初一数学上册第三章测试卷 D卷
人教版初一上册数学各单元测试卷

人教版初一上册数学各单元测试卷初一数学上册单元测试卷(人教版)**学校教研室编第一章 有理数单元测试一、选择题:(每题3分,共30分) 1.下列各对量中,不具有相反意义是( ) A .胜2局与负3局.B .盈利3万元与亏损3万元.C .气温升高4℃与气温为-10℃.D .转盘逆时针转3圈与顺时针转5圈. 2.在,8- ,201-,01.0- ,211- 17-中最大数是( ) (A )17- (B ),201-(C ),211- (D ),01.0- 3.下列说法中,不正确的是( )A .零是有理数.B .零是整数.C .零是正数.D .零不是负数. 4.一个数的绝对值一定是( )A .正数.B .负数.C .零.D .零或正数. 5.下列说法正确的是( )A .0既不是整数也不是分数.B .整数和分数统称为有理数.C .一个数的绝对值一定是正数.D .绝对值等于本身的数是0和1. 6、数轴上到数—2所表示的点的距离为4的点所表示的数是( ) (A )—6 (B )6 (C )2 (D )—6或2 7、下列各对数中,互为相反数的是( ) (A )21-和0.2 (B )32和23 (C )—1.75和431 (D )2和()2--8、下列各数中既是正数又是整数的是( )(A )—7.8 (B )31(C )—3 (D )106 9、不大于4的正整数的个数为( )(A )2个 (B )3个 (C ) 4个 (D )5个 10、一个数的相反数是最大的负整数,则这个数是( )(A)—1 (B)1 (C)0 (D)±1二、填空题:(每题3分,共30分)11.若月球表面白天的气温零上123℃记作+123℃,则夜晚气温零下233℃可记作.12.3的相反数是,35-的绝对值等于.21-的倒数是13.绝对值小于3的整数是,最大的负整数是,最小的正整数是.14.比较大小:3432,12-13-.15.若在数轴上到点A距离为2的点所表示的数为4,则点A所表示的数为.16、观察下列一排数,找出其中的规律后再填空:1,2,—3,—4,5,6,—7,,,……,,……(第2008个数)17、在数轴上表示—3,4的两个点之间的距离是个单位长度,这两个数之间的有理数有个;这两个数之间(不包括这两个数)的整数有个。
沪科版初一数学上册《有理数》单元试卷检测练习及答案解析

沪科版初一数学上册《有理数》单元试卷检测练习及答案解析一、选择题1、若零上2℃记作+2℃,那么零下3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2、下列各组量中具有相反意义的量是( )A.某同学在操场上慢跑500m后,加速跑了200mB.某超市上周亏损3000元,本周盈利l2 000元C.学生甲比学生乙身高高1.5cm,学生乙比学生甲体重轻2.4kgD.小明期中数学考试为50分,期末考试为70分3、的绝对值是A.B.C.7 D.4、若a与b互为相反数,那么a-b等于A.2a B.-2a C.0 D.-25、如图所示,是有理数,那么下列式子错误的为()A.a<0 B.b>0 C.a < b D.|a |> |b | 6、比-1小3的数是( )A.-4 B.-2 C.2 D.47、如图,下列结论中错误的是()A.a+b<0 B.c+d>0 C.b+c>0 D.c+a<0 8、计算2×(-3)3+4×(-3)的结果等于()A.-18 B.-27 C.-24 D.-669、下列计算正确的是()A.-34=81 B.-(-6)2=36C.(-)3=D.-=-10、8708900精确到万位是()A.870万B.8.70×106C.871×104D.8.71×106二、填空题11、若某工厂把产量增产30%记为+30%,那么-10%所代表的意义是________.12、的绝对值是______ ,—2的相反数是________13、在数轴上,若A点到O点距离是A点与10所对应点之间的距离的3倍,那么A点表示的数是_____.14、用“>”或“<”号填空:-3.14________-︱-︱15、a是有理数中最小的正整数,b是有理数中最大的负整数,那么a+b的相反数是__.16、有理数的倒数是________.17、计算,结果等于。
18、-2²,(-2)²,|-2³|,,按从小到大的顺序排列__________19、若有|x-3|+(y+4)2=0,那么(x+y)2017=__.20、用四舍五入法把3.1415926精确到千分位记作_________,近似数2.428×105精确到________位.三、计算题21、计算:(1) (2)(3) (4)22、计算下列各题:(1)+(﹣)﹣(﹣)﹣(2)(﹣3)2﹣()2×+6÷||3四、解答题23、已知|x-|+(2y+1)2=0,求x2+y2的值是多少?24、已知有理数a、b、c在数轴上的位置如图所示,化简:.25、将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来.-1,0,-(-2),-|-3|,-22,(-1)2018.26、出租车司机小李某天上午营运时是在东西走向的大街上进行的,若规定:向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为2.5km(包括2.5km),超过部分(不足1千米按1千米计算)每千米1.5元,问小李这天上午共得车费多少元?27、若有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:值.参考答案1、D2、B3、A4、A5、D6、A7、C8、D9、A10、D11、减产10%12、213、15或7.514、>15、016、17、5.18、19、-120、 3.142.百.21、(1)-10;(2)199;(3)-27;(4)3.22、(1);(2)23、24、a-4b-c25、-(-2)>(-1)2018>0>-1>-|-3|>-2226、(1)小李在向西5米的位置;(2)出租车共耗油3.4升;(3)小李这天上午共得车费58.5元.27、答案详细解析【解析】1、∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.所以选:D.2、A. 某同学在操场上慢跑500m后,加速跑了200m,不符合相反意义的量,故错误;B. 某超市上周亏损3000元,本周盈利l2 000元,符合相反意义的量,故正确;C. 学生甲比学生乙身高高1.5cm,学生乙比学生甲体重轻2.4kg,不符合相反意义的量,故错误;D. 小明期中数学考试为50分,期末考试为70分,不符合相反意义的量,故错误,所以选B.3、分析:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.详解:根据负数的绝对值等于它的相反数,得:|﹣|=.所以选A.点睛:考查了绝对值的性质.4、试题解析:∵a与b互为相反数,∴b=-a,∴a-b=a-(-a)=a+a=2a.所以选A.5、由在数轴上的位置可知,,∴都是正确的,错误的是:.所以选D.点睛:在数轴上,表示一个数的点距离原点越远,这个数的绝对值就越大.6、试题解析:比-1小3的数是:所以选A.7、由数轴可得a<b<0<c<d,|a|>|c|,|b|>|c|,所以a+b<0,c+d>0,b+c<0,c+a<0,故A、B、D正确,C错误,所以选C.【点睛】本题主要考查数轴,有理数的加法等,能结合数轴正确地确定数轴上表示的数之间的关系是解题的关键.8、根据有理数的混合运算法那么可得:,所以选D.9、A. -34=-3×3×3×3=-81,故A错误;B. -(-6)2=-36,故B错误; C. (-)3=,故C错误; D. -=-,正确,所以选D.【点睛】本题考查了有理数的乘方,正确地利用乘方的意义进行计算是关键.10、解:8708900=≈,所以选D.11、若某工厂把产量增产30%记为+30%,那么-10%所代表的意义是减产10%,所以答案为:减产10%.【点睛】本题主要考查用正、负数表示具有相反意义的量,关键是正确理解正与负的相对性,能从实际问题确定一对具有相反意义的量.12、试题解析:的绝对值是.的相反数是所以答案为:,点睛:只有符号不同的两个数互为相反数.13、试题解析:∵在数轴上,A点到O点距离是A点与10所对应点之间的距离的3倍,∴|a|=3|a−10|,当a>10时,a=3a−30,解得a=15;当0<a<10时,原方程化为a=30−3a,解得a=7.5;当a<0时,原方程化为−a=30−3a,解得a=15(舍去).所以答案为:15或7.5.14、根据绝对值的意义,可知-︱-︱=-π,然后根据两负数相比较,绝对值大的反而小,可知-3.14>-|-π|.所以答案为:>.点睛:此题主要考查了两数的比较,解题时先化简各数,然后利用两负数相比较,绝对值大的反而小,即可求解,比较简单.15、由题意可知:a=1,b=-1,∴a+b=0,∴a+b的相反数是0.16、,∴有理数的倒数是.所以答案为.17、解:原式==5.所以答案为:5.18、∵-2²=-4,(-2)²=4,|-2³|=8,∴按大小排序为:-2²<-<(-2)²<|-2³|.所以答案为-2²<-<(-2)²<|-2³|.19、∵|x-3|+(y+4)2=0,,,∴x-3=0,y+4=0,∴x=3,y=-4,∴.点睛:(1)一个式子的绝对值、一个式子的偶次方都是非负数;(2)几个非负数的和为0,那么这几个非负数都为0.20、试题解析:用四舍五入法把3.1415926精确到千分位记作3.142.近似数2.428×105精确到百位.所以答案为:3.142.百.21、试题分析:根据有理数四那么运算法那么计算即可.(1)原式=16+23-49=-10;(2)原式=26×9-35=234-35=199;(3)原式==-18-30+21=-27;(4)原式=-9-48÷[-8+4]=-9-(-12)=3.22、(1)原式利用减法法那么变形,通分并利用同分母分数的加减法那么计算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.解:(1)原式=﹣﹣+﹣=﹣﹣=﹣;(2)原式=9﹣×+6÷=9﹣+=9+=28.23、分析:根据非负数之和为零可知每一个非负数都为零,根据题意得出x和y的值,然后代入进行计算得出答案.详解:∵︳x-︳≥0,≥0,且︳x-︳+=0∴x-=0且2y+1="0" ∴x=, y=-∴+=+=.点睛:本题主要考查的是非负数的性质,属于基础题型.几个非负数的和为零,那么每一个非负数都为零,初中阶段所学的非负数为算术平方根、绝对值和平方.24、试题分析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.试题解析:根据题意得:那么那么原式25、试题分析:先把所给的数在数轴上表示出来,在按照数轴上的点表示的数右边的数总比左边的数大,用“>”连接即可.如图,-(-2)>(-1)2018>0>-1>-|-3|>-22.26、试题分析:(1)先将这几个数相加,若和为正,那么在出发点的东方;若和为负,那么在出发点的西方;(2)将这几个数的绝对值相加,再乘以耗油量,即可得出答案;(3)不超过2.5km的按8元计算,超过2.5km的在8元的基础上,再加上超过部分乘以1.5元即可.试题解析:(1)﹣2+5﹣1+1﹣6﹣2=﹣5,故此时小李在向西5米的位置;(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17(千米),0.2×17=3.4(升),故出租车共耗油3.4升;(3)根据题意可得:8+(8+1.5×3)+8+8+(8+1.5×4)+8=58.5(元),即小李这天上午共得车费58.5元.27、试题分析:由可知,解得,将的值代入,所求代数式变为,由于,,……,,所以原式=. 试题解析:由题意得,ab﹣2=0,1﹣b=0,解得a=2,b=1,所以,+++…+,=+++…+,=1﹣+﹣+﹣+…+﹣,=1﹣,=.点睛:.。
七年级上册数学 期末试卷测试卷(含答案解析)

七年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.下列说法错误的是( ) A .对顶角相等 B .两点之间所有连线中,线段最短 C .等角的补角相等 D .不相交的两条直线叫做平行线 2.下列各式中与a b c --的值不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a ---3.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .4.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .45.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个6.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a7.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变8.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 9.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角10.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3 B .3C .-2D .211.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .12.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐13.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是( )A .81B .63C .54D .5514.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元15.下列各图中,可以是一个正方体的平面展开图的是( ) A .B .C .D .二、填空题16.3615︒'的补角等于___________︒___________′.17.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)18.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .19.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.20.某下水管道工程由甲、乙两个工程队单独铺设分别需要 10 天、15 天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需 x 天完成,列方程为__________.21.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________. 22.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示) 23.如图,一副三角板如图示摆放,若α=70°,则β的度数为_____°.24.已知1x =-是方程23ax a =-的解,则a =__________.25.小红在某月的日历中任意框出如图所示的四个数,但不小心将墨水滴在上面遮盖了其中的两个数,则b =______.(用含字母a 的代数式表示)三、解答题26.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值. 27.先化简,再求值:2211312()()2323x x y x y --+-+,其中,x y 满足22(2)03x y ++-= 28.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________. 29.解方程:(1)4365x x -=-;(2)221134x x +-=+. 30.先化简,再求值:()()222227a b ab 4a b 2a b 3ab+---,其中a 、b 的值满足2a 1(2b 1)0-++=31.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ; (2)四边形ABCD 的面积为____________32.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.33.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示)四、压轴题34.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 35.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.38.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?39.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.40.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.41.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.42.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值; (2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据各项定义性质判断即可. 【详解】D 选项应该为:同一平面内不相交的两条直线叫平行线. 故选D. 【点睛】本题考查基础的定义性质,关键在于熟记定义与性质.2.B解析:B 【解析】 【分析】根据去括号法逐一计算即可. 【详解】A. a b +c a b c -=--(),正确;B. ()a b c a b c --=-+,错误;C. ()()a b c a b c -+-=--,正确;D. ()()c b a a b c ---=--,正确; 故答案为:B . 【点睛】本题考查了去括号法的应用,掌握去括号法逐一计算是解题的关键.3.B解析:B【解析】【分析】根据角的表示方法和图形逐个判断即可.【详解】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,本选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,本选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,本选项错误;D、不能用∠1,∠AOD,∠O三种方法表示同一个角,本选项错误;故选:B.【点睛】本题考查了角的表示方法的应用,主要考查学生的理解能力和判断能力.4.C解析:C【解析】【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.5.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.6.C解析:C【解析】【分析】根据数轴得出-3<a <-2,再逐个判断即可.【详解】A 、∵从数轴可知:-3<a <-2,∴2<-a<3,故本选项不符合题意;B 、∵从数轴可知:-3<a <-2,∴2<a <3,故本选项不符合题意;C 、∵从数轴可知:-3<a <-2,∴2<a <3,∴1<|a|-1<2,故本选项符合题意;D 、∵从数轴可知:-3<a <-2,∴3<1 –a<4,故本选项不符合题意;故选:C .【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a <-2是解此题的关键.7.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.8.D解析:D【解析】【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.9.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B 正确;3∠与AOD ∠互为补角,C 正确;AOD ∠与BOC ∠是对顶角,故D 错误;故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.10.D解析:D【解析】【分析】先去括号、合并同类项化简,然后根据题意令x 2的系数为0即可求出a 的值.【详解】解:()3222691353-x x x ax x +++--+=3222691353-x x x ax x +++-+-=()32263142-x a x x +-+- ∵关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,∴630a -=解得:2a =故选D .【点睛】此题考查的是整式的加减:不含某项的问题,掌握去括号法则、合并同类项法则和不含某项即化简后,令其系数为0是解决此题的关键.11.C解析:C【解析】【分析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.12.D解析:D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.D解析:D【解析】【分析】一副三角板中的度数,用三角板画出角,无非是用角度加减,逐一分析即可.【详解】︒=︒+︒,则81︒角能画出;解:A、814536︒=︒+︒-︒,则63角能画出;B、63367245︒=︒-︒,则54可以画出;C、549036D、55°不能写成36°、72°、45°、90°的和或差的形式,不能画出;故选:D.【点睛】此题考查的知识点是角的计算,关键是用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.14.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.C解析:C【解析】【分析】根据正方体的展开图特征逐一判断即可.【详解】A不是正方体的展开图,故不符合题意;B不是正方体的展开图, 故不符合题意;C是正方体的展开图,故符合题意;D不是正方体的展开图,故不符合题意;故选C.【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.二、填空题16.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】︒'=143°45′.︒'的补角等于:180°−36153615故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.17.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故+解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.18.两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.解析:两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.19.100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解解析:100【解析】【分析】设这件衬衫的成本是x元,根据利润=售价-进价,列出方程,求出方程的解即可得到结果.【详解】设这件衬衫的成本是x元,根据题意得:(1+50%)x×80%﹣x=20解得:x=100,这件衬衫的成本是100元.故答案为:100.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解答本题的关键.20.+=1【解析】【分析】由乙队单独施工,设还需x天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程即可.【详解】由乙队单独施工,设还需x天解析:210+215x+=1【解析】【分析】由乙队单独施工,设还需x天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程即可.【详解】由乙队单独施工,设还需x天完成,根据题意得210+215x+=1,故答案为:210+215x+=1【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】由上述两个方程可以得出:x=y-1,将代入,解得y=5.故答案为:5.【点睛】本题考查一元一次方程与解的关系,关解析:【解析】【分析】可以看出x=y-1,由此将数代入计算即可.【详解】2020342019x a x+=+2020(1)34(1)2019y a y-+=-+由上述两个方程可以得出:x=y-1,将4x=代入,解得y=5.故答案为:5.【点睛】本题考查一元一次方程与解的关系,关键在于由题意看出x与y的关系.22.4【解析】【分析】根据补角的定义即可求解.【详解】一个角的度数是,则它的补角的度数为180°-=134°24’=134.4°故答案为:134.4.【点睛】此题主要考查角度的求解,解题解析:4【解析】根据补角的定义即可求解.【详解】一个角的度数是4536'︒,则它的补角的度数为180°-4536'︒=134°24’=134.4°故答案为:134.4.【点睛】此题主要考查角度的求解,解题的关键熟知补角的定义.23.【解析】【分析】直接利用α和β互余,用90°减去α就是β.【详解】解:∵∴ ,故答案为:20.【点睛】本题主要考查余角的概念,掌握余角的求法是解题的关键.解析:【解析】【分析】直接利用α和β互余,用90°减去α就是β.【详解】解:∵70α=︒∴907020β=︒-︒=︒ ,故答案为:20.【点睛】本题主要考查余角的概念,掌握余角的求法是解题的关键.24.1【解析】【分析】直接把代入,即可求出a 的值.【详解】解:把代入,则,解得:;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 解析:1【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.25.a-5【解析】【分析】设阴影部分上面的数字为x ,下面为x+7,根据日历中数字特征确定出a 与b 的关系式即可.【详解】设阴影部分上面的数字为x ,下面为x+7,根据题意得:x=b-1,x+7解析:a -5【解析】【分析】设阴影部分上面的数字为x ,下面为x+7,根据日历中数字特征确定出a 与b 的关系式即可.【详解】设阴影部分上面的数字为x ,下面为x+7,根据题意得:x=b-1,x+7=a+1,即b-1=a-6,整理得:b=a-5,故答案为:a-5【点睛】此题考查了一元一次方程的应用,以及列代数式,弄清题意是解本题的关键.三、解答题26.25. 【解析】【分析】 根据3A+6B 的值与x 无关,令含x 的项系数为0,解关于y 的一元一次方程即可求得y 的值.解:∵A =2x 2+3xy -2x -1,B =-x 2+xy -1,∴3A +6B=15xy-6x-9=(15y-6)x-9,要使3A+6B 的值与x 的值无关,则15y-6=0,解得:y=25. 【点睛】 本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,运用方程思想解题.27.23x y -+,589【解析】【分析】先把原代数式化简,再根据题意求出x 、y 的值代入化简后的代数式即可解答.【详解】 2211312()()2323x x y x y --+-+ 解:原式=22123122323x x y x y -+-+ 21312(2)()2233x y =--++ 23x y =-+ ∵22(2)03x y ++-= ∴x+2=0,y-23=0 解得:x=-2,y=23, 当22,3x y =-=时, 原式223(2)()3=-⨯-+469=+ 589= 【点睛】本题考查化简代数式并求值的方法,解题关键是熟练掌握去括号法则:括号前面是正号,去掉括号不变号,括号前面是负号,去掉括号变符号.28.(1)40︒;(2)BOE DOA EOD∠+∠=∠,详见解析;(3)不成立,BOE EOD DOA∠+∠=∠,详见解析;(4)BOE DOA EOD∠+∠=∠;【解析】【分析】(1)(2)根据角平分线定义得出∠DOC=12∠AOC,∠EOC=12∠BOC,求出∠DOE=12(∠AOC+∠BOC)=12AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=1 2∠AOC,∠EOC=12∠BOC,求出∠DOE=12(∠AOC−∠BOC)=12∠AOB,即可得出答案;(4)根据角平分线定义即可求解.【详解】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD−∠EOC=12∠AOC−12∠BOC=∠AOD−∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点睛】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=12∠AOB是解此题的关键,求解过程类似.29.(1)1x =;(2)12x =-. 【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)3564x x -+=-22,1x x ==;(2)4(2)123(21)x x +=+-481263x x +=+-,461238x x -=--,121,2x x -==-. 【点睛】本题考查了解一元一次方程,解题的关键是熟练运用一元一次方程的解法是解题的关键.30.12【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭ 12=. 故答案为:12. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.31.(1)见解析;(2)20【解析】【分析】(1)根据平行线、垂线的定义即可作图;(2)根据割补法即可求解.【详解】(1)如下图:(2)S四边形ABCD=6×6-12×4×3-12×2×1-12×6×3=36-6-1-9=20【点睛】此题主要考查几何图形基础,解题的关键是熟知平行线、垂线及三角形的面积公式. 32.(1)见解析;(2)直线m⊥n.【解析】【分析】(1)如图,取格点E、F,作直线CF和直线EC即可;(2)根据所画图形直接解答即可.【详解】解:(1)如图,直线m,直线n即为所求;(2)直线m⊥n.【点睛】本题考查了利用格点作已知直线的平行线和垂线,属于基本作图题型,熟练掌握网格中作平行线和垂线的方法是解题关键.33.(1)∠AOC=60°,(2)360°﹣2α.【解析】【分析】(1)利用垂直的定义和角的和差关系可得∠COE,由角平分线的性质可得∠BOE,然后根据平角的定义解答即可;(2)根据垂直的定义和角的和差关系可得∠COE,由角平分线的性质可得∠BOE,然后利用平角的定义求解即可.【详解】解:(1)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =150°,∴∠COE =∠DOE ﹣∠COD =150°﹣90°=60°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =60°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣60°﹣60°=60°,(2)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =α,∴∠COE =∠DOE ﹣∠COD =α﹣90°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =α﹣90°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α, 故答案为:360°﹣2α.【点睛】本题考查了垂直的定义、角平分线的性质、平角的定义和角的和差关系,属于基本题型,熟练掌握基本知识是解题关键.四、压轴题 34.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】【分析】 (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可; (3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =-(2)2323a b a b ++=+化简得:94a b =-只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对”将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a nb n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.35.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.答:存在.x 的值为3.。
新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
七年级数学上册第一章 有理数 单元测试卷(人教版 2024年秋)

七年级数学上册第一章有理数单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.[2023·扬州]-3的绝对值是()A.-3B.3C.±3D.132.下列各数-2,2,-5,0,π,0.0123中,非负数的个数有() A.1个 B.2个 C.3个 D.4个3.[真实情境题航空航天]2024年5月3日,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度是零下150℃,应记作() A.+150℃ B.-150℃C.+276℃D.-276℃4.[新考法概念辨析法]下列说法中正确的是()A.负有理数是负分数B.-1是最大的负数C.正有理数和负有理数组成全体有理数D.零是整数5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n,q互为相反数,则m,n,p,q四个数中,负数有()A.1个B.2个C.3个D.4个6.下列化简正确的是()A.-[-(-10)]=-10B.-(-3)=-3C.-(+5)=5D.-[-(+8)]=-87.[情境题生活应用]化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数,不足的部分记为负数,它们中质量最接近标准的是()A BC D8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.n>3B.m<-1C.m>-nD.|m|>|n|9.[2024·泰安泰山区期中]数轴上表示整数的点称为整数点,某数轴的单位长度是1cm,若在这个数轴上随意画一条长15cm的线段AB,则AB盖住的整数点的个数共有()A.13或14个B.14或15个C.15或16个D.16或17个10.[新视角动点探究题]如图,一个动点从原点O开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2025秒时所对应的数是()A.-405B.-406C.-1010D.-1011二、填空题(每题3分,共18分)11.用“>”或“<”填空:-7-9.12.一种袋装面粉标准净重为50kg,质监工作人员为了解这种面粉标准净重和每袋净重的关系,把51kg记为+1kg,那么一袋面粉净重49kg记为kg.13.已知b,c满足|b-1|+-0,则b+c的值是. 14.在数轴上,有理数a与-1所对应的点之间的距离是5,则a =.15.下列说法:①若|a|=a,则a>0;②若a,b互为相反数,且ab≠0,则=-1;③若|a|=|b|,则a=b;④若a<b<0,则|b-a|=b-a.其中正确的有.(填序号)16.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点表示的数据;则被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.三、解答题(共72分)17.(8分)[母题2024·重庆万州区月考·教材P16习题T1]把下列各数填入相应的大括号内:-0.1,+(-4),6%,20,0,-0.030030 003…,227,2.0·1·.负有理数集合:{,…};非负整数集合:{,…};负整数集合:{,…};正数集合:{,…}.18.(6分)比较下列各组数的大小:(1)|-0.02|与-|-0.2|;(2)-π与-|-3.14|.19.(10分)如图,数轴上点A,B,C,D,E表示的数分别为-4,-2.5,-1,0.5,2.(1)将点A,B,C,D,E表示的数用“<”连接起来;(2)若将原点改在点C,则点A,B,C,D,E表示的数分别为多少,并将这些数用“<”连接起来.20.(10分)[2024·杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?21.(12分)[新视角知识情境化]数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合的思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图①,在数轴上点A表示的数是,点B表示的数是,A,B两点间的距离是.(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为.(3)如图②,小明将刻度尺放在了图①中的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B对应刻度尺上的刻度4.8cm,点E对应刻度1.2cm,则数轴上点E表示的有理数是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上描出与点A的距离为2的点(用不同于A,B的其他字母表示);(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示的点重合.②若数轴上M,N两点之间的距离为2024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少?答案一、1.B 2.D 3.B4.D【点拨】负有理数包括负分数,负整数,故A错误;-1是最大的负整数,不存在最大的负数,故B错误;正有理数、0和负有理数组成全体有理数,故C错误.5.C6.A7.D【点拨】因为|+0.8|=0.8,|-1.2|=1.2,|1|=1,|-0.5|=0.5,0.5<0.8<1<1.2,所以D选项中的砝码是最接近标准的.8.C9.C【点拨】当线段AB的端点在整数点时,盖住16个整数点;当线段AB的端点不在整数点,即在两个整数点之间时,盖住15个整数点.10.A【点拨】一个动点从原点O开始向左运动,每秒运动1个单位长度,并且每向左运动3秒就向右运动2秒,所以该点的运动周期为5秒,且每5秒向左运动一个单位长度,因为2025÷5=405.所以该点运动到2025秒时对应的数为-405.二、11.>12.-113.112【点拨】因为|b-1|+-0,所以b-1=0,c-12=0.所以b=1,c=12.所以b+c=112.14.4或-615.②④【点拨】①|a|=a,即绝对值等于本身,则a≥0,故①错误;②若a,b互为相反数,且ab≠0,则b=-a≠0,所以=-=-1,故②正确;③两个数的绝对值相等,则这两个数相等或互为相反数,故③错误;④若a<b<0,则b-a>0,因为正数的绝对值等于它本身,所以|b-a|=b-a,故④正确;综上所述,②④正确.16.69;52;-72【点拨】由数轴可知-7212和-4115之间的整数点有-72,-71,…,-42,共31个;-2134和1623之间的整数点有-21,-20,…,16,共38个;故被淹没的整数点有31+38=69(个),负整数点有31+21=52(个),被淹没的最小的负整数点所表示的数是-72.三、17.【解】负有理数集合:{-0.1,+(-4),…};非负整数集合:{20,0,…};负整数集合:{+(-4),…};正数集合:6%,20,227,2.0·1·,….18.【解】(1)因为|-0.02|=0.02,-|-0.2|=-0.2,所以|-0.02|>-|-0.2|.(2)因为-|-3.14|=-3.14,π>3.14,所以-π<-|-3.14|.19.【解】(1)由数轴可知-4<-2.5<-1<0.5<2.(2)将原点改在点C,则点A,B,C,D,E所表示的数分别为-3,-1.5,0,1.5,3,将这些数用“<”连接起来为-3<-1.5<0<1.5<3.20.【解】(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=610×100%=60%.(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).所以这10名同学的平均成绩是29.9秒.21.(1)-3;5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)由(1)得A,B两点间的距离是8,4.8÷8=0.6(cm),则数轴上1个单位长度对应刻度尺上0.6cm,1.2÷0.6=2,所以点E距离点A两个单位长度.故数轴上点E表示的有理数是-1.22.【解】(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.【解】(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②因为M,N两点之间的距离为2024,且M,N两点经折叠后重合,所以M,N两点距离折点的距离为12×2024=1012.所以点M表示的数为2-1012=-1010,点N表示的数为2+1 012=1014.。
人教版2022-2023学年七年级数学上册期末测试卷(附答案)

2022-2023学年七年级数学上册期末测试卷(附答案)一、选择题(共48分)1.某商场要检测4颗大白菜的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.2.2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器成功“刹车”被火星“捕获”.在制动捕获过程中,探测器距离地球的距离为192000000公里.数字192000000用科学记数法表示为()A.19.2×107B.19.2×108C.1.92×108D.1.92×1093.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x34.下列方程中,解为x=2的是()A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=05.下列各式错误的是()A.﹣4>﹣5B.﹣(﹣3)=3C.﹣|﹣4|=4D.16÷(﹣4)2=1 6.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.7.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab8.如图,在不完整的数轴上有A,B两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是()A.在点A的左侧B.与线段AB的中点重合C.在点B的右侧D.与点A或点B重合9.下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+210.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是()A.11岁B.12岁C.13岁D.14岁11.如图,AB=12cm,C为AB的中点,点D在线段AC上,且CD:CB=2:3,则DB的长度为()A.4cm B.6cm C.8cm D.10cm12.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2024=()A .1﹣202521 B .20252024C .1﹣202421 D .20242023二、填空题(共16分)13.在1,0,﹣2,﹣1这四个数中,最小的数是 . 14.如图,射线OA 的方向是北偏东26°38',那么∠α= .15.用代数式表示“a 的两倍与b 的平方的和”: .16.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b ﹣1.例如(﹣2,5)=﹣2+5﹣1=2. 根据上述规定解决下列问题: (1)有理数对(2,﹣1)= ;(2)当满足等式(﹣5,3x +2m )=5的x 是正整数时,则m 的正整数值为 . 三、解答题(共86分) 17.计算:(1)﹣×(12﹣);(2)﹣24+|﹣5|﹣[﹣(﹣3)÷+2]. 18.解方程:(1)2x ﹣3=4(x ﹣1); (2)﹣=1.19.小明化简(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)的过程如下,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程: 解:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5) =4a 2﹣2a ﹣6﹣4a 2+4a +5 ①=(4﹣4)a 2+(﹣2+4)a +(﹣6+5)②=2a﹣1 ③他化简过程中出错的是第步(填序号);正确的解答是:20.请用下列工具按要求画图,并标出相应的字母.已知:点P在直线a上,点Q在直线a外.(1)画线段PQ;(2)画线段PQ的中点M;(3)画直线b,使b⊥PQ于点M;(4)直线b与直线a交于点N;(5)利用半圆仪测量出∠PNM≈°(精确到1°).21.2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为12千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?22.如图是一个长方形游乐场,其宽是4a米,长是6a米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为m2,游泳区的面积为m2.(用含有a的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.23.阅读材料并回答问题:数学课上,老师提出了如下问题:已知点O在直线AB上,∠COE=90°,在同一平面内,过点O作射线OD,满足∠AOC =2∠AOD.当∠BOC=40°时,如图1所示,求∠DOE的度数.甲同学:以下是我的解答过程(部分空缺)解:如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=°.乙同学:“我认为还有一种情况.”请完成以下问题:(1)请将甲同学解答过程中空缺的部分补充完整.(2)判断乙同学的说法是否正确,若正确,请在图1中画出另一种情况对应的图形,并求∠DOE的度数,写出解答过程;若不正确,请说明理由.(3)将题目中“∠BOC=40°”的条件改成“∠BOC=α”,其余条件不变,当α在90°到180°之间变化时,如图3所示,α为何值时,∠COD=∠BOE成立?请直接写出此时α的值.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)参考答案一、选择题(共48分)1.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴从轻重的角度看,最接近标准的是:选项C.故选:C.2.解:192000000=1.92×108,故选:C.3.解:A、3xy,单项式的系数是3,次数是2,不符合题意;B、3x2y2,单项式的系数是3,次数是4,不符合题意;C、﹣3x2y2,单项式的系数是﹣3,次数是4,符合题意;D、4x3的系数是4,次数是3,不符合题意.故选:C.4.解:A、把x=2代入,左边=4≠右边,则不是方程的解,选项错误;B、把x=2代入方程,左边=﹣4≠右边,则不是方程的解,选项错误;C、把x=2代入方程,左边=4≠右边,则不是方程的解,选项错误;D、把x=2代入方程,左边=0=右边,则是方程的解,选项正确.故选:D.5.解:A、﹣4>﹣5,本选项不符合题意;B、﹣(﹣3)=3,本选项不符合题意;C、﹣|﹣4|=﹣4≠4,本选项符合题意;D、16÷(﹣4)2=1,本选项不符合题意.故选:C.6.解:从上边看,底层是一个小正方形,上层是四个小正方形.故选:C.7.解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、5ab2与﹣5a2b不是同类项,所以不能合并,故本选项不合题意;C、7a+a=8a,故本选项不合题意;D、﹣ab+3ba=2ab,故本选项符合题意.故选:D.8.解:∵A,B两点所表示的两个有理数互为相反数,∴点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等, ∴原点为线段AB 的中点. 故选:B . 9.解:∵方程=1,去分母得5(x ﹣1)﹣2x =10,∴选项A 符合题意;∵方程3﹣x =2﹣5(x ﹣1),去括号得3﹣x =2﹣5x +5, ∴选项B 不符合题意;∵方程t =,系数化为1得t =, ∴选项C 不符合题意;∵方程3x ﹣2=2x +1,移项得3x ﹣2x =1+2, ∴选项D 不符合题意. 故选:A .10.解:设这位同学的年龄是x 岁, 依题意,得:2(x ﹣4)+8=26, 解得:x =13. 故选:C .11.解:∵AB =12cm ,C 为AB 的中点, ∴AC =BC =AB =6cm , ∵CD :CB =2:3, ∴AD :CB =1:3, ∴AD =2cm ,∴DC =AC ﹣AD =4(cm ), ∴DB =DC +BC =10(cm ), 故选:D .12.解:观察发现S 1+S 2+S 3+…+S 2024=+++…+202421=1﹣202421,故选:C .二、填空题(共16分) 13.解:∵﹣2<﹣1<0<1,∴在1,0,﹣2,﹣1这四个数中,最小的数是﹣2.故答案为:﹣2.14.解:由题意得:∠α=90°﹣26°38′=89°60′﹣26°38′=63°22′,故答案为:63°22′.15.解:a的两倍与b的平方的和用代数式可以表示为:2a+b2,故答案为:2a+b2.16.解:(1)根据题中的新定义得:原式=2+(﹣1)﹣1=1﹣1=0.故答案为:0;(2)已知等式化简得:﹣5+3x+2m﹣1=5,解得:x=,由x、m都是正整数,得到11﹣2m=9或11﹣2m=3,解得:m=1或4.故答案为:1或4.三、解答题(共86分)17.解:(1)原式=﹣×12+×=﹣9+=﹣8;(2)原式=﹣16+5﹣(18+2)=﹣16+5﹣18﹣2=﹣31.18.解:(1)2x﹣3=4(x﹣1),2x﹣3=4x﹣4,2x﹣4x=﹣4+3,﹣2x=﹣1,x=;(2)﹣=1,3x﹣5﹣2(x﹣2)=6,3x﹣5﹣2x+4=6,3x﹣2x=6+5﹣4,x=7.19.解:他化简过程中出错的是第①步.正确解答是:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)=4a2﹣2a﹣6﹣4a2+4a+10=(4﹣4)a2+(﹣2+4)a+(﹣6+10)=2a+4.故答案为:①.20.解:(1)如图,线段PQ即为所求;(2)如图,点M即为所求;(3)如图,直线b,点M即为所求;(4)如图,点N即为所求;(5)∠PNM≈50°.故答案为:50.21.解:(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米).答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.22.解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.23.解:(1)如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=140°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=70°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=160°.故答案为:140,70,160;(2)当OD在CAOC外部时,如图2﹣1所示,∵点O在直线AB上∴∠AOB=180°,∵∠BOC=40°,∴∠AOC=140°,∵∠AOC=2∠AOD,∴∠AOD=70°,∵∠COE=90°,∴∠BOE=50°,∴∠DOE=∠AOB﹣∠AOD﹣∠BOE=60°,综上所述,∠DOE=160°或60°.(3)如图3中,当OD在AB的上方时,由题意,(180°﹣α)=α﹣90°,解得α=120°,当OD在AB的下方时,则有180°﹣α+(180°﹣α)=α﹣90°,解得α=144°.综上所述,α的值为120°或144°.24.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.。
浙教版七年级数学上册《第一章有理数》单元测试卷-带答案
浙教版七年级数学上册《第一章有理数》单元测试卷-带答案班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.如果温度上升2℃记做+2℃,那么温度下降3℃记做( )A. +2℃B. —2℃C. +3℃D. -3℃2.如图,数轴上被墨水遮盖的数可能为( )A. 1B. —1.5C. -3D. -4.23. 在数轴上,若点 M表示的有理数m 满足|m|>1,且m<0,则点M在数轴上的位置表示正确的是 ( )4.下列式子正确的是( )A. |-2|=-2B. |a|=aC. --|-2|<0D. -3<-45.数轴上表示-4与1的两点间的距离是( )A. 3B. -5C. 3D. 56.对于任何有理数a,下列一定为负数的是( )A. -(-3+a)B. -aC. -|a+1|D. -|a|-17.下列说法中不正确的是( )A. 最小的正整数是 1B. 最大的负整数是-1C. 有理数分为正数和负数D. 绝对值最小的有理数是08. 一个数a在数轴上对应的点是A,当点 A 在数轴上向左平移了 3个单位长度后到点 B,点A 与点 B 表示的数恰好互为相反数,则数a是( )A. -3B. -1.5C. 1.5D. 39.-|a|=-3.2,则a是( )A. 3.2B. -3.2C. ±3.2D. 以上都不对10.下列各式中,正确的是( )A. --|-2|>0B.−47>−57C. |-3|=-|3|D. |-6|<0二、填空题(本大题有 6 小题,每小题4分,共24分)11. -(-2)的相反数是,绝对值是 .12. 已知−14,−23,13,54四个有理数在数轴上所对应的点分别为A,B,C,D,则这四个13. 数轴上一个点到表示一1的点的距离是 4,那么这个点表示的数是 .14. 在数轴上表示数m的点到原点的距离为2,则m+1= .15.(1)所有不大于4 且大于-3的整数有;(2)不小于—4 的非正整数有;(3)若|a|+|b|=4,且a=-1,则b= .16. 已知数a与数b 互为相反数,且在数轴上表示数a,b的点A,B之间的距离为2020个单位长度,若a<b,则a= ,b= .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上表示下列各数,并将它们按从小到大的顺序用“<”号连接.0,4,−|−4|,−32,−(−1).18.(6分)(1)完成表中空白部分;(2)他们的最高身高和最矮身高相差多少?(3)他们班级学生的平均身高是多少? 6名学生中有几名学生的身高超过班级平均身高?19. (6分)把下列各数填入相应的括号内:1,−34,0,0.89,−9,−1.98,415,+102,−70.负整数:{ };正分数:{ };负有理数:{ }.20.(8分)邮递员骑车从邮局出发,先向南骑行3km到达A 村,继续向南骑行5km到达B村,然后向北骑行14km到达 C村,最后回到邮局.(1)以邮局为原点,以向南方向为正方向,用0.5cm表示 1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?21.(8分)同学们都知道,|2−(−3)|表示 2 与−3之差的绝对值,实际上它的几何意义也可理解为2 与−3两数在数轴上所对应的两点之间的距离.试探索:(1)求|2−(−3)|;(2)|5+3|表示的几何意义是什么?(3)|x−1|=5,,则x的值是多少?22.(10分)如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点 A 表示−4,点 G 表示 8.(1)点B 表示的有理数是,表示原点的是点;(2)图中的数轴上另有点M到点A、点G的距离之和为13,求这样的点 M表示的有理数;(3)若相邻两点之间的距离不变,将原点取在点 D,则点 C表示的有理数是,此时点 B 与点表示的有理数互为相反数.23.(10分)有5袋小麦,以每袋25 千克为基准,超过的千克数记做正数,不足的千克袋号一二三四五每袋超出或不足的千—0.2 0.1 一0.3 一0.1 0.2克数(1)第一袋大米的实际质量是多少千克?(2)把表中各数用“<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?24.(12分)把几个数用大括号括起来,相邻几个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016-x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金几何.(1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合.(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素? 如果存在,请直接写出答案,否则说明理由.(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素? 说明你的理由.参考答案1.D2. C3. D4.C 5 D 6 . D 7 . C 8 . C 9 . C10. B 11. -2 2 12. BACD A13. -5或314. 3或-115. (1)—2,—1,0,1,2,3,4 (2)-4,-3,-2,-1,0(3)±3 16. -1010 1010 17. 解:-|-4|=-4,-(-1)=1.在数轴上表示如图所示:<0<−(−1)<4所以−|−4|<−3218. 解:(1)第一行:164 163 168;第二行:+2 +7(2)172—163=9( cm).(3)班级平均身高:165cm;共有4名学生超过班级平均身高.} 负有理数19. 解:自然数:{1,0,+102};负整数:{—9,—70};正分数:{0.89,45,−9,−1.98,−70}.{−3420. (1)略 (2)9km (3)28km21. 解:(1)原式=|5|=5.(2)5与—3两数在数轴上所对应的两点之间的距离.(3)x=6或-4.22. (1)—2 C (2)—4.5或8.5 (3)—2 F23.(1)24.8千克 (2)—0.3<—0.2<—0.1<0.1<0.2(3)第三的质量<第一的质量<第四的质量<第二的质量<第五的质量与(2)中一致24. 解:(1)不是是(2)存在,最小元素是—2000.(3)该集合共有 24 个元素.理由如下:①若1008是该黄金集合中的一个元素,则它所对应的元素也为 1008.②若1008不是该黄金集合中的元素,因为在黄金集合中,如果一个元素为a,那么另一个元素为2016—a,故黄金集合中的元素一定有偶数个,且黄金集合中每一对对应元素的和为 2016.因为2016×11=22176,2016×12= 24192,2016×13=26208,,又该黄金集合中所有元素之和为 M,且24190 <M< 24200,,若1008是该黄金集合中的元素,则 22176+ 1008=23184<24190,24192+ 1008=25200>24200,故1008不是该黄金集合中的元素,所以该黄金集合中元素的个数为 12×2=24.。
2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)
一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是 .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。
人教版七年级上册数学试卷全册
人教版七年级数学上册第一章有理数单元测试题姓名 得分一、精心选一选:(每题2分、计18分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 2、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数 4、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-16每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米 *7.20032004)2(3)2(-⨯+- 的值为( ). A .20032- B .20032C .20042- D .20042*8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和*9.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21-二.填空题:(每题3分、计42分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_______。
北师大版七年级下册数学第三章测试卷及答案共3套
第三章 变量之间的关系 单元检测题(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.在关于圆的面积的表达式S=πr 2中,变量有( ) A.4个 B.3个 C.2个 D.1个2.“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.赵叔叔家距离单位4千米,某天赵叔叔骑自行车从家出发去单位上班,行进速度为5千米/时.若用s (千米)表示赵叔叔距离单位的距离,行驶时间用t (小时)表示,在这个过程中,下列说法正确的是( )A.s 是自变量,t 是因变量B.s 是自变量,v 是因变量C.t 是自变量,s 是因变量D.5是自变量,s 是因变量3.2015年7月10日,某河流受暴雨的影响,当日该河流的水位记录如下表:则下列描述不正确的是( ) A.上表反应的是时间与水位之间的关系 B.随着时间的逐渐增大,水位逐渐增大 C.20时到24时水位上升最快 D.12时到20时水位上升最慢4.华氏温度F (华氏度)与摄氏温度C (摄氏度)之间的关系为F=C+32,若某地某时温度为20摄氏度,则该温度相当于华氏温度为( ) A.68华氏度 B.-华氏度 C.77华氏度 D.华氏度 5.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x (元/平方米)与楼层n(8≤n <30)之间的关系如下表: 楼层n 8 9 10 11 12 … 售价x(元/平方米) 20002050210021502200…则售价x (元/平方米)与楼层n之间的关系式为( )A.x=2000+50nB.x=2000+50(n-8)C.n=2000+50(x-8)D.n=2000+50x6.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地下列图象能表达这一过程的是( )7.下列说法不正确的是( )A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应59320320时间/时 0 4 8 12 16 20 24 水位/米 1.523.55679AB C D8.图1为某一天气温随时间的变化图,则下列说法不正确的是()A.这一天的最高气温为20 ℃B.4时到12时,温度在上升C.这一天的温差为10 ℃D.这一天中,只有8点的温度为14 ℃9.如图2,已知正方形ABCD、正方形CEFG的边长分别为8和4,且点D,C,E 在同一条直线上,动点M从点E向点F移动,连接DM.若ME=x,则阴影部分的面积y 与x之间的关系式为()A.y=6xB.y=12xC.y=6x-80D.y=80-6x10.按如图3的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A. y=3n+1B.y=4n-1C.y=4+3nD.y=n+n+(n-1)二、填空题(本大题共8小题,每小题4分,共32分)11.表示两个变量之间的关系常用的三种方法是________、________和________.12.若用一根长16米的铁丝围成一个长方形,长方形的面积S(m2)与长方形的一条边长x(m)之间的关系如下表:根据表格中两个变量之间的关系,写出你发现的一条信息___________________.13.联通公司手机话费收费有一种套餐,该套餐月租费15元,通话费每分钟0.1元.小丽用该套餐月话费为y(元),月通话时间为x分,在这个情境中,自变量为_______,因变量为_________.14.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.15.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶.汽车行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:61t(小时)0 1 2 3y(升)100 92 84 76 由表格中的数量关系可知,油箱的余油量y(升)与行驶时间t(小时)之间的关系式为____________,当汽车行驶_______小时,油箱的余油量为0.16.亮亮从家跑步到学校,在学校图书馆看了一会书,然后步行回家,亮亮离家的路程y(米)与时间t(分)之间的关系如图4所示,则亮亮回家的速度为__________.17.根据图5所示的计算程序计算变量y的对应值,若输入变量x的值为-0.5,则输出的结果为_______.18.在全民健身环城越野赛中,甲、乙两名选手的行程y(千米)随时间x(时)变化的图象如图6所示.有下列说法:①甲先到达终点;②起跑后1小时内,甲始终在乙的前面;③起跑1小时,甲、乙两人跑的路程相等;④乙起跑1.5小时,跑的路程为13千米;⑤两人都跑了20千米.以上说法正确的有____________(填序号).三、解答题(本大题共5小题,共58分)19.(9分)物体从高处自由落下,物体下落的高度h(米)与下落的时间t(秒)之间的关系如下表:h(米) 5 20 45 80 180 …t(秒) 1 2 3 4 5 …(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体从80米的高处落下时,大约需要多少秒?(3)随着高度h(米)的变化,下落的时间t(秒)是如何变化的?20.(10分)在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为y=.(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x -1 0 1 2 3 4 5 6y21.(12分)点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 103xh/厘米30 29 28 27 26 25(1)蜡烛未点燃前的长度是多少厘米?(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式;(3)求这根蜡烛能燃烧多长时间.22.(12分)某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式;(2)经过______小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由______米变化到______米.23.(15分)星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.附加题(15分,不计入总分)24.如图 8所示,梯形的上底AD=4,下底BC=6,CD=8,∠C=∠D=90°,点M从点C出发向点D移动,连接AM,BM,假设阴影部分的面积是y,CM的长度为x. (1)写出变量y与x之间的关系式;(2)当x=2时,阴影部分的面积是多少?(3)在点M的移动过程中,是否存在阴影部分的面积等于梯形面积的,若存在,求出x的值;若不存在,简单说明理由.41参考答案一、1.C 2.C 3.D 4.A 5. B 6.C 7.C 8.D9.D 提示:阴影部分的面积是两个正方形的面积和减去三角形DEM面积.10.A二、11.表格法关系式法图象法 12.答案不唯一,合理即可,略 13. 通话时间月话费 14.100 15.y=100-8t 12.5 16.60米/分17.-1.5 提示:当x=-0.5时,对应关系式是y=x-1,代入计算得y=-0.5-1=-1.5.18.①③④⑤三、19.解:(1)反映了物体下落的高度h(米)与下落的时间t(秒)之间的关系,其中物体下落的高度h(米)是自变量,下落的时间t(秒)是因变量;(2)4秒;(3)随着高度h(米)的逐渐增大,下落的时间t(秒)随着增大.20.解:(1)当x的值为-5时,y==8.(2)21.解:(1)蜡烛未点燃前的长度是30厘米;(2)h=30-0.5t;(3)当h=0时,得0=30-0.5t.解方程,得t=60.所以这根蜡烛能燃烧60分.22.(1)y=0.25x+5(0≤x≤10);(2)6(3)5.25 7.523.(1)小宇的爸爸9:16到达银行,他办理业务共用4分.(5)9:05小宇的爸爸发现忘记带身份证,此时,他离家300米.(3)300×2+800×2=2200(米).所以小宇的爸爸在去银行办理业务的过程中走过的路程2200米.(4)800÷(30-20)=80(米/分).所以小宇爸爸从银行回到家的速度为80米/分.附加题24.(1)y=-x+24;(2)当x=2时,y=-2+24=22;(3)不存在,理由:假设存在,则-x+24=××(4+6)×8.解方程,得x=14>8.所以不存在.第三章变量之间的关系一、选择题(每题3分,共24分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x 的增大而( )高度x/km 0 1 2 3 4 5 6 7 8气温y/℃28 22 16 10 4 -2 -8 -14 -203 5--4121A.升高B.降低C.不变D.以上答案都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x的关系式可以写为( )A.y=x2B.y=(12-x)2C.y=(12-x)·xD.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是( )5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是( )A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.14.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.三、解答题(15题10分,16题12分,17,18题每题14分,19题16分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2016年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上? (3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由变化到.19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg 0 1 2 3 4 5 6 7 弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是___________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?参考答案一、1.【答案】B解:根据自变量和因变量的定义可知,在这一问题中,体温随时间的变化而变化,时间是自变量,体温是因变量,故选B.2.【答案】B3.【答案】C4.【答案】D5.【答案】D解:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D.6.【答案】D解:由题意知,当出租车行驶里程数x≥3时,y=8+1.8(x-3)=1.8x+2.6,故选D.7.【答案】A8.【答案】C解:①③④正确,②应为乙出发2 h后追上甲.二、9.【答案】77 ℉解:将x=25代入关系式可得y=×25+32=45+32=77,故它的华氏度数是77 ℉.10.【答案】y=x2+6x解:边长为3 cm的正方形的面积是9 cm2,边长为(x+3)cm的正方形的面积为(3+x)2cm2,所以面积的增加值y=(3+x)2-9=x2+6x.11.【答案】>12.【答案】37.2 min 解:由题图可知,上坡速度为 3 600÷18=200(m/min),下坡速度为(9 600-3 600)÷(30-18)=500(m/min),返回途中,上、下坡的路程刚好相反,所用时间为 3 600÷500+(9 600-3 600)÷200=37.2(min).13.【答案】340元14.【答案】21 min;24 min;26 min三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量.(2)设电话费为y元,通话时间为t min.则由题意可知,y与t之间的关系式为y=0.6t,故当t=10时,y=6.所以需付6元电话费.16.解:(1)37 ℃.(2)9 h. (3)3时至15时.(4)25 ℃.(答案不唯一,合理即可)17.解:(1)体育场离张阳家2.5 km.(2)因为2.5-1.5=1(km),所以体育场离文具店1 km.因为65-45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100-65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y与x之间的关系式为y=πr2-x2=324π-x2.(2)(324π-1)cm2(324π-81)cm219.解:(1)13.5 cm(2)由表格可知,弹簧的长度y与所挂物体的质量x之间的关系式为y=12+0.5x.(3)当x=5.5时,y=12+0.5×5.5=14.75(cm).(4)当y=20时,20=12+0.5x,解得x=16,故该弹簧最多能挂16 kg重的物体.第3章变量之间的关系一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下面说法中正确的是【】.A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是【】.A.y=12x B.y=18x C.y=x D.y=x3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程(千米)和行驶时间(小时)的关系的是【】.A B C D4.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为,则当时,该物体所经过的路程为【】.A.28米 B. 48米 C.57米 D. 88米5.在某次试验中,测得两个变量和之间的4组对应数据如下表:1 2 3 40.01 2.9 8.03 15.1则与之间的关系最接近于下列各关系式中的【】.A.B.C.D.6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是【】.7.正常人的体温一般在左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是【】.A.清晨5时体温最低B.下午5时体温最高C.这一天小红体温T的范围是36.5≤T≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出……那么,当输入数据8时,输出的数据是【】.2 332st1232++=tts 4t=m v mvm v22v m=-21v m=-33v m=-1v m=+C037C0122531041752636.517125T/t/h2437.5图1A.B. C. D.9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是【 】. A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h (厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【 】.二、填一填,要相信自己的能力!(每小题3分,共30分)1.对于圆的周长公式c=2r ,其中自变量是_______,因变量是_______. 2.在关系式y=5x+8中,当y=120时,x 的值是 ___ .3.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5).4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 .5.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.6.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家月初连续天每天早上电表显示的读数.日期︳日 1 2 3 4 5 6 7 8 电表读数︳度2124283339424649(2)估计小亮家月份的用电量是______,若每度电是元,估计他家月份应交的电费是______.7.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .8.根据图6中的程序,当输入x =3时,输出的结果y = . 9. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分 .10. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并861863865867 y x y x 44840.494时间/分1836 3696路程/百米图7图2图3且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)三、做一做,要注意认真审题呀!(本大题共38分)1.(8分)下表是三发电器厂2007年上半年每个月的产量:x/月 1 2 3 4 5 6y/台10 000 10 000 12 000 13 000 14 000 18 000(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2007年前半年的平均月产量是多少?2.(10分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.3.(10分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图9所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.4.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)图8四、拓广探索(本大题共22分)1.(10分)如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他在不同的时间里,都做了什么事情.2.(12分)某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?年 份 2006年 2007年 2008年 工人的平均工资/元 5 000 股东的平均利润/元 25 000图 12时间速度图11参考答案一、1~10 CDB CB DD C CC二、1.r,c. 2.22.4. 3.h=20-4t. 4.y=12-2x. 5.6.12058.86.(1)日期和电表读数;日期;电表读数;(2)度,元.7.38.2. 8.2. 9. 37.2. 10. 18,y=13+0.5x.三、1. (1)随着月份x的增大,月产量y正在逐渐增加;(2)1月、2月两个月的月产量不变,3月、4月、5月三个月的产量在匀速增多,6月份产量最高;(3)约为13 000(台).2.图象略.3.(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.4.(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、1. 略.2. (1) 工人的平均工资:2007年6 250元,2008年7 500元.股东的平均利润:2007年37 500元,2008年50 000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x. 解得x=6 .所以到2012年每位股东年平均利润是每位工人年平均工资的8倍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第三章 整式及其加减检测题
(时间:45分钟,满分:100分)
一、 选择题(每小题3分,共30分)
1. 下列说法正确的是( )
A.23与23是同类项 B.1x与2是同类项
C.32与223是同类项 D.5与2是同类项
2. 下列计算正确的是( )
A. B.
C. D.
3. 下列各式去括号错误的是( )
A.213)213(yxyx
B.banmbanm)(
C.332)364(21yxyx
D.723121)7231()21(cbacba
4. 买个一足球需要元,买一个篮球需要元,则买4个足球、7个篮球共需要要( )
元.
A. B. C. D.
5. 两个三次多项式的和的次数是( )
A.六次 B.三次 C.不低于三次 D.不高于三次
6. 计算:3562aa与1252aa的差,结果正确的是( )
A.432aaB.232aa
C.272aa D.472aa
7. 下列说法正确的是( )
2
A. 0不是单项式 B.是五次单项式
C.x是单项式 D.是单项式
8. 设,,那么与的大小关系是( )
A.B.C.<D.无法确定
9. 今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师
课上讲的内容,他突然发现一道题:.此空格的地
方被钢笔水弄污了,那么空格中的一项是( )
A.B.C.D.
10. 多项式与多项式的和是2,多项式与多项式的和是2,那么多项式
减去多项式的差是( )
A.2B.2C.2D.2
二、
填空题(每小题3分,共24分)
11. 单项式23x减去单项式yxxyx2222,5,4的和,列算式为,
化简后的结果是.
12. 三个连续的偶数中,是最小的一个,这三个数的和为 .
13. 一个三位数,十位数字为,个位数字比十位数字少3,百位数字是十位数字的3倍,
则这个三位数为________.
14. 已知单项式2bam与-3214nba的和是单项式,那么m= ,= .
15. 张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份
报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元.
16. 已知;22ba.
3
17. 已知轮船在逆水中前进的速度是m km/h,水流的速度是2 km/h,则此轮船在静水
中航行的速度是km/h.
18. 三个小队植树,第一队种棵,第二队种的树比第一队种的树的2倍还多8棵,第
三队种的树比第二队种的树的一半少6棵,三队共种树棵.
三、解答题(共46分
)
19.(6分)计算:(1); (2)
(3); (4).
20.(6分)先化简,再求值.
)(3)(3)22(22222222yyxxyxyx
,其中1x,2y.
21.(6分) 已知三角形的第一边长为,第二边比第一边长,•第三边比第
二边短,求这个三角形的周长.
4
22.(6分)已知小明的年龄是岁,小红的年龄比小明的年龄的2倍少4岁,小华的年
龄比小红的年龄的还多1岁,求这三名同学的年龄的和.
23.(6分)已知:,且.
(1)求等于多少?
(2)若,求的值.
24.(8分)有这样一道题:“计算
的值,其中
.甲同学把“错抄成但他计算的结果也是正确的,试说
明理由,并求出这个结果.
25. (8分)某工厂第一车间有人,第二车间比第一车间人数的54少30人,如果从第
二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
5
第三章整式及其加减检测题参考答案
1.D 解析:对于A,前面的单项式含有,后面的单项式不含有,所以不是同类项;
对于B,不是整式,2是整式,所以不是同类项;
对于C,前后两个单项式,所含字母相同,但相同字母的指数不一样,所以不是同类项;
对于D,前后两个单项式,所含字母相同,相同字母的指数也相同,所以是同类项,故选
D.
2.B 解析:,所以A不正确;不是同类项,不能合并,所以C
不正确;
3.C 解析:
4.A 解析:4个足球需要元,7个篮球需要元,共需要元.故选A.
5.D 解析:若两个三次多项式相加,它们的和最多不会超过三次,可能是0,可能是
一次,可能是二次,也可能是三次.故选D.
6.D 解析:
故选D.
7.C 解析:单独的一个数或一个字母是单项式,所以A不正确;
一个单项式的次数是指这个单项式中所有字母的指数的和,所以的次数是3,所以
B不正确;
C符合单项式的定义,而D不是整式.故答案选C.
8.A 解析:要比较的大小,可将作差,
9.C 解析:因为将此
结果与相比较,可知空格中的一项是.故选C.
6
10.A 解析:由题意可知2①;2②.
①②得:.故选A.
11.
解析:根据叙述可列算式,化简这个式子
12. 解析:由题意可知,这三个连续的偶数为
13. 解析:由题意可得个位数字为,百位数字为,所以这个三位数
为
14. 解析:因为两个单项式的和还为单项式,所以这两个单项式可以合并同类项,
根据同类项的定义可知
15. 解析:张大伯购进报纸共花费了元,售出的报纸共得元,退回报
社的报纸共得元,所以张大伯卖报共收入
16.6 -22 解析:将
将,得
17. 解析:静水中的速度=水流速度+逆水中的速度,所以轮船在静水中的航行速
度=(km/h).
18. 解析:依题意得:第二队种的树的数量,第三队种的树的棵树
7
所以三队共种树(棵).
19.解:(1)
(2)
=
=
(3)
=
=
(4)
=
=
=
=
20.解:
=
=
8
当
21.解:根据题意可知第二边长为第三边长为
所以这个三角形的周长为.
22.分析:根据题意分别列出小明、小红和小华的年龄,再相加,去括号,合并同类项,
即可求出这三名同学的年龄的和.
解:小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的
年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),
则这三名同学的年龄的和为:
答:这三名同学的年龄的和是)岁.
23.分析:(1)将的代数式代入中化简,即可得出的式子;
(2)根据非负数的性质解出的值,再代入(1)式中计算.
解:(1)∵ ,,
,
∴
.
(2)依题意得:,,
∴ ,.
∴ .
24.分析:首先将原代数式去括号,合并同类项,化为最简整式为无关,所以
9
当甲同学把”错抄成“”时,他计算的结果也是正确的.
解:
=
=
因为所得结果与的取值没有关系,所以他将值代入后,所得结果也是正确的.
当时,原式=2.
25.解:因为第二车间比第一车间人数的54少30人,
所以第二车间有.
则两个车间共有.
如果从第二车间调出10人到第一车间,
则第一车间有
所以调动后,第一车间的人数比第二车间多.
10