∴sin x =14-cos y ∈[-1,1],∴cos y ∈-34,54,即cos y ∈-34,1,∵sin x -sin 2y =14-cos y -(1-cos 2y )=cos 2y -cos y -34=y -1,又cos y ∈-34,1,利用二次函数的性质知,当cos y =-34时,sin x -sin 2y 取最大值,(sin x -sin 2y )max -34--1=916.四、解答题13.设函数f (x )=ωx m 的图象关于直线x =π对称,其中0<ω<12.(1)求函数f (x )的最小正周期;(2)若函数y =f (x )的图象过点(π,0),求函数f (x )在0,3π2上的值域.解(1)由直线x =π是y =f (x )图象的一条对称轴,可得ωπ±1,所以2ωπ-π6=k π+π2(k ∈Z ),解得ω=k 2+13(k ∈Z ).又0<ω<12,所以ω=13,所以函数f (x )的最小正周期为3π.(2)由(1)知f (x )=m ,因为f (π)=0,所以m =0,解得m =-2,所以f (x )=2,当0≤x ≤3π2时,-π6≤23x -π6≤5π6,可得-12≤ 1.所以-3≤f (x )≤0,故函数f (x )在0,3π2上的值域为[-3,0].14.(2023·新乡模拟)已知函数f (x )=a x 2cos a >0),且满足________.从①f (x )的最大值为1;②f (x )的图象与直线y =-3的两个相邻交点的距离等于π;③f (x )的图(1)求函数f (x )的解析式及最小正周期;(2)若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,求实数m 的取值范围.注:如果选择多个条件分别解答,则按第一个解答计分.解(1)函数f (x )=a x 2cos=a x x 1=a x x +π2-1=a x x 1=(a +x 1,若选择条件①f (x )的最大值为1,则a +1=2,解得a =1,所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.若选择条件②f (x )的图象与直线y =-3的两个相邻交点的距离等于π,且f (x )的最小正周期T =2π2=π,所以-(a +1)-1=-3,解得a =1,所以f (x )=x 1.若选择条件③f (x )则f (a +1)sin π6-1=0,解得a =1.所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.(2)令f (x )=1,得x 1,解得2x -π6=π2+2k π,k ∈Z ,即x =π3+k π,k ∈Z .若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,则x =π3或x =4π3,所以实数m 的取值范围是4π3,15.(2024·抚顺模拟)已知函数f (x )=|,则下列说法正确的是()A .f (x )的周期是π2B .f (x )的值域是{y |y ≠0,y ∈R }C .直线x =5π3是函数f (x )图象的一条对称轴D .f (x )k π-2π3,2k πk ∈Z答案D 解析函数f (x )的周期是2π,故A 错误;f (x )的值域是[0,+∞),故B 错误;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴直线x =5π3不是函数f (x )图象的一条对称轴,故C 错误;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3<x <2k π+π3,k ∈Z ,∴f (x )k π-2π3,2k πk ∈Z ,故D 正确.16.(2023·无锡模拟)设函数f (x )=sinx α,α+π3上的值域为[M ,N ],则N -M 的取值范围是______.答案12,3解析函数f (x )=sin x T =π,α=π3<T 2,当函数f (x )在α,α+π3上单调时,N -M =|f (α)-f=|αα=3|cos 2α|≤3,当函数f (x )在α,α+π3上不单调时,由正弦函数的图象性质知,当f (x )在α,α+π3上的图象关于直线x =α+π6对称时,N -M 最小,此时-π3=k π+π2,k ∈Z ,即α=k π2+π4,k ∈Z ,因此(N -M )min =|f (α)-f=|αsin 2α|=|ππ=|12cos k π-cos k π|=12,所以N -M 的取值范围是12,3.。
高考数学:三角函数的图像和性质问题(解析版)

【高考地位】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。
要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.【方法点评】类型一求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步先将函数式化为基本三角函数的标准式,要特别注意参数A, 的正负;第二步利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间;第三步运用三角函数的图像与性质确定其单调区间.例1 函数cos( 2 )y x 的单调递增区间是()4A.[k π+,kπ+8 58π] B .[k π-38π,kπ+8]C.[2k π+,2kπ+8 58π] D .[2k π-38π,2kπ+8] (以上k∈Z)【答案】 B.考点:三角函数单调性.【点评】本题解题的关键是将 2x作为一个整体,利用余弦函数的图像将函数y cos( 2x)的单调44递增区间转化为2x 在区间2k ,2k 上递减的.4【变式演练1】已知函数 f (x) sin( 2 x )( 0), 直线x x1,x x2 是y f (x) 图像的任意两条对称6轴,且x1 x 的最小值为2 2.求函数 f (x) 的单调增区间;【答案】[ k , k ], k Z .3 6【解析】试题分析:根据两条对称轴之间的最小距离求周期,根据周期求,根据公式求此函数的单调递增区间.试题解析:由题意得T , 则1, f (x) sin(2 x ). 由2k 2x 2k , 解得6 2 6 23 k , Z. 故 f ( x) 的单调增区间是k k ], k Z x k k [ .,6 3 6考点:1.y A sin x 的单调性;【变式演练2】已知函数sin( )+ ( 0 0 )f x A x B A ,,的一系列对应值如下表:2x6 3 5643116 [73176y 2 4 2 4 (1)根据表格提供的数据求函数 f x 的解析式;(2)求函数 f x 的单调递增区间和对称中心;【答案】(1) f x 3sin x 1(2)352k ,2k (k Z)(k + ,1)(k Z).6 6 3(2)当2 2 ( )k x k k Z,即2 3 25x k ,k k Z时,函数f x 单调递2 2 ( )6 6增.令= ( x k k Z),所以函数 f x 的对称中心为+ 1 ( x k k Z),得= + ( k k Z)(,).3 33考点:1.三角函数解析式及基本性质;2.数形结合法[ 来源:Z*xx*]类型二由y A sin( x ) 的图象求其函数式使用情景:一般函数y A s in( x ) 求其函数式解题模板:第一步观察所给的图像及其图像特征如振幅、周期、与x轴交点坐标等;第二步利用特殊点代入函数解析式计算得出参数A, , 中一个或两个或三个;第三步要从图象的升降情况找准第一个零点的位置,并进一步地确定参数;第四步得出结论.例2 已知函数y A sin( x ) y A s in( x )( 0, , x R) 的图象如图所示,则该函数的2解析式是()(A)y 4 sin( x ) (B)y 4 s in( x )8 4 8 4(C)y 4 s in( x ) (D)y 4 sin( x )8 4 8 4【答案】 D考点:y Asin x 的图像【点评】本题的解题步骤是:首先根据已知图像与x轴的交点坐标可得其周期为T ,进而可得的大小;然后观察图像知其振幅 A 的大小;最后将图像与x 轴的交点坐标代入函数的解析式即可得到的大小.【变式演练3】已知函数 f x A sin x (其中 A 0, 0, )的部分图象如图所示,则f x2的解析式为()6A.2sinf x x B.f x2sin2x36C.2sin2f x x D.f x2sin4x6【答案】B【解析】考点:由y A s in(x)的部分图像确定解析式。
2024届高考二轮复习数学课件(新高考新教材):三角函数的图象与性质

f(π-x)=sin(π-x)+cos(π-x)sin(π-x)=sin x-cos xsin x≠f(x),因此 f(x)的图象关于直
∴f
4π
3
13π
+
6
=f
π
3
π
2- 6
.
=0,f
7π
-4
=f
π
4
4
13π π
T=3 × 12 - 3
π
=2,∴φ=- +2kπ,k∈Z.
6
=1.
=π, 故 ω=2.
由(f(x)-1)(f(x)-0)>0,得 f(x)<0 或 f(x)>1.
结合题中图象可知,满足 f(x)>1 的 x 离 y 轴最近的正数取值区间为
A.-4
B.4
1
C.3
)
1
D.
3
答案 C
解析 ∵cos
则 tan
π
-
4
π
+
2
=
=2cos(π-α),∴-sin α=-2cos α,即 tan α=2,
1-tan 1
=- .
1+tan 3
规律方法点的坐标与三角函数值的关系
根据三角函数的定义,可以由给定角的终边上一点的坐标,求出该角的各个
三角函数值;反之,当给定
y=sin(ωx-φ).
3.三角函数的周期性
2π
(1)f(x)=Asin(ωx+φ)和 f(x)=Acos(ωx+φ)(Aω≠0)的最小正周期为||.
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)

专项一解三角形考点1 三角函数的图象与性质及三角恒等变换大题拆解技巧【母题】(2020年天津卷)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin (2A+π4)的值.【拆解1】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13,求角C的大小.【解析】在△ABC中,由a=2√2,b=5,c=√13及余弦定理,得cosC=a 2+b2-c22ab=2×2√2×5=√22,又因为C∈(0,π),所以C=π4.【拆解2】在△ABC中,已知C=π4,a=2√2,c=√13,求sin A的值.【解析】在△ABC 中,由C=π4,a=2√2,c=√13及正弦定理,可得sinA=asinC c=2√2×√22√13=2√1313.【拆解3】在△ABC 中,已知a<c,sin A=2√1313,求sin 2A,cos 2A 的值.【解析】由a<c 知角A 为锐角,由sin A=2√1313,可得cosA=√1-sin 2A =3√1313, 所以sin 2A=2sin Acos A=1213,cos 2A=2cos2A-1=513.【拆解4】已知sin 2A=1213,cos 2A=513,求sin (2A+π4)的值.【解析】因为sin 2A=1213,cos 2A=513,所以sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=1213×√22+513×√22=17√226.小做 变式训练设函数f(x)=2sin 2x-sin(2x-π6).(1)当x∈[0,π2]时,求f(x)的值域;(2)若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【拆解1】已知函数f(x)=2sin 2x-sin(2x-π6).化简该函数解析式.【解析】f(x)=1-cos 2x-(√32sin 2x-12cos 2x)=1-sin (2x+π6).【拆解2】已知函数f(x)=1-sin(2x+π6),当x∈[0,π2]时,求f(x)的值域. 【解析】已知函数f(x)=1-sin(2x+π6),∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[-12,1],∴f(x)的值域为[0,32].【拆解3】已知函数f(x)=1-sin(2x+π6),若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,求g(x)的解析式. 【解析】g(x)=f(x-π6)=1-sin[2(x-π6)+π6]=1-sin(2x-π6).【拆解4】已知函数g(x)=1-sin(2x-π6),且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【解析】∵g(x0)=1-sin(2x0-π6)=23,∴sin(2x0-π6)=13.又x0∈[-π2,0],sin(2x0-π6)>0,∴2x0-π6∈[-7π6,-π),∴cos(2x0-π6)=-2√23,∴cos 2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=-2√23×√32-13×12=-2√6+16.通法 技巧归纳1.求解三角函数的值域(最值)常见的三种类型:(1)形如y=asin x+bcos x+c 的三角函数化为y=Asin(ωx+φ)+c 的形式,再求值域(最值);(2)形如y=asin 2x+bsin x+c 的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值);(3)形如y=asin xcos x+b(sin x±cos x)+c 的三角函数,可先设t=sin x±cos x,化为关于t 的二次函数求值域(最值).2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的变换.突破 实战训练 <基础过关>1.已知函数f(x)=1-2cos 2x+2√3sin xcos x(x∈R). (1)求f(2π3)的值;(2)求f(x)的最小正周期及单调递增区间.【解析】(1)f(x)=-cos 2x+√3sin 2x=2(-12cos 2x+√32sin 2x)=2sin(2x-π6),则f(2π3)=2sin(2×2π3-π6)=-1.(2)最小正周期T=2π2=π,令-π2+2kπ≤2x -π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,即单调递增区间为[-π6+kπ,π3+kπ],k∈Z.2.已知函数f(x)=(sin x-1)·(cos x+1). (1)若sin α-cos α=12,求f(α);(2)求f(x)的值域.【解析】(1)因为sin α-cos α=12,所以1-2sin αcos α=14,即sin αcos α=38.从而f(α)=(sin α-1)(cos α+1)=sin αcos α+sin α-cos α-1=-18.(2)令t=sin x-cos x,则sin xcos x=1-t 22,其中t∈[-√2,√2],则原问题转化为求y=-t 22+t-12在[-√2,√2]上的值域. 因为y=-t 22+t-12=-12(t-1)2,所以y∈[-32-√2,0].故f(x)的值域为[-32-√2,0].3.已知函数f(x)=sin 2x+√3sin xcos x. (1)求函数y=f(x)图象的对称中心; (2)若f(α2-π24)=1310,求sin 2α.【解析】(1)由二倍角公式得f(x)=√32sin 2x-12cos 2x+12,故f(x)=sin(2x-π6)+12,令2x-π6=kπ,k∈Z,解得x=12kπ+π12,k∈Z,所以函数y=f(x)图象的对称中心是(π12+12kπ,12),k∈Z.(2)由f(α2-π24)=1310,得sin(α-π4)+12=1310,所以sin(α-π4)=45,故sin 2α=cos(2α-π2)=1-2sin2(α-π4)=-725.4.设向量a=(√3sin x,sin x),b=(cos x,sin x),x∈[0,π2].(1)若|a|=|b|,求实数x 的值; (2)设函数f(x)=a·b,求f(x)的最大值. 【解析】(1)|a|2=(√3sin x)2+sin2x=4sin2x,|b|2=cos2x+sin2x=1,根据|a|=|b|,得4sin2x=1,又x∈[0,π2],从而sinx=12,∴x=π6.(2)f(x)=a·b=√3sin x·cos x+sin2x=√32sin 2x-12cos 2x+12=sin(2x-π6)+12,∵x∈[0,π2],∴2x -π6∈[-π6,5π6],∴当2x-π6=π2,即x=π3时,f(x)max=f(π3)=32,∴f(x)的最大值为32.<能力拔高>5.已知函数f(x)=sin 2(x -π3)-12(cos 2x-1).(1)求f(x)的单调递增区间;(2)若y=g(x)的图象是由y=f(x)的图象向右平移π6个单位长度得到的,则当x∈[-π2,π2]时,求满足g(x)≤54的实数x 的集合.【解析】(1)f(x)=sin2(x -π3)-12(cos 2x-1)=1-cos(2x -2π3)2-12cos 2x+12=12-12(-12cos2x +√32sin2x)-12cos 2x+12 =14cos 2x-√34sin 2x-12cos 2x+1=-√34sin 2x-14cos 2x+1=-12sin (2x +π6)+1. 令2x+π6∈[π2+2kπ,3π2+2kπ],k∈Z,则x∈[π6+kπ,2π3+kπ],k∈Z,所以f(x)的单调递增区间为x∈[π6+kπ,2π3+kπ],k∈Z.(2)由题可知g(x)=-12sin [2(x -π6)+π6]+1=-12sin (2x -π6)+1,由g(x)≤54,得sin (2x -π6)≥-12,由x∈[-π2,π2],得2x-π6∈[-7π6,5π6],由正弦函数的图象与性质可知2x-π6∈[-7π6,-5π6]∪[-π6,5π6],则x∈[-π2,-π3]∪[0,π2],即所求实数x 的取值集合为{x|-π2≤x ≤-π3或0≤x ≤π2}.6.已知θ∈(0,π3)且满足sin θ+sin (θ+π3)=4√35. (1)求cos(2θ+π3)的值;(2)已知函数f(x)=sin xcos(θ+π6)+cos xsin(θ+π6),若方程f(x)=a 在区间[0,π2]内有两个不同的解,求实数a 的取值范围. 【解析】(1)由sin θ+sin (θ+π3)=4√35,得32sin θ+√32cos θ=4√35,即sin(θ+π6)=45,则cos(2θ+π3)=cos (2θ+π6)=1-2sin 2(θ+π6)=1-2×(45)2=-725.(2)由θ∈(0,π3),令φ=θ+π6,则φ∈(π6,π2),得cos(θ+π6)=35,f(x)=sin xcos φ+cos xsin φ=sin(x+φ),当0≤x≤π2时,φ≤x+φ≤π2+φ,当x+φ=π2,即x=π2-φ时,f(x)max =1,当0≤x≤π2-φ时,f(x)是单调递增的,函数值从sin φ=45增到1,当π2-φ≤x≤π2时,f(x)是单调递减的,函数值从1减到sin(π2+φ)=cos φ=35,方程f(x)=a 在区间[0,π2]内有两个不同的解,即f(x)图象与直线y=a 有两个不同的公共点,则45≤a<1,所以实数a 的取值范围是[45,1).<拓展延伸>7.设函数f(x)=asin x+bcos x,其中a,b 为常数.(1)当x=2π3时,函数f(x)取最大值2,求函数f(x)在[π2,π]上的最小值;(2)设g(x)=-asinx,当b=-1时,不等式f(x)>g(x)对x∈(0,π)恒成立,求实数a 的取值范围.【解析】(1)由题意得{√a 2+b 2=2,√32a -12b =2,解得{a =√3,b =-1,∴f(x)=√3sin x-cos x=2sin (x -π6).当x∈[π2,π]时,x-π6∈[π3,5π6],∴f(x)min=2sin 5π6=1.(2)∵f(x)>g(x),∴asin x -cos x>-asinx.当x∈(0,π)时,sin x∈(0,1],∴asin2x -sin xcos x>-a,即a(1-cos 2x)-sin 2x>-2a,整理得3a>sin 2x+acos 2x.又sin 2x+acos 2x=√a 2+1sin(2x+φ),其中tan φ=a,∴(sin 2x+acos 2x)max=√a 2+1,∴3a>√a 2+1,解得a>√24,∴不等式f(x)>g(x)对x∈(0,π)恒成立时,a∈(√24,+∞).8.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π2<φ<π2)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2). (1)求函数f(x)的解析式;(2)将函数f(x)的图象向左平移a(a∈(0,2π))个单位长度后,得到函数g(x)的图象,若g(x)是奇函数,求实数a 的值.新高考数学 大题专项训练 学科精品资源11 / 11【解析】(1)由题意得A=2,T 2=x0+2π-x0=2π, 即T=2πω=4π,解得ω=12, ∴f(0)=2cos (12×0+φ)=1,即cos φ=12. ∵-π2<φ<π2,∴φ=-π3或φ=π3, 若φ=π3,当x>0时,函数先取得最小值,后取得最大值,不符合图象, ∴φ=-π3, ∴函数f(x)的解析式为f(x)=2cos (12x -π3). (2)由题意得g(x)=2cos [12(x +a )-π3]. ∵y=g(x)是奇函数,∴g(0)=2cos (a 2-π3)=0, ∴a 2-π3=kπ-π2(k∈Z),即a=2kπ-π3(k∈Z). 又a∈(0,2π),∴a=5π3. 当a=5π3时,g(x)=2cos [12(x +5π3)-π3]=2cos (12x +π2)=-2sin 12x, 此时有g(-x)=-g(x),即函数g(x)为奇函数,故a=5π3.。
高考数学三角函数的图像与性质
课堂考点探究
[-1,1]
[思路点拨]设t=sin x-cos x,先将原函数化为关于t的二次函数,注意t的取值范围,再求值域;[解析]设t=sin x-cos x,-1≤t≤,则t2=sin2x+cos2x-2sin xcos x,即sin xcos x=,所以原函数等价于y=-+t+=-(t-1)2+1.当t=1时,ymax=1;当t=-1时,ymin=-1.所以函数f(x)的值域为[-1,1].
D
(2)函数y=lg(2sin x+1)的定义域为( )A. B.C. D.
课堂考点探究
[思路点拨] 根据对数函数的定义域可得2sin x+1>0,求解即可;[解析]由2sin x+1>0,得sin x>-,即2kπ-<x<2kπ+,k∈Z,∴函数y=lg(2sin x+1)的定义域为.故选D.
D
B
[总结反思](1)对于函数f(x)=Asin(ωx+φ),其图像的对称轴一定经过函数图像的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数图像的对称轴或对称中心时,可通过检验f(x0)的值进行判断.(2)函数f(x)=Asin(ωx+φ)的图像的对称性与最小正周期T之间有如下结论:①若函数图像的相邻两条对称轴分别为直线x=a与直线x=b,则最小正周期T=2|b-a|; ②若函数图像相邻的两个对称中心分别为点(a,0)与点(b,0),则最小正周期T=2|b-a|;③若函数图像相邻的对称中心与对称轴分别为点(a,0)与直线x=b,则最小正周期T=4|b-a|.
高三数学三角函数的图象与性质试题
高三数学三角函数的图象与性质试题1.将函数的图象关于x=对称,则ω的值可能是( )A.B.C.5D.2【答案】D【解析】根据正弦型函数的性质及已知条件,有取k=0,得ω=2满足条件,选D考点:三角函数的图象及其性质2.设函数(1)求函数的周期和单调递增区间;(2)设A,B,C为ABC的三个内角,若AB=1,,,求s1n B的值.【答案】(1)周期为,单调递增区间为(2)【解析】(1)用两角和差公式、二倍角公式和化一公式将函数化简为的形式,根据周期公式求其周期;将整体角代入正弦的单调增区间内,即可解得函数的增区间。
(2)根据可得角,根据正弦定理可得。
试题解析:=(1)函数的周期为.令,则∴函数f(x)的单调递增区间为(2)由已知,因为所以,,∴s1n C =.在中,由正弦定理,,得.【考点】1三角函数的化简;2正弦定理。
3.下列函数中周期为且图象关于直线对称的函数是()A.B.C.D.【答案】B【解析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.【考点】三角函数性质4.函数的一条对称轴方程是()A.B.C.D.【答案】D.【解析】.令,解得.令得,故选D.【考点】1.三角恒等变换;2.三角函数图像性质.5.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】由于y=cos x+sin x=2cos,向左平移m(m>0)个单位长度后得到函数y=2cos的图象.由于该图象关于y轴对称,所以m-=kπ(k∈Z,m>0),于是m=kπ+ (k∈Z,m>0),故当k=0时,m取得最小值.6.函数y=(acosx+bsinx)cosx有最大值2,最小值-1,则实数(ab)2的值为________.【答案】8【解析】y=acos2x+bsinxcosx=a·+sin 2x=sin(2x+φ)+,∴∴a=1,b2=8,∴(ab)2=8.【方法技巧】三角恒等变换的特点(1)三角恒等变换就是利用两角和与差的正弦、余弦、正切公式、倍角公式、半角公式等进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.(2)对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角恒等变换的重要特点.7.设函数f(x)=msinx+cosx(x∈R)的图象经过点(,1).(1)求f(x)的解析式,并求函数的最小正周期.(2)若f(α+)=且α∈(0,),求f(2α-)的值.【答案】(1) f(x)= sin(x+) T=2π (2)【解析】(1)∵函数f(x)=msinx+cosx(x∈R)的图象经过点(,1),∴msin+cos=1,∴m=1,∴f(x)=sinx+cosx=sin(x+),∴函数的最小正周期T=2π.(2)f(α+)=sin(α++)=sin(α+)=cosα=,∴cosα=,又∵α∈(0,),∴sinα==,∴f(2α-)=sin(2α-+)=sin2α=2sinαcosα=.8.已知函数f(x)=sin(2x+).(1)求函数y=f(x)的单调递减区间.(2)画出函数y=f(x)在区间[0,π]上的图象.【答案】(1) [kπ+,kπ+](k∈Z) (2)见解析【解析】(1)由2kπ+≤2x+≤2kπ+(k∈Z),得kπ+≤x≤kπ+(k∈Z).∴函数的单调递减区间是[kπ+,kπ+](k∈Z).(2)∵0≤x≤π,∴≤2x+≤.列表如下:2x+画出图象如图所示:9.函数f(x)=Asin(ωx+φ) 的部分图像如图所示.(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.【答案】(1) f(x)=sin (2)【解析】解:(1)由图像得A=1,=-=,所以T=2π,则ω=1.将代入得1=sin,而-<φ<,所以φ=.因此函数f(x)=sin.(2)由于x∈,-≤x+≤,所以-1≤sin≤,所以f(x)的取值范围是.10.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=对称,且f=0,则ω的最小值为().A.2B.4C.6D.8【答案】A【解析】由f=0知是f(x)图象的一个对称中心,又x=是一条对称轴,所以应有解得ω≥2,即ω的最小值为2,故选A.11.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是().A.2,-B.2,-C.4,-D.4,【答案】A【解析】T=-,T=π,∴ω=2,∴2×+φ=2kπ+,k∈Z,∴φ=2kπ-,k∈Z,又φ∈,∴φ=-,选A.12..函数的部分图象如图所示,则的值分别是A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足故,.所以或由逐个检验知【考点】正弦函数的图象和性质.13.函数f(x)=sin(2x+)图象的对称轴方程可以为()A.x=B.x=C.x=D.x=【答案】A【解析】对于函数的对称轴方程为,则令,解得函数的对称轴方程为,当,有.所以正确答案为A.【考点】正弦函数的对称轴14.已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域.【答案】(Ⅰ);(Ⅱ)值域为.【解析】(Ⅰ)首先由函数图象上一个最低点为,得A=2.又函数图象与x轴的交点中,相邻两个交点之间的距离为,所以,由此可求得的值,进而可求得的值.利用函数图象上一个最低点为,由代入法或关键点法可求得的值,最后得函数的解析式;(Ⅱ)在(Ⅰ)的基础上首先写出的表达式,利用三角函数的有关公式,将其化为一个复合角的三角函数,利用整体思想来求函数的值域.试题解析:(1)由最低点为,得A=2.由x轴上相邻的两个交点之间的距离为,得,即,,由点在图像上得故,,又6分(2),.因为,则,所以值域为.12分【考点】1.由三角函数的图像及其性质求三角函数的解析式;2.三角函数的值域.15.已知函数,下列命题是真命题的为()A.若,则.B.函数在区间上是增函数.C.直线是函数的一条对称轴.D.函数图象可由向右平移个单位得到.【答案】C【解析】,∵,∴,∴,∴所以A错;∵,∴,∴函数在上是减函数,所以B错;函数图像可由向左平移个单位得到,所以D错;直线是函数的一条对称轴,C正确.【考点】1.三角函数的最值;2.函数的对称轴;3.函数图像的平移变换;4.函数的单调性.16.将函数f(x)=2sin的图象向左平移个单位,得到函数y="g" (x)的图象.若y=g(x)在[]上为增函数,则的最大值( )A.1B.2C.3D.4【答案】B【解析】由题意,要使其在[]为增函数,如图所示,只需,所以,选B.【考点】1、三角函数的图象变换;2、函数的单调性.17.函数的部分图象如右图所示,设是图象的最高点,是图象与轴的交点,则( )A.B.C.D.【答案】B【解析】由函数的解析式可得周期T=2,再结合图象可得A、P、B的坐标.设点P在x轴上的射影为M,得tan∠BPM=和tan∠APM=的值,再由tan∠APB=tan(∠BPM+∠APM)=,故选B.【考点】1.两角差的正切公式;2.三角函数的图像18.)已知向量=(,),=(1,),且=,其中、、分别为的三边、、所对的角.(Ⅰ)求角的大小;(Ⅱ)若,且,求边的长.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量,,和 ,利用数量积公式可求得,即;(Ⅱ)因为,且,利用正弦定理将角转化为边,利用余弦定理来求试题解析:(Ⅰ)在中,,,所以,又, 所以,所以,即;(Ⅱ)因为,由正弦定理得,,得,由余弦定理得,解得.【考点】1、向量的数量积, 2、三角恒等变形, 3、解三角形.19.函数的部分图象如图所示,则的解析式为()A.B.C.D.【答案】B【解析】将点(6,0)代入验证可知,的解析式为,故选B。
专题3 三角函数的图象与性质【高考文科数学】含答案
第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。
高考数学专题:三角函数的图象与性质
y t 2 3t 1 4
当t
3 2
时,ymax
1
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
11
[明考情—备考如何学] 高考对此部分内容主要以选择、填空题的形式考查,难度为中等偏下,大多出现在 第 6~12 题或第 14、15 题位置上,命题的热点主要集中在三角函数的定义、图象与性 质,主要考查图象的变换,函数的单调性、奇偶性、周期性、对称性及最值,并常与三 角恒等变换交汇命题.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
18
2.(2019·湖南省五市十校联考)函数 f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象 如图所示,则 f(2 019)的值为___-_1____.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
19
B.在π4,51π2上单调递减
C.1π2,0是 g(x)图象的一个对称中心
D.直线 x=-π6是 g(x)图象的一条对称轴
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
26
2. (2019·洛阳尖子生第二次联考)已知函数 f(x)=sinωx+π6(ω>0)在区间-π4,23π上单调
(3)基本关系:
sin2x+cos2x=1,
tan
x=csions
x x.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
13
[研考点考向·破重点难点]
考点1 三角函数的定义、诱导公式及基本关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高考数学高频考点揭秘与仿真测试习题
高考专题24
三角函数的图象和性质1(正弦型)
【考点讲解】1.能画出的图象;
2. 了解三角函数的周期性.理解正弦函数在区间的性质(如单调性、最大值和最小
值以及与x轴交点等).
一、具本目标:1.会用“五点法”作图;
2.备考重点:(1) 掌握正弦函数及正弦型函数的图象;(2) 掌握正弦函数及正弦型函数的周
期性、单调性、对称性以及最值.
二、知识概述:
1.正弦函数的图象与性质:
性质
图象
定义域
值域
最值
当时,;当
时,.
周期性
奇偶性
,奇函数
单调性
在上是增函数;在
上是减函数.
对称性
对称中心
对称轴,既是中心对称又是轴对称图形。
2.用五点法画出正弦型函数的图象,先列表,
令,求出对应的五个的值和五个
值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,
即得到在一个周期的图像,最后把这个周期
的图像以周期为单位,向左右两边平移,则得到函数
的图象.
3.对于来说,对称中心与零点相联系,对称轴与最值
点联系.
的图象有无穷多条对称轴,可由方程
解出;它还有无穷多个对称中心,它们
是图象与轴的交点,可由,解得
,即其对称中心为
.相邻两对称轴间的距离为2T,相邻两对称中心
间的距离也为2T,函数的对称轴一定经过图象的最高点或最低点.
4.近几年高考在考查三角恒等变换的同时,对三角函数图象与性质的考查力度有所加强,
常常把恒等变换与图象和性质相结合来考查.三角函数的定义域值域、单调性、奇偶性、周
期性、对称性以及图象变换是主要考查对象,难度为中低档,对基础知识与基本技能加强了
考查的力度,分值分配合理,更重视细节给分,其中对函数
的图象要求会用五点作图法作出,并理解它的
性质:函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为
其函数的半个周期;函数图象与x轴的交点是其对称中心,相邻两对称中心间的距离也是其
函数的半个周期;函数取最值的点与相邻的与x轴的交点间的距离为其函数的个周期,
注意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移.
5.确定函数当时函数的单调
性:对于函数求其单调区间,要特别注意的正负,
若为负值,需要利用诱导公式把负号提出来,转化为
的形式,然后求其单调递增区间,应把
放在正弦函数的递减区间之内;若求其递减区间,应把放在正弦函数的递增区间
之内.
求函数的单调区间的步骤:(1)将化为正.(2)将
看成一个整体,由三角函数
的单调性求解.
【特别提醒】解答三角函数的问题时,不要漏了“”. 三角函数存在多个单调区间时
易错用“∪”联结.求解三角函数的单调区间时若的系数为负应先化为正,同时切记不
要漏掉考虑函数自身的定义域.
6.确定函数的对称性时,先将函数化成的形
式再求解.其图象的对称轴是直线,图
象与直线的交点是图象的对称中心, 所以要记住三角函数的图象,根据图象并结合整
体代入的基本思想,就可经求出三角函数的对称轴与对称中心.
7.对于函数的奇偶性判断:如果为偶函数,就有
;
如果为奇函数,就有.
8.函数的周期性:求的周期的方法
(1)定义法:使得当取定义域内的每一个值时,都有.
利用定义我们可采用取值进行验证的思路,非常适合选择题;
(2)公式法:使用此法时先将函数转化为的
形式,最小正周期是.
(3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接
判断,但是能够容易画出函数草图的函数;
(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平
方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其
周期性不变,其它不定. 如的周期都是, 但
的周期为,而
,的周期不变.
2.使用周期公式,必须先将解析式化为或
的形式;正弦余弦函数的最小正周期是
,正切函数的最小正周期公式是;注意一定要注意加绝对值。
9.在函数的图象平移变换中要注意人“”
的影响,变换有两种顺序:一种的图象向左平移个单位得
,再把横坐标变为原来的倍,纵坐标不变,得
的图象,另一种是把的图象横坐标变为原来的
倍,纵坐标不变,得的图象,向左平移个单位得
的图象.
【真题分析】
1.【2017山东,文7】函数最小正周期为
( )
A. B. C. D.
【答案】C
【变式】【2017课标II,文3】函数的最小正周期
为( )
A. B. C. D.
【解析】由题意可知函数的最小正周期.
【答案】C
2.【2018年天津卷】将函数的图象向右平移个单
位长度,所得图象对应的函数
A. 在区间上单调递增 B. 在区间上单调递减
C. 在区间上单调递增 D. 在区间上单调递减
【解析】本题考点三角函数的平移变换,三角函数的单调区间的判断等知识,考查学生的转
化能力和计算求解能力.本题可先求得平移之后的函数解析式,然后确定函数的单调区间完
成题的要求.由函数图象平移
变换的性质可知:将的图象向右平移个单位长度
之后的解析式为:也就是
.可以求出函数的单调递增区间,
,也就是
,
.同理可以求出函数的单调递减区间,
,即
,
,所以正确的选项是A选项.
【答案】A
3.【2018届江西省六校高三上学期第五次联考】函数
是
偶函数的充要条件是( )
A. B.
C. D.
【答案】C
4.【2017天津,文理】设函数,,其中,
.若,
,且的最小正周期大于,则( )
A., B., C., D.,
【解析】本题考点是根据题中给出的条件求正弦型函数的解析式,要把握好题中给出的条件.
由题意可得:,这里,所以有
,由题中的条件可知,函数的最小正周期大
于,也就是,所以有当时,
,可得,由题中的条
件,得到.
【答案】
9.【2017北京,文16】已知函数
.
(I)f(x)的最小正周期;
(II)求证:当时,.
10.【2017浙江,18】(本题满分14分)已知函数f(x)=sin2x–cos2x–sin x cos
x
(xR).
(Ⅰ)求的值.
(Ⅱ)求的最小正周期及单调递增区间.
【解析】(Ⅰ)法一:直接求值:
法二:此法可为第二个问题提供便利,将原函数化简:f(x)=sin2x–cos2x–sin x cos
x
【模拟考场】
1.若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )
A.
B.
C.
D.
【解析】:由题意,将函数的图像向左平移个单位得
,则平移后函数的
对称轴为,即
,故选B.
【答案】B
2.为了得到函数的图象,只需把函数的图象上所
有的点( )
A.向左平行移动个单位长度 B.向右平行移动个单位长度
C.向左平行移动个单位长度 D.向右平行移动个单位长度
【解析】
试题分析:,所以只需把
的图象上所有的点向左平移个单位.
【答案】A
3.将函数的图象向右平移个单位长度,所得图象对
应的函数( )
A.在区间上单调递减 B.在区间上单调递增
C.在区间上单调递减 D.在区间上单调递增
【答案】B
4将函数的图像向右平移个单位
后得到函数的图像,若对满足的,,有
,则( )
A. B. C. D.
【解析】
试题分析:向右平移个单位后,得到,
又∵,两函数最大与最小值的距离为2,
∴不妨,
,
∴,
又∵,
∴,故选D.
【答案】D.
5.【2017课标3,文6】函数
的最大值为( )
A. B.1 C. D.
【答案】A
6.【2015高考福建,理19】已知函数的图像是由函数的图
像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再
将所得到的图像向右平移个单位长度.
(Ⅰ)求函数的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于的方程在内有两个不同的解
.
(1)求实数m的取值范围;
(2)证明:
【答案】(Ⅰ),;(Ⅱ)
(1);(2)详见解析.
(2)1)
(其中
)
依题意,在区间内有两个不同的解当且仅当
,故m的取值范围是.
2)因为是方程在区间内有两个不同的解,
所以,.
当时,
当时,
所以
解法二:(1)同解法一.
(2)1) 同解法一.
2) 因为是方程在区间内有两个不同的
解,
所以,.
当时,
当时,
所以
于是