2013年高考文科数学山东卷试题与答案word解析版
2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年全国统一考试数学文史类(新课标全国卷I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.(2013课标全国Ⅰ,文2)212i 1i +(-)=( ). A .11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .164.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q6.(2013课标全国Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an7.(2013课标全国Ⅰ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.(2013课标全国Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为( ).A .2 B...49.(2013课标全国Ⅰ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.(2013课标全国Ⅰ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 12.已知函数f (x )=的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18. (本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19. (本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C,求三棱柱ABC -A 1B 1C 1的体积.20. (本小题满分12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.21. (本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22. (本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).24. (本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围.2013年全国统一考试数学文史类(新课标全国卷I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.2.答案:B 解析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.答案:C 解析:∵2e =2c a =,即2254c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12b a =. ∵双曲线的渐近线方程为b y x a=±, ∴渐近线方程为12y x =±.故选C. 5.答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0,∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B.6.答案:D 解析:11211321113nn n n a a a q a q S q q --(-)===---=3-2a n ,故选D. 7.答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2.∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减.∴s max =4,s min =3.∴s ∈[3,4].综上知s ∈[-3,4].故选A.8.答案:C解析:利用|PF |=P x =x P=∴y P =±∴S △POF =12|OF |·|y P |=故选C. 9.答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫ ⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍). 故选D.11.答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.12.答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限,由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2.∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[t a +(1-t )b ]·b =0,即t a ·b +(1-t )b 2=0.∴12t +1-t =0.∴t =2.14.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3.15.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt△OEH 中,R 2=22+13R ⎛⎫⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2.16.答案:解析:∵f (x )=sin x -2cos xx -φ),其中sin φ=5,cos φ=5.当x -φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z ),θ=2k π+π2+φ(k ∈Z ).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=5-.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)设{a n }的公差为d ,则S n =1(1)2nn na d -+.由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为 =12nn -.18.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y. 由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.19.(1)证明:取AB的中点O,连结OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C⊂平面OA1C,故AB⊥A1C.(2)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1又A1C A1C2=OC2+21OA,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC ABC-A1B1C1的体积V=S△ABC×OA1=3. 20.解:(1)f′(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4e x(x+1)-x2-4x,f′(x)=4e x(x+2)-2x-4=4(x+2)·1e2x⎛⎫-⎪⎝⎭.令f′(x)=0得,x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0;当x∈(-2,-ln 2)时,f′(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).21.解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=当k=4时,将4y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±, 所以|AB ||x 2-x 1|=187. 当k=-|AB |=187. 综上,|AB |=|AB |=187. 请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE ,交BC 于点G .由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,∠DCE =90°,由勾股定理可得DB =DC .(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO ,则∠BOG =60°.从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt△BCF23.解:(1)将45cos ,55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩ 所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013学年高考文科数学年山东卷答案

河南省2013年初中学业水平暨高级中等学校招生中考试试卷数学答案解析一、选择题 1.【答案】A【解析】2-的相反数是2,故选:A .【提示】根据相反数的定义:只有符号不同的两个数叫做互为相反数. 【考点】相反数 2.【答案】D【解析】A .不是中心对称图形,也不是轴对称图形,故本选项错误; B .不是中心对称图形,是轴对称图形,故本选项错误; C .是中心对称图形,不是轴对称图形,故本选项错误; D .既是中心对称图形又是轴对称图形,故本选项正确. 故选D .【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形,轴对称图形 3.【答案】D【解析】(2)(3)0x x -+=,20x -=,30x +=,12x =,23x =-,故选D . 【提示】根据已知得出两个一元一次方程,求出方程的解. 【考点】解一元二次方程的因式分解法故选C .【提示】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数. 【考点】中位数 5.【答案】B【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面. 故选B .【提示】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【考点】三视图 6.【答案】B【解析】不等式组解集为12x -<≤,其中整数解为0,1,2. 故最小整数解是0. 故选B .【提示】先求出不等式组的解集,再求其最小整数解即可. 【考点】一元一次不等式组的整数解 7.【答案】C【解析】A .∵CD 是O 的直径,弦AB CD ⊥于点G ,∴AG BG =,故正确; B .∵直线EF 与O 相切于点D ,∴CD EF ⊥,又∵AB CD ⊥∴AB EF ∥,故正确; C .只有当AC AD =弧弧时,AD BC ∥,当两个互不等时,则不平行,故选项错误; D .根据同弧所对的圆周角相等,可以得到ABC ADC ∠=∠.故选项正确. 故选C .【提示】根据切线的性质,垂径定理即可做出判断. 【考点】切线的性质,垂径定理,圆周角定理 8.【答案】A【解析】∵10a =-<,∴二次函数图像开口向下,又对称轴是直线1x =,∴当1x <时,函数图像在对称轴的左边,y 随x 的增大而增大. 故选A .【提示】抛物线221y x x =-++中的对称轴是直线1x =,开口向下,1x <x <1时,y 随x 的增大而增大.【考点】二次函数的性质 二、填空题 9.【答案】1【解析】原式32 1.=-= 故答案为:1【提示】分别进行绝对值的运算及二次根式的化简,然后合并即可. 【考点】实数的运算 10.【答案】15︒【解析】解:∵60A ∠=︒,45F ∠=︒,∴1906030∠=︒-︒=︒,904545DEF ∠=︒-︒=︒,∵ED BC ∥,∴2130∠=∠=︒,2453015CEF DEF ∠=∠-∠=︒-︒=︒故答案为:15︒【提示】根据直角三角形两锐角互余求出1∠,再根据两直线平行,内错角相等求出2∠,然后根据452CEF ∠=︒-∠计算即可得解.【考点】平行线的性质11.【答案】1故答案为11x - 【提示】原式通分并利用同分母分式的加法法则计算,约分即可得到结果. 【考点】分式的加减法12.【答案】8π故答案为:8π3【提示】根据弧长公式求出扇形的弧长. 【考点】弧长的计算13.【答案】2故答案为:23【提示】列表得出所有等可能的情况数,找出数字之积为负数的情况数,求出所求的概率. 【考点】列表法与树状图法 22OA ︒=⨯故答案为:12.【提示】根据平移的性质得出四边形APP A ''是平行四边形,进而得出AD ,PP '的长,求出面积即可. 【考点】二次函数图像与几何变换15.【答案】3或3【解析】解:当CEB '△为直角三角形时,有两种情况:故答案为:32或3. 【提示】当CEB '△为直角三角形时,有两种情况:①当点B '落在矩形内部时,如图1所示,连结AC ,先利用勾股定理计算出5AC =,根据折叠的性质得90AB E B '∠=∠=︒,而当CEB '△为直角三角形时,只能得到90EB C '∠=︒,所以点A 、B '、C 共线,即B ∠沿AE 折叠,使点B 落在对角线AC 上的点B '处,则EB EB '=,3AB AB '==,可计算出2CB '=,设B E x =,则E B x '=,4CE x =-,然后在Rt CEB '△中运用勾股定理可计算出x ,②当点B '落在AD 边上时,如图2所示,此时ABEB '为正方形. 【考点】翻折变换(折叠问题) 三、解答题 16.【答案】5【解析】解:原式22224441443x x x x x x =+-+-=-++,当x =235=+=.【提示】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将整式的混合运算—化简求值的值代入计算即可求出值. 【考点】整式的混合运算的化简求值 17.【答案】(1)40,100,15% (2)30万人 (3)概率是1答:随机抽查一人,则此人持C 组“观点”的概率是14【提示】求得总人数,然后根据百分比的定义,利用总人数100万,乘以所对应的比例即可求解,利用频率的计算公式.【考点】频数(率)分布表,用样本估计总体,扇形统计图,概率公式18.【答案】(1)证明:∵AG BC ∥,∴EAD DCF ∠=∠,∠AED=∠DFC ,∵D 为AC 的中点,∴AD CD =,∵在ADE △和CDF △中,EAD DCFAED DFC AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CDF AAS △≌△;(2)解:①若四边形ACFE 是菱形,则有6CF AC AE ===,则此时的时间616()t s =÷=; ②四边形AFCE 为直角梯形时,(Ⅰ)若CE AG ⊥,则3AE =,326BF =⨯=,即点F 与点C 重合,不是直角梯形(Ⅱ)若A F B C ⊥,∵ABC △为等边三角形,∴F 为BC 中点,即3BF =,∴此时的时间为32 1.5()s ÷=;故答案为:6;1.5【提示】由题意得到AD CD =,再由AG 与BC 平行,利用两直线平行内错角相等得到两对角相等,利用AAS 即可得证,①若四边形ACFE 是菱形,则有6CF AC AE ===,由E 的速度求出E 运动的时间即可;②分两种情况考虑:若CE AG ⊥,此时四点构成三角形,不是直角梯形;若AF BC ⊥,求出BF 的长度及时间t 的值.【考点】菱形的判定,全等三角形的判定与性质,等边三角形的性质,直角梯形.答:工程完工后背水坡坡底端水平方向增加的宽度AC 约为37.3米【提示】在Rt BAE △中,根据162BE =米,68BAE ∠=︒,解直角三角形求出AE 的长度,然后在Rt DCE △中解直角三角形求出CE 的长度,然后根据AC CE AE =-求出AC 的长度即可. 【考点】解直角三角形的应用的坡度坡角问题20.【答案】(1)32,2⎛⎫⎪⎝⎭(2)直线FB 的解析式2533y x =+ 【解析】解:(1)∵(2,3)BC x ∥轴,点B 的坐标为(2,3),∴2BC =,∵点D 为BC 的中点,∴1CD =,∴∴直线FB 的解析式2533y x =+ 【提示】首先根据点B 的坐标和点D 为BC 的中点表示出点D 的坐标,代入反比例函数的解析式求得k 值,然后将点E 的横坐标代入求得E 点的纵坐标即可,根据FBC DEB △∽△,利用相似三角形对应边的比相等确定点F 的坐标后即可求得直线FB 的解析式.【考点】反比例函数综合题21.【答案】(1)A 种品牌计算器30元每个,B 种品牌计算器32元每个(2)124y x =,232,(05)22.448,(5)x x y x x ≤≤⎧=⎨+>⎩(3)购买超过30个计算器时,B 品牌更合算,购买不足30个计算器时,A 品牌更合算【解析】解:(1)设A 、B 两种品牌的计算器的单价分别为a 元、b 元,根据题意得,231563122a b a b +=⎧⎨+=⎩,解得:3032a b =⎧⎨=⎩,答:A 种品牌计算器30元每个,B 种品牌计算器32元每个;(2)A 品牌:1300.824y x x ==;B 品牌:05x ≤≤,232y x =,5x >时,253232(5)0.722.448y x x =⨯+⨯-⨯=+ 所以,124y x =,232,(05)22.448,(5)x x y x x ≤≤⎧=⎨+>⎩;(3)当12y y =时,2422.448x x =+,解得30x =,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B 品牌更合算,购买不足30个计算器时,A 品牌更合算【提示】设A 、B 两种品牌的计算器的单价分别为a 元、b 元,然后根据156元,122元列出二元一次方程组,A 品牌,根据八折销售列出关系式即可,B 品牌分不超过5个,按照原价销售和超过5个两种情况列出关系式整理,先求出购买两种品牌计算器相同的情况,然后讨论求解. 【考点】一次函数的应用,二元一次方程组的应用.22.【考点】全等三角形的判定与性质23.【答案】(1)272 2y x x=-++.(2)当m为值为1,2时,以O、C、P、F为顶点的四边形是平行四边形FN PFN FN CFM FN tan tan2∠=∠=点p有2个,如图2所示,注意不要漏解.在求点p坐标的时候,需要充分挖掘已知条件,构造直角三角形或相似三角形,解方程求出点p的坐标.【考点】二次函数综合题。
2013年高考(新课标I卷)文科数学试卷(word版含答案)

2013年普通高等学校招生全国统一考试文 科 数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一. 选择题:本大题共12小题,第小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合}3,3,2,1{=A ,},|{2A n n x x B ∈==,则=⋂B A(A )}4,1{ (B )}3,2{ (C ) }16,9{ (D )}2,1{(2)2)1(21i i-+=(A )i 211-- (B )i 211+- (C )i 211+ (D )i 211- (3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是(A )21 (B )31 (C )41 (D )61 (4) 已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为(A )x y 41±= (B )x y 31±= (C )x y 21±= (D )x y ±= (5)已知命题;32,:xxR x p <∈∀命题231,:x x R x q -=∈∃,则下列命题中为真命题的是(A )q p ∧ (B )q p ∧⌝ (C )q p ⌝∧ (D )q p ⌝∧⌝(6)设首项为1,公比为32的等比数列}{n a 的前n 项和为n S ,则 (A )12-=n n a S (B )23-=n n a S (C )n n a S 34-= (D )n n a S 23-=(7)执行右边的程序框图,如果输入的]3,1[-∈t ,则输出的s 属于(A) ]4,3[- (B) ]2,5[- (C) ]3,4[- (D) ]5,2[-(8)O 为坐标原点,F 为抛物线x y C 24:2=的焦点,P 为C 上一点,若24||=PF ,则POF ∆的面积为(A) 2 (B) 22 (C) 32 (D) 4 (9)函数x x x f sin )cos 1()(-=在],[ππ-的图像大致为(10)已知锐角△ABC 的内角A 、B 、C 的对边分别为c b a ,,,,7,02cos cos 232==+a A A 6=c ,则=b(A )10 (B )9(C )8(D )5(11)某几何体的三视图如图所示,则该几何体的体积为(A )16+8π(B )8+8π (C )16+16π (D )8+16π(12) 已知函数=)(x f ⎩⎨⎧>+≤+-.0),1ln(,0,22x x x x x 若|)(|x f ≥ax ,则a 的取值范围是(A) ]0,(-∞ (B) ]1,(-∞ (C) ]1,2[-(D) ]0,2[-第Ⅱ卷本卷包括必考题和选考题两部分。
2013年高考文科数学全国新课标卷1试题与答案word解析版

2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A. −1−12i B .11+i 2- C .1+12i D .1−12i【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)C 的渐近线方程为( ).A . y =±14i B .y =±13i C .12y x =± D .y =±i【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵2e =2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年山东省高考数学试卷(文科)学生版

2013 年山东省高考数学试卷(文科)一.选择题:此题共 12 个小题,每题 5 分,共 60 分..( 分)( 2013? 山东)复数 z= ( i 为虚数单位),则 | z| =()1 5A .25B .C .5D .2.( 5 分)( 2013?山东)已知会合 、 全集 U={ 1、2、3、4}(A ∪B )={ 4} , A B ,且?UB={ 1,2} ,则 A ∩?U B=()A .{ 3}B .{ 4}C .{ 3,4}D .?( )为奇函数,且当 x >02+ , 3.( 5 分)(2013?山东)已知函数 f x时,f (x )=x 则 f (﹣ 1) =( )A .2B .1C .0D .﹣ 24.( 5 分)( 2013?山东)一个四棱锥的侧棱长都相等, 底面是正方形, 其正(主)视图如下图该四棱锥侧面积和体积分别是( )A .4 ,8B .,C .,D .8,8.( 分)( 2013?山东)函数 f ( ) =+的定义域为()5 5 xA .(﹣ 3,0]B .(﹣ 3,1]C .(﹣∞,﹣ 3)∪(﹣ 3, 0]D .(﹣∞,﹣ 3)∪(﹣ 3,1]6.(5 分)(2013?山东)履行两次如下图的程序框图,若第一次输入的a 的值为﹣ 1.2,第二次输入的 a 的值为 1.2,则第一次、第二次输出的 a 的值分别为()A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8 7.( 5 分)( 2013?山东)△ABC的内角 A、B、C 的对边分别是 a、b、c,若 B=2A,a=1,b=,则 c=()A.B.2C.D.18.(5 分)(2013?山东)给定两个命题p, q.若¬ p 是 q 的必需而不充足条件,则 p 是¬ q 的()A.充足而不用要条件B.必需而不充足条件C.充要条件D.既不充足也不用要条件9.(5 分)(2013?山东)函数y=xcosx+sinx 的图象大概为()A.B.C.D.10.( 5 分)(2013?山东)将某选手的9 个得分去掉 1 个最高分,去掉 1 个最低分, 7 个节余分数的均匀分为91,现场做的 9 个分数的茎叶图以后有一个数据模糊,没法辨识,在图中以x 表示:则7 个节余分数的方差为()A.B.C.36D.11.( 5分)( 2013?山东)抛物线C1:>的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若 C1在点 M 处的切线平行于C2的一条渐近线,则p=()A.B.C.D.12.( 5 分)( 2013?山东)设正实数x,y,z 知足x2﹣3xy+4y2﹣ z=0,则当获得最小值时,x+2y﹣z 的最大值为()A.0B.C.2D.二.填空题:本大题共 4 小题,每题 4 分,共 16 分13.( 4 分)(2013?山东)过点( 3,1)作圆( x﹣ 2)2+(y﹣2)2=4 的弦,此中最短的弦长为.14(.4 分)( 2013?山东)在平面直角坐标系xOy中,M 为不等式组所表示的地区上一动点,则线段| OM| 的最小值为.15.( 4分)( 2013?山东)在平面直角坐标系xOy中,已知,,,,若∠ ABO=90°,则实数t 的值为.16.( 4 分)(2013?山东)定义“正对数”:ln+x=,<<,现有四个命题:,①若 a>0,b>0,则 ln+(a b) =bln+;a②若 a>0,b>0,则 ln+(ab)=ln+;+a+ln b③若 a>0,b>0,则;④若 a>0,b>0,则 ln+(a+b)≤ ln.++a+ln b+ln2此中的真命题有(写出全部真命题的序)三.解答题:本大题共 6 小题,共 74 分,17.(12 分)(2013?山东)某小组共有 A、B、C、D、E 五位同学,他们的身高(单位:米)以及体重指标(单位:千克/ 米2)如表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于 1.80 的同学中任选 2 人,求选到的 2 人身高都在 1.78以下的概率(Ⅱ)从该小组同学中任选 2 人,求选到的 2 人的身高都在 1.70 以上且体重指标都在 [ 18.5,23.9)中的概率.18.( 12 分)(2013?山东)设函数f(x)=﹣sin2ωx﹣sin ω xcos ωx(> 0),且 y=f( x)的图象的一个对称中心到近来的对称轴的距离为,(Ⅰ)求ω的值(Ⅱ)求 f( x)在区间 [,] 上的最大值和最小值.19.( 12 分)( 2013?山东)如图,四棱锥P﹣ABCD中, AB⊥ AC,AB⊥PA,AB∥ CD,AB=2CD,E, F,G,M ,N 分别为 PB、AB、 BC、 PD、PC的中点.(Ⅰ)求证: CE∥平面 PAD(Ⅱ)求证:平面EFG⊥平面 EMN.20.(12 分)( 2013?山东)设等差数列 { a n} 的前 n 项和为 S n,且 S4=4S2,a2n=2a n+1.(Ⅰ)求数列 { a n} 的通项公式;(Ⅱ)设数列 { b n } 知足=1﹣,n∈N*,求{ b n } 的前n 项和T n.221.( 12 分)( 2013?山东)已知函数 f (x)=ax +bx﹣lnx(a,b∈R)(Ⅱ)设 a>0,且关于随意 x> 0,f (x)≥ f(1).试比较 lna 与﹣ 2b 的大小.22.( 14 分)(2013?山东)在平面直角坐标系 xOy 中,已知椭圆 C 的中心在原点O,焦点在(Ⅰ)求椭圆x 轴上,短轴长为 C 的方程2,离心率为(Ⅱ)A,B 为椭圆 C 上知足△AOB的面积为的随意两点,E 为线段AB 的中点,射线OE 交椭圆 C 于点P,设,务实数t 的值.。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)6645.docx

2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i =+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则 ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得c =117sin 2sin 2212bc A π=⨯⨯.因为711sin sin())123422πππ=+,所以11sin )1222bc A =+=+,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以2122tan30,PF c PF ===.又122PF PF a+==,所以c a ==,故选D . (6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321log 21log 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+(B)1)y x =-或1)y x =-(C )1)y x =-或1)y x =-(D)1)y x =-或1)y x =- 【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =, 所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =,此时直线方程为1)y x =-.若1y =-,则1(3,()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x =-或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D . 解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=.(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯,解得高h =.=所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ,所以1//BC 平面1ACD . (2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A =,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =90ACB ∠=︒,CD =,1A D =DE =,13A E =,故22211A D DE A E +=,即1D E A D ⊥. 所以111132C A DE V -⨯==.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.解:(1)当[)10,30X ∈时,()50030013080039000T X X X =--=-,当[]130,5X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.1(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =的距离为2,求圆P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,2=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =. 故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<;当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞,,时,()m t 的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 综上,l 在x 轴上的截距的取值范围是0()223,⎡⎤+-+∞⎦∞⎣,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个 题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有C E D C =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ=<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b c b c a++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤. (2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b c a a b c c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b c b c a++≥.。
【高考真题】2013年高考数学(文科)课标卷(二)Ⅱ(Word版,含答案解析)
2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( ) A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2,-1,0} D.{-3,-2,-1}2.2=( )A.2 2B.2C. 2D.13.设x,y 满足约束条件 x -y +1≥0,x +y -1≥0,x ≤3,则z=2x-3y 的最小值是( ) A.-7B.-6C.-5D.-34.△ABC 的内角A,B,C 的对边分别为a,b,c,已知b=2,B=π,C=π,则△ABC 的面积为( ) A.2 3+2B. 3+1C.2 3-2D. 3-15.设椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A. 36B.13C.12D. 336.已知sin 2α=23,则cos 2α+π4 =( ) A.16B.13C.12D.237.执行右面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14 B.1+12+13×2+14×3×2 C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×28.设a=log 32,b=log 52,c=log 23,则( ) A.a>c>b B.b>c>a C.c>b>aD.c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )10.设抛物线C:y 2=4x 的焦点为F,直线l 过F 且与C 交于A,B 两点.若|AF|=3|BF|,则l 的方程为( ) A.y=x-1或y=-x+1 B.y= 33(x-1)或y=- 33(x-1)C.y= 3(x-1)或y=- 3(x-1)D.y= 22(x-1)或y=- 22(x-1)11.已知函数f(x)=x 3+ax 2+bx+c,下列结论中错误的是( ) A.∃x 0∈R, f(x 0)=0B.函数y=f(x)的图象是中心对称图形C.若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D.若x 0是f(x)的极值点,则f '(x 0)=012.若存在正数x 使2x (x-a)<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞)D.(-1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD = . 15.已知正四棱锥O-ABCD 的体积为3 22,底面边长为 则以O 为球心,OA 为半径的球的表面积为 .16.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin 2x +π3 的图象重合,则φ= .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (Ⅰ)求{a n }的通项公式; (Ⅱ)求a 1+a 4+a 7+…+a 3n-2.18.(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB,BB 1的中点. (Ⅰ)证明:BC 1∥平面A 1CD;(Ⅱ)设AA 1=AC=CB=2,AB=2 求三棱锥C-A 1DE 的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23. (Ⅰ)求圆心P的轨迹方程;,求圆P的方程.(Ⅱ)若P点到直线y=x的距离为2221.(本小题满分12分)已知函数f(x)=x2e-x.(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(Ⅰ)证明:CA是△ABC外接圆的直径;(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:x=2cos t,y=2sin t(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(Ⅰ)求M的轨迹的参数方程;(Ⅱ)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(Ⅰ)ab+bc+ca≤13;(Ⅱ)a 2b +b 2c +c 2a≥1.2013年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.C 由题意得M∩N={-2,-1,0}.选C.2.C21+i=2(1-i )2=|1-i|= 2.选C.3.B 由约束条件得可行域(如图),当直线2x-3y-z=0过点A(3,4)时,z min =2×3-3×4=-6.故选B.4.B 由正弦定理b sin B =csin C及已知条件得c=2 2.又sin A=sin(B+C)=12× 22+ 32× 22= 2+ 64,从而S △ABC =12bcsin A=12×2×2 2×2+ 64= 3+1.故选B.5.D 在Rt△PF 2F 1中,令|PF 2|=1,因为∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.所以e=2c 2a =|F 1F 2||PF 1|+|P F 2|= 33.故选D. 6.A cos 2α+π4=1+cos 2α+π22=1-sin 2α2=16.选A.评析 本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.7.B 由框图知循环情况为:T=1,S=1,k=2;T=12,S=1+12,k=3;T=12×3,S=1+12+12×3,k=4;T=12×3×4,S=1+12+12×3+12×3×4,k=5>4,故输出S.选B. 8.D∵ 3 32<log 33,log 51<log 52<log 5 ,log 23>log 22,∴12<a<1,0<b<12,c>1,∴c>a>b.故选D.9.A 在空间直角坐标系中,易知O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1)恰为单位正方体的四个顶点.因此该几何体以zOx 平面为投影面所得的正视图为A.评析 本题考查了三视图和直观图,考查了空间想象能力.把几何体补成正方体是求解的关键.10.C 设直线AB 与抛物线的准线x=-1交于点C.分别过A,B 作AA 1垂直准线于A 1,BB 1垂直准线于B 1.由抛物线的定义可设|BF|=|BB 1|=t,|AF|=|AA 1|=3t.由三角形的相似得|BC ||AB |=|BC |4t=12,∴|BC|=2t,∴∠B 1CB=π6,∴直线的倾斜角α=π3或23π.又F(1,0),∴直线AB 的方程为y= 3(x-1)或y=- 3(x-1).故选C.11.C 由三次函数的值域为R 知, f(x)=0必有解,A 项正确;因为f(x)=x 3+ax 2+bx+c 的图象可由曲线y=x 3平移得到,所以y=f(x)的图象是中心对称图形,B 项正确;若y=f(x)有极值点,则其导数y=f '(x)必有2个零点,设为x 1,x 2(x 1<x 2),则有f '(x)=3x 2+2ax+b=3(x-x 1)(x-x 2),所以f(x)在(-∞,x 1)上递增,在(x 1,x 2)上递减,在(x 2,+∞)上递增,则x 2为极小值点,所以C 项错误,D 项正确.选C.评析 本题考查了三次函数的图象和性质,考查了利用导数研究函数的单调性和极值.掌握基本初等函数的图象和性质是解题关键.12.D 由2x(x-a)<1得a>x-12,令f(x)=x-12,即a>f(x)有解,则a>f(x)min ,又y=f(x)在(0,+∞)上递增,所以f(x)>f(0)=-1,所以a>-1,选D.评析本题考查了函数的值域与最值的求法,考查了分离参变量的方法,熟悉基本初等函数的单调性是解题关键.二、填空题13.答案0.2解析任取两个不同的数的情况有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中和为5的有2种,所以所求概率为210=0.2.14.答案 2解析解法一:AE·BD= AD+12AB·(AD-AB)=AD2-12AB2+0=22-12×22=2.解法二:以A为原点建立平面直角坐标系(如图).则A(0,0),B(2,0),C(2,2),D(0,2),E(1,2).∴AE=(1,2),BD=(-2,2).从而AE·BD=(1,2)·(-2,2)=1×(-2)+2×2=2.评析本题考查了向量的基本运算.向量的运算可以利用运算法则也可以利用坐标运算.15.答案24π解析设底面中心为E,则|AE|=12|AC|=62,∵体积V=13×|AB|2×|OE|=|OE|=322,∴|OA|2=|AE|2+|OE|2=6.从而以|OA|为半径的球的表面积S=4π·|OA|2=24π.评析本题考查了正四棱锥和球,考查了表面积和体积,考查了空间想象能力和运算求解能力.计算错误是失分的主要原因.16.答案56π解析令y=f(x)=cos(2x+φ),将其图象向右平移π2个单位后得f x-π2=cos2 x-π2+φ =cos(2x+φ-π)=sin(2x+φ-π)+π2=sin2x+φ-π2的图象,因为其与y=sin2x+π3的图象重合,所以φ-π2=π3+2kπ(k∈Z),所以φ=2kπ+56π(k∈Z),又-π≤φ<π,所以φ=56π.三、解答题17.解析(Ⅰ)设{a n}的公差为d.由题意得,a112=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=0(舍去)或d=-2.故a n=-2n+27.(Ⅱ)令S n=a1+a4+a7+…+a3n-2.由(Ⅰ)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=n2(a1+a3n-2)=n2(-6n+56)=-3n2+28n.18.解析(Ⅰ)证明:连结AC 1交A1C于点F,则F为AC1中点.又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.由于AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,AB=22得∠ACB=90°,CD=2,A1D=6,DE=3,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以VC-A1DE =13×12×6×3×2=1.评析本题考查了三棱柱的性质,考查了直线与平面平行的判定和体积的计算,考查了空间想象能力和运算求解能力.正确地选择方法和规范化解题至关重要.19.解析(Ⅰ)当X∈[100,130)时, T=500X-300(130-X)=800X-39 000.当X∈[130,150]时,T=500×130=65 000.所以T=800X-39000, 100≤X<130, 65000,130≤X≤150.(Ⅱ)由(Ⅰ)知利润T不少于57 000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.20.解析(Ⅰ)设P(x,y),圆P的半径为r.由题设得y2+2=r2,x2+3=r2.从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(Ⅱ)设P(x0,y0),由已知得002=22.又P在双曲线y2-x2=1上,从而得|x0-y0|=1, y02-x02=1.由x0-y0=1,y02-x02=1得x0=0,y0=-1.此时,圆P的半径r=由x0-y0=-1,y02-x02=1得x0=0,y0=1.此时,圆P的半径r=3.故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞),f '(x)=-e-x x(x-2).①当x∈(-∞,0)或x∈(2,+∞)时, f '(x)<0;当x∈(0,2)时, f '(x)>0.所以f(x)在(-∞,0),(2,+∞)上单调递减,在(0,2)上单调递增.故当x=0时, f(x)取得极小值,极小值为f(0)=0;当x=2时, f(x)取得极大值,极大值为f(2)=4e-2.(Ⅱ)设切点为(t, f(t)),则l的方程为y=f '(t)(x-t)+f(t).所以l 在x 轴上的截距为m(t)=t-f (t )f '(t )=t+tt -2=t-2+2t -2+3.由已知和①得t∈(-∞,0)∪(2,+∞).令h(x)=x+2x (x≠0),则当x∈(0,+∞)时,h(x)的取值范围为[2 x∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[2 +3,+∞).综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[2 2+3,+∞).评析 本题考查了导数的应用,均值定理求最值,考查了综合解题的能力,正确地求导是解题的关键.22.解析 (Ⅰ)证明:因为CD 为△ABC 外接圆的切线,所以∠DCB=∠A,由题设知BC FA =DC EA ,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C 四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA 是△ABC 外接圆的直径.(Ⅱ)连结CE,因为∠CBE=90°,所以过B,E,F,C 四点的圆的直径为CE,由DB=BE,有CE=DC,又BC 2=DB·BA=2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB·DA=3DB 2,故过B,E,F,C 四点的圆的面积与△ABC 外接圆面积的比值为12. 23.解析 (Ⅰ)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),因此M(cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为 x =cos α+cos2α,y =sin α+sin2α(α为参数,0<α<2π). (Ⅱ)M 点到坐标原点的距离d= x 2+y 2= 2+2cos α(0<α<2π).当α=π时,d=0,故M 的轨迹过坐标原点.24.证明 (Ⅰ)由a 2+b 2≥2ab,b 2+c 2≥2bc,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab+bc+ca.由题设得(a+b+c)2=1,即a 2+b 2+c 2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤13.(Ⅱ)因为a 2b +b≥2a,b2c+c≥2b,c2a+a≥2c,故a 2b +b2c+c2a+(a+b+c)≥2(a+b+c),即a 2b +b2c+c2a≥a+b+c.所以a 2b +b2c+c2a≥1.。
2013年高考文科数学全国新课标卷1试题与答案word解析版
2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( ).A.{1,4} B.{2,3} C.{9,16} D.{1,2}(2) = ( )(A)-1 - i (B)-1 + i (C)1 + i (D)1 - i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A.12 B.13 C.14 D.164.已知双曲线C:2222=1x ya b-(a>0,b>0)C的渐近线方程为( ).A. B.C.12y x=± D .5.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是( ).A.p∧q B.⌝p∧qC.p∧⌝q D.⌝p∧⌝q(6)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)S n=4-3a n(D)S n =3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.[-3,4]B.[-5,2] C.[-4,3]D.[-2,5]8.O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为( ).A.2 B...49.函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( ).10.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=( ).A.10 B.9 C.8 D.511.某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB.8+8π C.16+16πD.8+16π12已知函数f(x)=22,0,ln(1),0.x x xx x⎧-+≤⎨+>⎩若|f(x)|≥ax,则a的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t =______.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.星期一已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和. 星期二如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C,求三棱柱ABC -A 1B 1C 1的体积.星期三为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?星期四已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 星期五已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.星期六(三选一)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F ,求△BCF 外接圆的半径。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考文科数学全国新课标卷1试题与答案word解析版
2013 年普通高等学校招生全国统一考试( 新课标全国卷I)数学(文科)一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4} ,B={ x| x=n2,n∈A},则A∩B=( ) .A.{1,4} B .{2,3} C .{9,16} D .{1,2}(2)= ( ) (A)-1 - i (B)-1 + i (C)1 + i (D)1 - i 3.从1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对值为 2 的概率是( ) .1 1 1 1A.2 B .3 C .4 D .64.已知双曲线C:2 2x y2 2 =1( a>0,b>0) 的离心率为a b52,则C的渐近线方程为( ) .1A. B .C.y x D .2 5.已知命题p:?x∈R,2x<3x;命题q:? x∈R,x3=1-x2,则下列命题中为真命题的是( ) .A.p∧q B.p∧qC.p∧q D .p∧q(6)设首项为1,公比为的等比数列{a n}的前n 项和为S n,则()(A)S n =2a n-1 (B)S n =3a n -2 (C)S n =4-3a n (D)S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[ -1,3] ,则输出的s 属于( ) .A.[ -3,4]B .[ -5,2] C .[ -4,3]D .[ -2,5]2=4 2x的焦点,P为C上一点,若| PF| =4 2 ,8.O为坐标原点,F 为抛物线C:y则△P OF的面积为( ) .A.2 B .2 2 C .2 3 D .49.函数 f (x) =(1 -cos x)sin x 在[ -π,π]的图像大致为( ) .10.已知锐角△A BC的内角A,B,C的对边分别为a,b,c, 23cos 2A+cos 2A=0,a=7,c=6,则b=( ) .A.10 B .9 C .8 D .5111.某几何体的三视图如图所示,则该几何体的体积为( ) .A.16+8πB.8+8π C .16+16πD.8+16π12 已知函数 f ( x) =( ) .2 2 , 0,x x xln( x 1),x 0.若| f ( x)| ≥ax,则 a 的取值范围是A.( -∞,0] B .( -∞,1] C .[ -2,1] D .[ -2,0]二、填空题:本大题共4小题,每小题 5 分.13.已知两个单位向量a,b 的夹角为60°,c=t a+(1 -t) b. 若b·c=0,则t =______.14.设x,y 满足约束条件1x 3,则z=2x-y 的最大值为______.1 x y 0,15.已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.16.设当x=θ时,函数 f (x) =sin x-2cos x 取得最大值,则cos θ=______.已知等差数列{ a n} 的前n 项和S n 满足S3=0,S5=-5.(1) 求{ a n} 的通项公式;(2) 求数列1a a2n 1 2n 1的前n 项和.如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1) 证明:AB⊥A1C;(2) 若AB=CB=2,A1C= 6 ,求三棱柱ABC- A1B1C1 的体积.为了比较两种治疗失眠症的药(分别称为 A 药,B 药) 的疗效,随机地选取20 位患者服用 A 药,20 位患者服用 B 药,这40 位患者在服用一段时间后,记录他们日平均增加的睡眠时间( 单位:h) .试验的观测结果如下:服用 A 药的20 位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用 B 药的20 位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1) 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2) 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?已知圆M:( x+1) 2+y2=1,圆N:( x-1) 2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P 的轨迹为曲线C.(1) 求C的方程;(2) l 是与圆P,圆M都相切的一条直线,l 与曲线C交于A,B两点,当圆P的半径最长时,求| AB|.星期五已知函数f( x) =e -4x,曲线y=f ( x) 在点(0 ,f (0)) 处的切线方程为y=4x+4.x( ax+b)-x2(1) 求a,b的值;(2) 讨论 f (x) 的单调性,并求f( x) 的极大值.星期六(三选一)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠A BC的角平分线BE交圆于点E,DB垂直BE交圆于点D.( Ⅰ) 证明:DB=DC;( Ⅱ) 设圆的半径为1,BC= ,延长C E交AB于点F,求△BCF外接圆的半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013 山东文科数学 第1页 2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷) 第Ⅰ卷(共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(2013山东,文1)复数z=22ii(i为虚数单位),则|z|=( ). A.25 B.41 C.5 D.5 2.(2013山东,文2)已知集合A,B均为全集U={1,2,3,4}的子集,且(A∪B)={4},B={1,2},则A∩=( ). A.{3} B.{4} C.{3,4} D.
3.(2013山东,文3)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=( ). A.2 B.1 C.0 D.-2 4.(2013山东,文4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如下图所示,则该四棱锥侧面积和体积分别是( ).
A.45,8
B.45,83 C.4(5+1),83 D.8,8
5.(2013山东,文5)函数f(x)=1123xx的定义域为( ). A.(-3,0] B.(-3,1] C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] 6.(2013山东,文6)执行两次下图所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( ). A.0.2,0.2 B.0.2,0.8 C.0.8,0.2 D.0.8,0.8 7.(2013山东,文7)△ABC的内角A,B,C所对的边分别为a,b,c.若B
=2A,a=1,b=3,则c=( ).
A.23 B.2 C.2 D.1 8.(2013山东,文8)给定两个命题p,q.若p是q的必要而不充分条件,则p是q的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 9.(2013山东,文9)函数y=xcos x+sin x的图象大致为( ).
10.(2013山东,文10)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示: 则7个剩余分数的方差为( ). 2013 山东文科数学 第2页
A.1169 B.367 C.36 D.677 11.(2013山东,文11)抛物线C1:y=212xp(p>0)的焦点与双曲线C2:2213xy的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=( ).
A.316 B.38 C.233 D.433 12.(2013山东,文12)设正实数x,y,z满足x2-3xy+4y2-z=0.则当zxy取得最小值时,x+2y-z的最大值为( ).
A.0 B.98 C.2 D.94 第2卷(共90分)
二、填空题:本大题共4小题,每小题4分,共16分. 13.(2013山东,文13)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为__________.
14.(2013山东,文14)在平面直角坐标系xOy中,M为不等式组2360,20,0xyxyy所表示的区域上一动点,则|OM|的最小值是__________. 15.(2013山东,文15)在平面直角坐标系xOy中,已知OA=(-1,t),OB=(2,2).若∠ABO=90°,则实数t的值为__________.
16.(2013山东,文16)定义“正对数”:ln+x=0,01,ln,1,xxx现有四个命题: ①若a>0,b>0,则ln+(ab)=bln+a; ②若a>0,b>0,则ln+(ab)=ln+a+ln+b;
③若a>0,b>0,则lnab+≥ln+a-ln+b; ④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln 2. 其中的真命题有__________.(写出所有真命题的编号)
三、解答题:本大题共6小题,共74分. 17.(2013山东,文17)(本小题满分12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示: A B C D E 身高 1.69 1.73 1.75 1.79 1.82 体重指标 19.2 25.1 18.5 23.3 20.9 (1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率. 2013 山东文科数学 第3页
18.(2013山东,文18)(本小题满分12分)设函数f(x)=332sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为π4.
(1)求ω的值; (2)求f(x)在区间3ππ,2上的最大值和最小值.
19.(2013山东,文19)(本小题满分12分)如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:CE∥平面PAD; (2)求证:平面EFG⊥平面EMN. 2013 山东文科数学 第4页
20.(2013山东,文20)(本小题满分12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1. (1)求数列{an}的通项公式;
(2)若数列{bn}满足1212112nnnbbbaaa,n∈N*,求{bn}的前n项和Tn.
21.(2013山东,文21)(本小题满分12分)已知函数f(x)=ax2+bx-ln x(a,b∈R). (1)设a≥0,求f(x)的单调区间; (2)设a>0,且对任意x>0,f(x)≥f(1).试比较ln a与-2b的大小. 2013 山东文科数学 第5页
22.(2013山东,文22)(本小题满分14分)在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为22. (1)求椭圆C的方程; (2)A,B为椭圆C上满足△AOB的面积为64的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设OP=tOE,求实数t的值. 2013 山东文科数学 第6页 2013年普通高等学校夏季招生全国统一考试数学文史类(山东卷) 第Ⅰ卷(共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C
解析:44i134i43iiiz,所以|z|=22(4)(3)=5.故选C. 2. 答案:A
解析:∵(A∪B)={4},∴A∪B={1,2,3}. 又∵B={1,2},∴A一定含元素3,不含4.
又∵={3,4},∴A∩={3}. 3. 答案:D 解析:∵f(x)为奇函数,
∴f(-1)=-f(1)=111=-2. 4. 答案:B 解析:由正(主)视图数据可知正四棱锥的底面是边长为2的正方形,高也是2,如图:
由图可知PO=2,OE=1,所以PE=22215, 所以V=13×4×2=83,S=1425=452. 5. 答案:A
解析:由题可知12030xx213xx0,3,xx ∴定义域为(-3,0]. 6. 答案:C 解析:第一次:a=-1.2<0,a=-1.2+1=-0.2,-0.2<0,a=-0.2+1=0.8>0,a=0.8≥1不成立,输出0.8. 第二次:a=1.2<0不成立,a=1.2≥1成立,a=1.2-1=0.2≥1不成立,输出0.2. 7. 答案:B
解析:由正弦定理sinsinabAB得:13sinsinAB,
又∵B=2A,∴133sinsin22sincosAAAA, ∴cos A=32,∴∠A=30°, ∴∠B=60°,∠C=90°, ∴c=2213=2. 8. 答案:A 2013 山东文科数学 第7页
解析:由题意:q⇒p,pq,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p是q的充分而不必要条件.故选A. 9. 答案:D 解析:因f(-x)=-x·cos(-x)+sin(-x)=-(xcos x+sin x)=-f(x),故该函数为奇函数,排除B,
又x∈π0,2,y>0,排除C,而x=π时,y=-π,排除A,故选D. 10. 答案:B 解析:∵模糊的数为x,则: 90+x+87+94+91+90+90+91=91×7, x=4,
所以7个数分别为90,90,91,91,94,94,87,
方差为s2=222229091291912949187917
=367. 11. 答案:D
解析:设M2001,2xxp,21''2xyxpp,故M点切线的斜率为033xp,故M31,36pp.由31,36pp
,0,2p,(2,0)三点共线,可求得p=433,故选D.
12. 答案:C 解析:由x2-3xy+4y2-z=0得x2+4y2-3xy=z,
222224443331xyzxyxyxyxyxyxy
,
当且仅当x2=4y2即x=2y时,zxy有最小值1, 将x=2y代入原式得z=2y2, 所以x+2y-z=2y+2y-2y2=-2y2+4y, 当y=1时有最大值2.故选C. 第Ⅱ卷(共90分) 二、填空题:本大题共4小题,每小题4分,共16分.
13.答案:22 解析:如图,当AB所在直线与AC垂直时弦BD最短,AC=
2232122
,CB=r=2,
∴BA=22222,∴BD=22.
14.答案:2 解析:由约束条件可画出可行域如图阴影部分所示.