2022-2023学年上海市八年级上学期数学期末考试典型试卷2含答案

合集下载

浙江省金华市2022-2023学年度上学期八年级期末考试模拟数学卷(含解析)

浙江省金华市2022-2023学年度上学期八年级期末考试模拟数学卷(含解析)

浙江省金华市2022年八年级数学(上)期末考试模拟卷一、选择题(共30分)1.下列各组数不可能是一个三角形的边长的是()A.1,2,3B.4,4,4C.6,6,8D.7,8,92.下列图形中,是轴对称图形的是()A.B.C.D.3.下列命题中,属于假命题的是()A.三角形三个内角的和等于180°B.全等三角形的对应角相等C.等腰三角形的两个底角相等D.相等的角是对顶角4.在数轴上表示不等式x-1<0的解集,正确的是()A.B.C.D.5.已知点A(2,7),AB//x轴,3AB ,则B点的坐标为()A.(5,7)B.(2,10)C.(2,10)或(2,4)D.(5,7)或(-1,7)6.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)7.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N MN长为半径画弧,两弧交点O,作射线AD,交BC于点E.己知CE=3,BE=5,则AC的长为为圆心,大于12()A.8B.7C.6D.58.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A .B .C .D .9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s (米)与爸爸出发时间t (分钟)之间的函数图象如图所示.则下列说法错误的是( )A .a =15B .小明的速度是150米/分钟C .爸爸从家到商店的速度为200米/分钟D .爸爸出发7分钟追上小明10.如图,已知长方形纸板的边长10DE =,11EF =,在纸板内部画Rt ABC △,并分别以三边为边长向外作正方形,当边HI 、LM 和点K 、J 都恰好在长方形纸板的边上时,则ABC 的面积为( )A .6B .112C .254D .二、填空题(共24分)11.若x 的2倍与y 的差小于3,用不等式可以表示为______.12.如图,点D 、E 分别在线段AB ,AC 上,AE =AD ,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,需添加的一个条件是 _____.13.己知点A (m +1,1)与点B (2,n +1)关于x 轴对称,则m +n 的值为 _____.14.△ABC 为等腰三角形,周长为7cm ,且各边长为整数,则该三角形最长边的长为______cm .15.如图,OP 平分△MON ,P A △ON 于点A ,点Q 是射线OM 上一个动点,若P A =3,则PQ 的最小值为_____.16.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边). (1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.三、解答题(共66分)17.(本题6分)解不等式组52331132x x x x -≤⎧⎪-+⎨<-⎪⎩,并将不等式组的解集表示在数轴上.18.(本题6分)如图,已知△ABC ,其中AB =AC .作AC 的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连结CE (尺规作图,不写作法,保留作图痕迹);在(1)所作的图中.若BC=7.AC=9.求△BCE的周长.19.(本题6分)如图,函数y=-2x和y=kx+3的图象相交于点A(m,2).(1)求m和k的值.(2)根据图象,直接写出不等式23-<+的解.x kx20.(本题8分)已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式;(2)在直角坐标系中,画出这个函数的图象;(3)求这个一次函数与坐标轴围成的三角形面积.21.(本题8分)已知,如图,延长ABC的各边,使得BF AC,,,得到DEF==,顺次连接D E F=,AE CD AB为等边三角形.≌;求证:(1)AEF CDE(2)ABC为等边三角形.22.(本题10分)某校为“防疫知识小竞赛”准备奖品,购进A,B两种文具共40件作为奖品,设购进A种文具x件,总费用为y元.已知A、B文具的费用与x的部分对应数据如下表.(1)将表格补充完整:a=;b=;(2)求y关于x的函数表达式;(3)当A种文具的费用不大于B种文具的费用时,求总费用y的最小值.23.(本题10分)以△ABC的AB,AC为边作△ABD和△ACE,且AD=AB,AE=AC,△DAB=△CAE=α.CD与BE 相交于O,连接AO,如图△所示.(1)求证:BE=CD;(2)判断△AOD与△AOE的大小,并说明理由.(3)在EB上取使F,使EF=OC,如图△,请直接写出△AFO与α的数量关系.24.(本题12分)在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,52)且平行于x轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使△BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使△ABD=90°,连结OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为直角边作等腰直角三角形ABP,当点P落在直线y=58x+52上时,求m的值.参考答案1.A【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【详解】解:A、1+2=3,不能构成三角形;B、4+4>4,能构成三角形;C、6+6>8,能构成三角形;D、7+8>9,能构成三角形.故选:A.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.2.A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.D【分析】根据三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义,逐项分析判断即可求解.【详解】解:A. 三角形三个内角的和等于180°,是真命题,故该选项不符合题意;B. 全等三角形的对应角相等,是真命题,故该选项不符合题意;C. 等腰三角形的两个底角相等,是真命题,故该选项不符合题意;D. 有公共的顶点,角的两边互为反向延长线是对顶角,是假命题,故该选项符合题意.故选:D.【点睛】本题考查了判断命题真假,掌握三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义是解题的关键.4.B【详解】x-1<0的解集为x<1,它在数轴上表示如图所示,故选B .5.D【详解】解:AB//x 轴,则B 点坐标对应y 值和A 点坐标对应y 值相等,所以y=7.因为AB=3,而点A 对应x=2,则B 对应x 值为(x+3)=5或(x -3)=-1.故选D考点:直角坐标系点评:本题难度较低,主要考查学生对直角坐标系上点的坐标知识点的掌握.分析与x 轴平行线上点的坐标的特点是解题关键.6.C【分析】根据一次函数解析式可得10,20k b =>=>,进而判断A ,B 选项,分别0,0x y ==即可求得与y 轴,x 轴的交点坐标,进而判断C ,D 选项,即可求解.【详解】解:由y =x +2,10,20k b =>=>,令0x =,得2y =,令0y =,得2x =-,A . y 随x 的增大而增大,故该选项不正确,不符合题意;B . 图像经过第一、二、三象限,故该选项不正确,不符合题意;C . 与y 轴交于(0,2),故该选项正确,符合题意;D . 与x 轴交于(-2,0)故该选项不正确,不符合题意.故选:C .【点睛】本题考查了一次函数的性质,一次函数与坐标轴的交点,掌握一次函数的性质是解题的关键.7.C【分析】直接利用基本作图方法得出AE 是△CAB 的平分线,进而结合全等三角形的判定与性质得出AC =AD ,再利用勾股定理得出AC 的长.【详解】解:过点E 作ED △AB 于点D ,由作图方法可得出AE 是△CAB 的平分线,△EC △AC ,ED △AB ,△EC =ED =3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED =⎧⎨=⎩, △Rt △ACE △Rt △ADE (HL ),△AC =AD ,△在Rt △EDB 中,DE =3,BE =5,△BD =4,设AC =x ,则AB =4+x ,故在Rt △ACB 中,AC 2+BC 2=AB 2,即x 2+82=(x +4)2,解得:x =6,即AC 的长为:6.故选:C .【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.8.D【分析】根据正比例函数y =kx 中,y 的值随着x 值的增大而减小,可得k <0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:△正比例函数y =kx 中,y 的值随着x 值的增大而减小,△k <0,△一次函数y =kx +k 与y 轴的交点在y 轴的负半轴,△一次函数y =kx +k 的图像经过第二、三、四象限,故选D .【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k <0.9.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程10x+5(x+60)=3300,解出可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程150(t+2)=200t ,求解可知D .【详解】解:A .a =10+5=15,故A 正确,不合题意;B .小明的速度为3300÷22=150米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,10x+5(x+60)=3300,解得x=200米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设t 分爸爸追上小明,150(t+2)=200t ,t=6,故爸爸出发7分钟追上小明不正确,故选择:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.10.A【分析】延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB △ABC △△BJK △△JKF △△KAN ,再利用长方形DEFG 的面积=十个小图形的面积和进而求得ab =12,即可求解.【详解】解:延长CA 与GF 交于点N ,延长CB 与EF 交于点P ,设AC =b ,BC =a ,则AB△四边形ABJK 是正方形,四边形ACML 是正方形,四边形BCHI 是正方形,△AB =BJ ,△ABJ =90°,△△ABC +△PBJ =90°=△ABC +△BAC ,△△BAC =△JBP ,△△ACB =△BPJ =90°,△△ABC △△BJK (AAS ),同理△ABC △△BJK △△JKF △△KAN ,△AC =BP =JF =KN =NG =b ,BC =PJ =FK =AN =PE =a ,△DE =10,EF =11,△2b +a =10,2a +b =11,△a +b =7,△a 2+b 2=49-2ab ,△长方形DEFG 的面积=十个小图形的面积和,△10×11=3ab +12ab ×4+a 2+b 22, 整理得:5ab +2(a 2+b 2)=110,把a 2+b 2=49-2ab ,代入得:5ab +2(49-2ab )=110,△ab =12,△△ABC 的面积为12ab =6, 故选:A .【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,关键是构造全等三角形和直角三角形. 11.23x y -<【分析】根据x 的2倍与y 的差是2x y -,小于表示为:<,列出不等式即可求解.【详解】解:x 的2倍与y 的差小于3,用不等式可以表示为23x y -<.故答案为:23x y -<.【点睛】本题考查了由实际问题抽象一元一次不等式的知识,关键是将文字描述转化为数学语言.12.B C ∠=∠【分析】根据题目条件和图形可知,AE =AD ,公共角A A ∠=∠,不添加新的线段和字母,要使△ABE 和△ACD 全等判定依据是AAS ,添加的条件是B C ∠=∠即可得到结论.【详解】解:添加的条件是B C ∠=∠.理由如下:在△ABE 和△ACD 中,B C A A AE AD ∠∠⎧⎪∠∠⎨⎪⎩===,△△ABE △△ACD (AAS ),故答案为:B C ∠=∠.【点睛】本题考查全等三角形判定的应用,熟练掌握三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 是解决问题的关键.13.﹣1【分析】利用关于x 轴对称点的性质得出m ,n 的值,进而求出即可.关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.【详解】解:△点A (m +1,1)与点B (2,n +1)关于x 轴对称,△m +1=2,n +1=﹣1,解得:m =1,n =﹣2,△m +n =1﹣2=﹣1.故答案为:﹣1.【点睛】此题主要考查了关于x 轴对称点的性质,利用横纵坐标关系得出m 和n 的值是解题关键.14.3【分析】设腰长为x ,则底边为10-2x ,根据三角形三边关系定理可得10-2x -x <x <10-2x +x ,解不等式组即可.【详解】解:设腰长为x ,则底边为7-2x .△7-2x -x <x <7-2x +x ,△1.75<x <3.5,△三边长均为整数,△x 可取的值为2或3,故各边的长为2,2,3或3,3,1.△该三角形最长边的长为3cm .故答案为:3.【点睛】本题主要考查等腰三角形的性质及三角形三边关系的综合运用,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.15.3【分析】由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小.【详解】解:由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小,根据角平分线的性质可知,此时P A =PQ =3.故答案为:3.【点睛】本题考查了角平分线的性质,垂线段最短,解题的关键是掌握垂线段距离最短.16. (95-44,); 6. 【分析】(1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】(1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,); (2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值. 即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.17.31x -<≤,见解析【分析】分别求出每一个不等式的解集,并在数轴上表示,即可确定不等式组的解集. 【详解】解:52331132x x x x -≤⎧⎪-+⎨<-⎪⎩①② 解不等式①,得:1x ≤,解不等式②,得:3x >-,则不等式组的解集为31-<≤x ,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”或根据数轴表示解集是解答此题的关键18.(1)作图见解析;(2)16.【分析】(1)利用线段垂直平分线的作法作图即可;(2)首先根据等腰三角形的性质,得到AB =AC =9,再根据垂直平分线的性质可得AE =CE ,进而可算出周长.【详解】解:(1)如图所示:直线DE 即为所求;(2)△AB =AC =9,△DE 垂直平分AB ,△AE =EC ,△△BCE 的周长=BC +BE +CE =BC +BE +AE =BC +AB =16.【点睛】本题主要考查了基本作图,以及线段垂直平分线的作法,等腰三角形的性质,关键是掌握线段垂直平分线的作法.19.(1)1,1m k =-=(2)1x >-【分析】(1)将点A (m ,2)代入2y x =-求得m 的值,进而求得()1,2A -,代入y =kx +3即可求解;(2)根据图象,求得直线y =kx +3在y =-2x 上方时x 的取值范围,即可求解.(1)将点A (m ,2)代入2y x =-,即22m =-,解得1m =-,∴()1,2A -,将点()1,2A -代入y =kx +3,得()213k =⨯-+,解得1k =,(2)△()1,2A -,根据图象可知, 23x kx -<+的解集为1x >-.【点睛】本题考查了一次函数的性质,待定系数法求解析式,根据两直线交点坐标求不等式的解集,数形结合是解题的关键.20.(1);(2)函数图像见详解;(3)8【分析】(1)由图象经过两点A (-4,0)、B (2,6)根据待定系数法即得结果;(2)根据两点法即可确定函数的图象;(3)求出图象与x 轴及y 轴的交点坐标,然后根据直角三角形的面积公式求解即可.【详解】(1)△一次函数y=kx+b 的图象经过两点A (-4,0)、B (2,6),解得,△函数解析式为:;(2)函数图像如图:(3)△一次函数与y轴的交点为C(0,4),△△AOC的面积=4×4÷2=8.【点睛】本题考查的是待定系数法求一次函数解析式,一次函数的图象,解答本题的关键是熟练掌握待定系数法求一次函数解析式,同时正确得到坐标与线段长度的转化.21.(1)见解析;(2)见解析.【分析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF△△CDE.(2)有(1)中的全等关系,可得出△AFE=△CED,再结合△DEF是等边三角形,可知△DEF=60°,从而得出△BAC=60°,同理可得△ACB=60°,那么△ABC=60°.因而△ABC是等边三角形.【详解】证明:(1)△BF=AC,AB=AE(已知)△FA=EC(等量加等量和相等).△△DEF是等边三角形(已知),△EF=DE(等边三角形的性质).又△AE=CD(已知),△△AEF△△CDE(SSS).(2)由△AEF△△CDE,得△FEA=△EDC(对应角相等),△△BCA=△EDC+△DEC=△FEA+△DEC=△DEF(等量代换),△DEF是等边三角形(已知),△△DEF=60°(等边三角形的性质),△△BCA=60°(等量代换),由△AEF△△CDE,得△EFA=△DEC,△△DEC+△FEC=60°,△△EFA+△FEC=60°,又△BAC是△AEF的外角,△△BAC=△EFA+△FEC=60°,△△ABC 中,AB=BC (等角对等边).△△ABC 是等边三角形(等边三角形的判定).22.(1)600;180;(2)5800y x =-+;(3)690.【分析】(1)A 文具的单价:120÷8=15元,B 文具的单价:640÷(40-32)=20元,计算b =12×15,a =(40-10)×20填入表格中即可,注意a ,b 的位置;(2)根据总费用=购进A 文具总费用+购进B 文具总费用列解析式并化简即可;(3)利用A 种文具的费用不大于B 种文具的费用列为不等式,后利用一次函数的增减性求最值即可.(1)解:△买卖8件A 文具时,A 种文具费用120元,B 种文具费用640元,△ A 文具的单价为:120÷8=15(元),B 文具的单价:640÷(40-8)=20(元) ,△20(4010)600a =⨯-=,1512180a =⨯=.填入表格如下:故答案为:600;180.(2)由 (1)得,A 种文具15元/件,B 种文具20元/件,设购进A 种文具x 件,则B 种文具数量为()40x -件,△()1520405800y x x x =+-=-+;(3)△A 种文具的费用不大于B 种文具的费用△()152040x x ≤-,△6227x ≤,△x 为正整数,△22x ≤.△5800y x =-+,50k =-<,△y 随着x 的增大而减小,△当22x =时,522800690min y =-⨯+=,答:总费用最少为690元.【点睛】本题考查了一次函数的应用,求一次函数的解析式,一次函数的增减性,不等式的构造与求解,熟练运用生活经验,把生活问题准确转化为函数模型求解是解题的关键.23.(1)见详解(2)△AOD =△AOE ,理由见详解(3)2△AFO =180°−α【分析】(1)证明△DAC △△BAE (SAS )即可;(2)过点A 作AM △CD 于点M ,作AN △BE 于点N ,证明△ADM △△ABN (AAS ),即有AM =AN ,即可证明AO 平分△AOE ,问题得解;(3)证明△AEF △△ACO (SAS ),即有△AFE =△AOC ,AF =AO ,结合(2)的结论有:△AFO =△AOF =△AOD ,即可的得解.(1)△△DAB =△CAE ,△△DAB +△BAC =△CAE +△BAC ,△△DAC =△BAE ,△AD =AB ,AC =AE ,△△DAC △△BAE (SAS ),△BE =CD ,得证;(2)△AOD =△AOE ,理由如下,过点A 作AM △CD 于点M ,作AN △BE 于点N ,如图,△AM△CD,AN△BE,△△AMD=△ANB=90°,△△DAC△△BAE,△△ABE=△ADC,又△AD=AB,△△ADM△△ABN(AAS),△AM=AN,△AM△OD,AN△OE,△AO平分△AOE,△△AOD=△AOE,得证;(3)△△DAC△△BAE,△△AEF=△ACO,AE=AC,又△EF=CO,△△AEF△△ACO(SAS),△△AFE=△AOC,AF=AO,△结合(2)的结论有:△AFO=△AOF=△AOD.△△ADC=△ABE,△DAB=α,△△DAB=△DOB=α,△2△AFO=2△AOF=△AOF+△AOD=180°-△DOB,△2△AFO=180°−α.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,掌握全等三角形的判定定理是本题的关键.24.(1)直线BC的解析式为11132y x=-+;(2)23S m=-( 1.5m≥);32S m=-(0 1.5m<<);213S m=-( 6.5m≥);132S m=-(0 6.5m<<);(3)m的值为132或11916.【分析】(1)作CN△x轴于N,BM△x轴于M,易证Rt△NCA≅Rt△MAB,可求得点C的坐标为(32,5),再利用待定系数法即可求解;(2)过B作直线EF△x轴于F,过D作DE△EF交直线EF于E,易证Rt△F AB≅Rt△EBD,可求得点D的坐标为(52m-,32m-),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分△△ABP=90°、△△BAP=90°两种情况讨论,即可求解.【详解】(1)作CN△x轴于N,BM△x轴于M,如图:△△BAC=90°,△△NAC+△NCA=△NAC+△MAB=90°,△△NCA=△MAB,△CA= AB,△Rt△NCA≅Rt△MAB,△NC= MA,NA= MB,△点B的横坐标为9m=,△点B的坐标为(9,52),△NC= MA= MO-OA=9-4=5,NA= MB=52,ON= OA-NA=32,△点C的坐标为(32,5),设直线BC的解析式为y kx b=+,则592352k bk b⎧+=⎪⎪⎨⎪+=⎪⎩,解得:13112kb⎧=-⎪⎪⎨⎪=⎪⎩,△直线BC的解析式为11132y x=-+;(2)过B作直线EF△x轴于F,过D1作D1E△EF交直线EF于E,过D2作D2E△EF交直线EF于M,如图:同理可证Rt △F AB △Rt △EBD 1△Rt △MBD 2,△AF = BE =MB ,FB = D 1E = D 2M ,△点B 的横坐标为m ,△AF = BE =MB =4m -,FB = D 1E = D 2M =52, △点D 1的坐标为(52m -,542m -+),即D 1(52m -,32m -),点D 2的坐标为(52m +,542m -+),即D 2(52m +,132m -), △1OAD 12D SOA y =⋅, 1342322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 1.5m ≥);1343222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 1.5m <<); 2OAD 12D S OA y =⋅, 113421322S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭( 6.5m ≥);113413222S m m ⎛⎫=⨯⨯-=- ⎪⎝⎭(0 6.5m <<); (3)△当△ABP =90°时,由(2)可知D 与P 重合,△点P 的坐标为(52m -,32m -), 由题意得,点P 在直线5582y x =+上, △35552822m m ⎛⎫-=-+ ⎪⎝⎭, 解得:132m =; △当△BAP =90°时,如图:同理可证明Rt△HAP≅Rt△GP A,△点B的坐标为(m,52),△PH=AG=4m-,AH=BG=52,△点P的坐标为(542-,4m-),即(32,4m-),点P在直线5582y x=+上,△5354822m-=⨯+,解得:11916m=;综上,m的值为132或11916.【点睛】本题考查了全等三角形的判定与性质,坐标与图形性质,等腰直角三角形的性质,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.。

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)

2022-2023学年八年级上学期期中考前必刷卷03数学(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2022·浙江丽水·八年级期末)在以下中国银行、建设银行、工商银行、农业银行图标中,不是..轴对称图形的是( )A .B .C .D .2.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是( ) A .7cm 、5cm 、12cm B .6cm 、7cm 、14cm C .9cm 、5cm 、11cmD .4cm 、10cm 、6cm3.(2022·河南·漯河市第二实验中学八年级期末)如图所示,图中的两个三角形全等,则∠α等于( )A .50︒B .55︒C .60︒D .65︒4.(2022·江苏·宜兴市和桥镇第二中学七年级期中)如图,在ABC 中,A m ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1ACD ∠的平分线交于点2A ,得22015A A BC ∠∠和2015A CD ∠的平分线交于点2016A ,则2016A ∠为多少度?( )A .20132m B .20142m C .20152m D .20162m5.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)如图,A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=( )A .180︒B .360︒C .540︒D .720︒6.(2022·山东威海·七年级期末)已知点P 是直线l 外一点,要求过点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .7.(2022·山东聊城·八年级期末)已知如图,在∠ABC 中,∠ACB 是钝角,依下列步骤进行尺规作图: (1)以C 为圆心,CA 为半径画弧;(2)以B 为圆心,BA 为半径画弧,交前弧于点D ; (3)连接BD ,交AC 延长线于点E明明同学依据作图,写出了下面四个结论,其中正确的是( )A .∠ABC =∠CBEB .BE =DEC .AC ∠BDD .S △ABC =12AC •BE8.(2020·天津市红桥区教师发展中心八年级期中)如图,△ABC 中,点D 是BC 边上一点,DE ∠AB 于点E ,DF ∠BC ,且BD =FC ,BE =DC ,∠AFD =155°,则∠EDF 的度数是( )A .50°B .55°C .60°D .65°9.(2022·河南郑州·七年级期末)乐乐所在的七年级某班学生到野外活动,为测量一池塘两端A ,B 的距离,乐乐、明明、聪聪三位同学分别设计出如下几种方案:乐乐:如图①,先在平地取一个可直接到达A ,B 的点C ,再连接AC ,BC ,并分别延长AC 至D ,BC 至E ,使DC AC =,EC BC =,最后测出DE 的长即为A ,B 的距离.明明:如图②,先过点B 作AB 的垂线BF ,再在BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E ,则测出DE 的长即为A ,B 的距离.聪聪:如图③,过点B 作BD AB ⊥,再由点D 观测,在AB 的延长线上取一点C ,使∠=∠BDC BDA ,这时只要测出BC 的长即为A ,B 的距离. 以上三位同学所设计的方案中可行的是( )A .乐乐和明明B .乐乐和聪聪C .明明和聪聪D .三人的方案都可行10.(2022·山东烟台·七年级期末)如图,在ABC 中,CAB ∠和CBA ∠的角平分线相交于点P ,连接PA ,PB ,PC ,若PAB △,PAC △,PBC 的面积分别为1S ,2S ,3S ,则有( )A .123S S S <+B .123S S S =+C .123S S S >+D .1232S S S =+11.(2022·重庆沙坪坝·七年级期末)如图,在Rt∠ABC 中,90ABC ∠=,45C ∠=,点E 在边BC 上,将∠ABE 沿AE 翻折,点B 落在AC 边上的点D 处,连结DE 、BD ,若5BD =.下列结论:①AE 垂直平分BD ;②112.5CEA ∠=︒;③点E 是BC 的中点;④∠CDB 的周长比∠CDE 的周长大5.其中正确的个数是( )A .1B .2C .3D .412.(2022·云南红河·八年级期末)如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .813.(2021·福建省泉州实验中学八年级期中)如图,在等边三角形ABC 中,点D ,E 分别是BC ,AB 上的点,且BE =CD ,AD 与CE 相交于点F ,连接BF ,延长FE 至G ,使FG =F A ,若∠ABF 的面积为m ,AF :EF =5:3,则∠AEG 的面积是( )A .25mB .13mC .38mD .35m14.(2022·重庆·四川外国语大学附属外国语学校七年级期末)如图,Rt ABC 中,90BAC ∠=︒,AD BC ⊥于点D .过点A 作AF //BC 且AF AD =,点E 是AC 上一点且AE AB =,连接EF ,DE ,连接FD 交BE 于点G .下列结论中正确的有( )个.①FAE DAB ∠=∠;②BD EF =;③FD 平分AFE ∠;④ABDE ADEF S S =四边形四边形;⑤BD GE =A .2B .3C .4D .5第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2022·河南平顶山·七年级期末)如图,已知∠1=∠2,AC =AE ,不添加任何辅助线,再添加一个合适的条件:______,使∠ABC ∠∠ADE .(只写出一种即可)16.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.17.(2022·湖北·云梦县实验外国语学校八年级期中)如图,12l l ∥,点D 是BC 的中点,若∠ABC 的面积是10cm 2,则∠BDE 的面积是_______cm 2.18.(2020·浙江·乐清市知临寄宿学校八年级期中)如图所示,∠B 0C = 10°,点A 在OB 上,且OA = 1,按下列要求画图:以点A 为圆心、1为半径向右画弧交OC 于点1A 得到第1条线段1AA ;再以点1A 为圆心、1为半径向右画弧交OB 于点2A ,得到第2条线段12A A ;再以点2A 为圆心、1为半径向右画弧交OC 于点3A ,得到第3条线段23A A …这样画下去,直到得到第n 条线段,之后就不能再画出符合要求的线段了,则n = _________ .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·河南·安阳市第五中学八年级期中)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =72°,求∠AEC 和∠DAE 的度数.20.(2022·四川眉山·七年级期末)点C 为BD 上一点,△ABC ∠△CDE ,AB =1,DE =2,∠B =110°.(1)求BD 的长; (2)求∠ACE 的度数.21.(2022·上海市曹杨第二中学附属学校七年级期末)如图,ABC 中,AB AC =,且D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =,DEF B ∠=∠,点G 是DF 的中点,猜想EG 和DF 的位置关系,并说明理由.22.(2021·贵州毕节·八年级期末)如图所示,在ABC 中,8AB =,4AC =,点G 为BC 的中点,DG BC ⊥交BAC ∠的平分线AD 于点D ,DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F .(1)求证:BE CF =; (2)求AE 的长.23.(2020·福建龙岩·八年级期末)如图,射线OK 的端点O 是线段AB 的中点,请根据下列要求作答:(1)尺规作图:在射线OK 上作点C D ,,连接AC BD ,,使=AC BD >12AB ;(2)利用(1)中你所作的图,求证:ACO BDO ∠=∠.24.(2020·浙江·乐清市知临寄宿学校八年级期中)如图1,∠ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1厘米/秒.当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (秒).(1)当运动时间为t 秒时,BQ 的长为 厘米,BP 的长为 厘米.(用含t 的式子表示) (2)当t 为何值时,∠PBQ 是直角三角形;(3)如图2,连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,∠CMQ 会变化吗?若变化,则说明理由;若不变,请直接写出它的度数.25.(2022·江苏·扬州市江都区第三中学七年级期中)如图1的图形我们把它称为“8字形”,显然有A B C D ∠+∠=∠+∠;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数;(2)①在图3中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,并说明理由.②在图4中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B 、D ∠的关系,直接写出结论,无需说明理由.(3)在(2)的条件下,若40GHCS=,CE =15,请直接写出BF 的长.26.(2022·陕西·西安铁一中分校七年级期末)如图①,在Rt ABC △中,90ACB ∠=︒,AC=BC ,l 是过点C 的任意一条直线,过A 作AD ∠l 于D ,过B 作BE ∠l 于E .(1)求证:△ADC ∠△CEB ;(2)如图②延长BE 至F ,连接CF ,以CF 为直角边作等腰Rt FCG ,90FCG ∠=︒,连接AG 交l 于H .试探究BF 与CH 的数量关系.并说明理由;2022-2023学年八年级上学期期中考前必刷卷03(人教版2022)数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 13 14B C B D B B A D D A C B A D1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.选项B不能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:根据题意,如图:︒-︒-︒=︒,根据三角形内角和定理,第一个三角形中边长为b的对角为:180606555∠图中的两个三角形是全等三角形,∠第一个三角形中边长为b 的对角等于第二个三角形中的∠α, ∠∠α=55︒. 故选B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等. 4.D【分析】先根据角平分线的定义以及三角形外角的性质证明112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,由此得出规律11122n n n A A A -==∠∠∠,从而得到答案.【详解】解:∠ABC ∠和ACD ∠的平分线交于点1A ,∠1122ACD ACD ABC A BC ==∠∠,∠∠, ∠111A ABC ACD A A BC ACD +=+=∠∠∠,∠∠∠, ∠1122A A BC ACD +=∠∠∠,111222A A BC ACD ∠+∠=∠, ∠112A A ∠=∠,同理211124A A A ==∠∠∠,321128A A A ==∠∠∠,4311216A A A ==∠∠∠,,∠11122n n n A A A -==∠∠∠,∠201620162016122m A A ==∠∠,故选D .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,图形类的规律探索,熟知三角形外角的性质是解题的关键. 5.B【分析】先根据三角形的外角性质可得1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345∠+∠+∠+∠+∠正好是五边形的外角和为360︒. 【详解】解:如图:∠1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345360∠+∠+∠+∠+∠=︒,∠360A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒. 故选:B .【点睛】本题考查了三角形的外角性质以及多边形的外角和,解题的关键是得出1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=.6.B【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可. 【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,∠AP =BP ,AQ =BQ ,∠点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上, ∠ 直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ , 本选项不符合题意;B 、B 选项无法判定直线PQ 垂直直线l ,本选项符合题意;C 、如图,连接AP 、AQ 、BP 、BQ ,∠AP = AQ ,BP =BQ ,∠点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上, ∠ 直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ , 本选项不符合题意;D、如图,连接AC、BC、DP、PQ,∠AC=BC,AD=BD,∠点C在线段AB的垂直平分线上,点D在线段AB的垂直平分线上,∠ 直线CD垂直平分线线段AB,∠390∠=︒由作图痕迹可知:12∠=∠,∠CD PQ,∠4390∠=∠=︒∠PQ∠AB,本选项不符合题意;故选:B.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键.7.A【分析】根据作图得到AC=CD,AB=BD,证明∠ABC∠∠DBC,从而得到结论.【详解】解:由作图可知:AC=CD,AB=BD,∠BC=BC,∠∠ABC∠∠DBC(SSS),∠∠ABC=∠CBE,无法证明其余三个选项的结论,故选A.【点睛】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 8.D【分析】证明Rt △FDC ∠Rt △DEB (HL ),由全等三角形的性质得出∠DFC =∠EDB =25°,即可得出答案.【详解】解:∠∠AFD =155°, ∠∠DFC =25°, ∠DF ∠BC ,DE ∠AB , ∠∠FDC =∠DEB =90°,在Rt △FDC 和Rt △DEB 中,CF BD CD BE =⎧⎨=⎩,∠Rt △FDC ∠Rt △DEB (HL ), ∠∠DFC =∠EDB =25°,∠∠EDF =180°−∠BDE −∠FDC =180°−25°−90°=65°. 故选:D .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理和性质定理是解题的关键. 9.D【分析】在三个图中分别证明三角形全等,再根据全等三角形的性质即可得证. 【详解】解:在∠ABC 和∠DEC 中,DC ACDCE ACB EC BC =⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠DEC (SAS ), ∠AB =DE ,故乐乐的方案可行; ∠AB ∠BF , ∠∠ABC =90°, ∠DE ∠BF , ∠∠EDC =90°, 在∠ABC 和∠EDC 中,ABC EDC BC CDACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EDC (ASA ), ∠AB =ED ,故明明的方案可行; ∠BD ∠AB , ∠∠ABD =∠CBD , 在∠ABD 和∠CBD 中,ABD CBD BD BDBDC BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠CBD (ASA ), ∠AB =BC ,故聪聪的方案可行, 综上可知,三人方案都可行, 故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键. 10.A【分析】过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,先根据角平分线的性质得到PD PE PF ==,再利用三角形面积公式得到123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,,然后根据三角形三边的关系对各选项进行判断.【详解】解:过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,如图,CAB ∠和CBA ∠的角平分线相交于点P ,PD PF PD PE ∴==,,PD PE PF ∴==,123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,, AB AC BC <+,123S S S ∴<+.故选:A .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.11.C【分析】根据翻折后图形大小不变,三角形的外角和,三角形周长,即可判断出正确.【详解】∠ADE 是ABE △翻折而得的∠AB AD =,BAE DAE ∠=∠∠AE 垂直平分BD故①正确;∠Rt ABC 中,90ABC ∠=︒,45C ∠=︒∠45BAC ∠=︒ ∠122.52CAE BAE BAC ∠=∠=∠=︒ ∠BAE ABC CEA ∠+∠=∠∠22.590112.5CEA ∠=︒+︒=︒故②正确;∠ADE 是ABE △翻折而得的∠BE DE =,90ADE ∠=︒∠90EDC ∠=︒∠45C ∠=︒∠45CED ∠=︒∠DE DC =∠DC DE BE ==,但BE CE ≠∠E 不是BC 的中点故③错误;∠55CDB C DC BC BD DC BE EC DC DE EC =++=+++=+++CDE C DC DE EC =++∠5CDB CDE C C -=故④正确.故正确的结论的是:①②④.故选:C .【点睛】本题考查翻折的性质和三角形的知识,解题的关键是掌握翻折的性质,三角形外角和定理,三角形周长等.12.B【分析】先连接CE ,再根据EB =EC ,将FE +EB 转化为FE +CE ,最后根据两点之间线段最短,求得CF 的长,即为FE +EB 的最小值.【详解】解:如图,连接CE ,∠等边∠ABC 中,AD 是BC 边上的中线,∠AD 是BC 边上的高线,即AD 垂直平分BC ,∠EB =EC ,∠BE +EF =CE +EF ,∠当C 、F 、E 三点共线时,EF +EC =EF +BE =CF ,∠等边∠ABC 中,F 是AB 边的中点,∠AD =CF =6,即EF +BE 的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.13.A【分析】先根据SAS 定理证出ACD CBE ≅,从而可得60AFG =︒∠,根据等边三角形的判定可得AFG 是等边三角形,再根据SAS 定理证出ACF ABG ≅,从而可得60BGC BAC AFG ∠=∠=︒=∠,根据平行线的判定可得AF BG ∥,从而可得AFG ABF S S m ==,然后根据:5:3AF EF =可得:2:5EG FG =,最后根据三角形的面积公式即可得.【详解】解:∠ABC 是等边三角形,∠,60BC AC AB ACB CBA BAC ==∠=∠=∠=︒,在ACD △和CBE △中,BC AC ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∠()SAS ACD CBE ≅,∠CAD BCE ∠=∠,∠60BCE ACE ACB ∠+∠=∠=︒,∠60AFG CAD ACE BCE ACE ∠=∠+∠=∠+∠=︒,∠FG FA =,∠AFG 是等边三角形,,60AF AG FAG ∴=∠=︒,BAC BAD FAG BAD ∴∠-∠=∠-∠,即CAF BAG ∠=∠,在ACF 和ABG 中,AC AB CAF BAG AF AG =⎧⎪∠=∠⎨⎪=⎩,()SAS ACF ABG ∴≅,ACF ABG ∴∠=∠,又AEC BEG ∠=∠,60BGC BAC ∴∠=∠=︒,BGC AFG ∴∠=∠,AF BG ∴∥,AFG ABF S S m ∴==(同底等高),∠:5:3AF EF =,FG FA =,∠:5:3FG EF =,∠:2:5EG FG =,∠:2:5AEG AFG SS =, ∠2255AEG AFG S S m ==, 即AEG △的面积为25m , 故选:A .【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定与性质等知识点,正确找出两组全等三角形是解题关键.14.D【分析】由“SAS ”可证∠ABD ∠∠AEF ,利用全等三角形的性质判断可求解.【详解】解:∠AD ∠BC ,AF ∠BC ,∠AF ∠AD ,∠∠F AD =∠BAC =90°,∠∠F AE =∠BAD ,故①正确;在∠ABD 和∠AEF 中,AB BE BAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠AEF (SAS ),∠BD =EF ,∠ADB =∠AFE =90°,故②正确;∠AF =AD ,∠DAF =90°,∠∠AFD =45°=∠EFD ,∠FD 平分∠AFE ,故③正确;∠∠ABD ∠∠AEF ,∠S △ABD =S △AEF ,∠S 四边形ABDE =S 四边形ADEF ,故④正确;如图,过点E 作EN ∠EF ,交DF 于N ,∠∠FEN =90°,∠∠EFN =∠ENF =45°,∠EF =EN =BD ,∠END =∠BDF =135°,在∠BGD 和∠EGN 中,BDG ENG BGD EGN BD NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BDG ∠∠ENG (AAS ),∠BG =GE ,故⑤正确,故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.15.∠B =∠D (或∠C =∠E 或AB =AD )【分析】根据等式的性质可得∠BAC =∠DAE ,然后利用全等三角形的判定方法,即可解答.【详解】解:∠∠1=∠2,∠∠1+∠DAC =∠2+∠DAC ,∠∠BAC =∠DAE ,∠AE =AC ,∠再添加AB =AD ,利用“SAS”可以证明∠ABC ∠∠ADE ;添加∠B =∠D ,利用“AAS” 可以证明∠ABC ∠∠ADE ;添加∠C =∠E ,利用“ASA” 可以证明∠ABC ∠∠ADE .故答案为:∠B =∠D (或∠C =∠E 或AB =AD ).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法,是解题的关键. 16.6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =∠=∠=∠,再根据三角形的内角和定理可得30CBE ∠=︒,设AE BE x ==,则9CE x =-,在Rt BCE 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE 平分ABC ∠,ABE CBE ∴∠=∠, ED 垂直平分AB ,AE BE ∴=,ABE A ∴∠=∠,ABE CBE A ∴∠=∠=∠,又90C ∠=︒,90ABE CBE A ∴∠+∠+∠=︒,解得30CBE ∠=︒,设AE BE x ==,则9CE AC AE x =-=-,在Rt BCE 中,90C ∠=︒,30CBE ∠=︒,2BE CE ∴=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.17.5【分析】利用平行线之间的距离相等可得∠ABC 和∠BDE 的高相等,再根据点D 是BC 中点可得∠ABC 的面积是∠BDE 面积的2倍,从而可得结果.【详解】解:∠12l l ∥,∠∠ABC 和∠BDE 的高相等,∠点D 为BC 中点,10ABC S =△cm 2,∠S △ABC=2S △BDE =10cm 2,∠S △BDE =5cm 2,故答案为:5.【点睛】本题主要考查了平行线的性质,利用平行线之间的距离处处相等得出∠ABC 和∠BDE 的高相等是解题的关键.18.8【分析】根据等腰三角形的性质和三角形外角的性质依次可得1A AB ∠的度数,21A AC ∠的度数,32A A B ∠的度数,43A A C ∠的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.【详解】解:由题意可知:1121,AO A A A A A A ==,…;则111212AOA OA A A AA A A A ∠=∠∠=∠,,…; ∠∠BOC =10°,∠12 20A AB BOC ∠=∠=︒,同理可得21324354 30 40 50 60A AC A A B A A C A A B ∠=︒∠=︒∠=︒∠=︒,,,, 65768770 8090A A C A A B A A C ∠=︒∠=︒∠=︒,,,∠第9个三角形将有两个底角等于90°,不符合三角形的内角和定理,∠最多能画8条线段;故答案为:8.【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.19.∠AEC =75°,∠DAE =15°.【分析】根据三角形内角和定理求出∠BAC ,根据角平分线的定义得到∠BAE =∠CAE =12∠BAC =33°,根据三角形的外角性质求出∠AEC ,根据直角三角形的性质求出∠DAE .【详解】解:∠∠BAC +∠B +∠C =180°,∠B =42°,∠C =72°,∠∠BAC =66°,∠AE 平分∠BAC ,∠∠BAE =∠CAE =12∠BAC =33°, ∠∠AEC =∠B +∠BAE =75°,∠AD ∠BC ,∠∠ADE =90°,∠∠DAE =90°-∠AEC =15°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.20.(1)BD 的长为3;(2)∠ACE 的度数为110°.【分析】(1)利用全等三角形的性质得到CD =AB =1,BC =DE =2,据此即可求得BD 的长;(2)利用全等三角形的性质得到∠ECD =∠A ,再利用三角形的外角性质即可求解.(1)解:∠△ABC ∠△CDE ,AB =1,DE =2,∠CD =AB =1,BC =DE =2,∠BD =BC +CD =2+1=3;(2)解:∠△ABC ∠△CDE ,∠∠ECD =∠A ,∠∠ACD =∠ACE +∠ECD =∠A +∠B ,∠∠ACE =∠B =110°.【点睛】本题考查了全等三角形的性质.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.21.EG 垂直平分DF ,理由见解析【分析】根据题意,证明BDE ∠CEF △可得ED EF =,根据等腰三角形三线合一,结合G 是DF 的中点,即可得证.【详解】EG 垂直平分DF ,理由如下:AB AC =,B C ∴∠=∠,DEC B BDE DEF FEC ∠=∠+∠=∠+∠,DEF B ∠=∠,BDE CEF ∴∠=∠,在BDE 和CEF △中,B C BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,BDE ∴∠()CEF AAS ,ED EF ∴=, 又点G 是DF 的中点,EG ∴垂直平分DF .【点睛】本题考查了等腰三角形的性质,全等三角形的性质与判定,证明BDE ∠CEF △是解题的关键.22.(1)证明见解析(2)6【分析】(1)如图所示,连接BD ,CD ,先利用SAS 证明∠BGD ∠∠CGD 得到BD =CD ,再由角平分线的性质得到DE =DF ,即可利用HL 证明Rt ∠DEB ∠Rt ∠DFC 则BE =CF ;(2)证明Rt ∠ADE ∠Rt ∠ADF (HL ),得到AF =AE ,由(1)得BE =CF ,则AE =AF =AC +CF ,据此求出BE 的长,即可求出AE 的长.(1)解:如图所示,连接BD ,CD ,∠G 是BC 的中点,DG ∠BC ,∠BG =CG ,∠BGD =∠CGD =90°,又∠DG =DG ,∠∠BGD ∠∠CGD (SAS ),∠BD =CD ,∠AD 平分∠BAC ,DE ∠AB ,DF ∠AC ,∠DE =DF ,∠DEB =∠DFC =90°,又∠DB =DC ,∠Rt ∠DEB ∠Rt ∠DFC (HL ),∠BE =CF ;(2)解:在Rt ∠ADE 和Rt ∠ADF 中,AD AD DE DF =⎧⎨=⎩, ∠Rt ∠ADE ∠Rt ∠ADF (HL ),∠AF =AE ,由(1)得BE =CF ,∠AE =AF =AC +CF ,∠AB =AE +BE =AC +CF +BE =AC +2BE ,∠AB =8,AC =4,∠BE =2,∠AE =AB -BE =6.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,熟知全等三角形的性质与判定条件是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据尺规作图的步骤作图即可;(2)延长CO 至点E 使得OE OC =,连接BE ,先证明AOC BOE ∆≅∆,再证明∠DBE 是等腰三角形即可.【详解】(1)如图1,AC BD 、即为所求.(2)如图2,延长CO 至点E 使得OE OC =,连接BE∠O AB 点为线段的中点,=OA OB ∴,AOC BOE ∆∆在和中,∠=OC OE AOC EOB OA OB =⎧⎪∠∠⎨⎪=⎩,AOC BOE ∴∆≅∆,,AC BE ACO OEB ∴=∠=∠,AC BD =又,BE BD ∴=,BDO OEB ∴∠=∠,ACO BDO ∴∠=∠.【点睛】本题考查了尺规作图和全等三角形,解题的关键是做辅助线把所证的角或线段放到两个全等的三角形中.24.(1)t ,(6﹣t );(2)2或4;(3)∠CMQ不会变化,始终是60°,理由见解析【分析】(1)根据点P、Q的速度都为1厘米/秒.得到BQ=t厘米,AP=t厘米,则BP=AB-AP=(6-t)厘米;(2)分当∠PQB=90°时和当∠BPQ=90°时,两种情况讨论求解即可;(3)只需要证明△ABQ∠△CAP得到∠BAQ=∠ACP,则∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM =∠BAC=60°,即∠CMQ不会变化.(1)解:∠点P、Q的速度都为1厘米/秒.∠BQ=t厘米,AP=t厘米,∠BP=AB-AP=(6-t)厘米,故答案为:t,(6﹣t);(2)解:由题意得:AP=BQ=t厘米,BP=AB-AP=(6-t)厘米,①如图1,当∠PQB=90°时,∠△ABC是等边三角形,∠∠B=60°,∠∠BPQ=30°,∠PB=2BQ,得6﹣t=2t,解得,t=2,②如图2,当∠BPQ=90°时,∠∠B=60°,∠∠BQP=30°,∠BQ=2BP,得t=2(6﹣t),解得,t=4,∠当第2秒或第4秒时,△PBQ 为直角三角形;(3)解:∠CMQ 不变,理由如下:∠△ABC 是等边三角形,∠AB =AC ,∠ABC =∠CAB =60°,在△ABQ 与△CAP 中,60AB CA B CAP AP BQ t =⎧⎪∠=∠=︒⎨⎪==⎩,∠△ABQ ∠△CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°,∠∠CMQ 不会变化.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质与判定等等,熟知等边三角形的性质是解题的关键.24.(1)26P ∠=︒ (2)①12P B D ∠=∠+∠(),理由见解析; ②1180()2P B D ∠=︒-∠+∠; ③190+()2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P 的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P AD +∠P =∠PCD +∠D ,∠P AB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠P AD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∠AP 、CP 分别平分∠BAD 、∠BCD,∠∠1=∠2,∠3=∠4,∠∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC ②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC,∠2∠P =∠ABC +∠ADC,∠∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)12P B D ∠=∠+∠(),理由如下: ①∠AP 平分∠BAD 的外角∠F AD ,CP 平分∠BCD 的外角∠BCE ,∠∠1=∠2,∠3=∠4.由(1)的结论得:∠P AD +∠P =∠PCD +∠D ③,∠P AB +∠P =∠4+∠B ④,∠∠P AB =∠1,∠1=∠2,∠∠P AB =∠2,∠∠P AD=∠P AB+∠BAD=∠2+180°-2∠2=180°-∠2,∠∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠P AD +∠P =∠3+∠B +∠PCD +∠D ,∠∠2+∠P+180°-∠2+∠P=∠3+∠B+180°-∠3+∠D 即2∠P+180°=∠B+∠D+180°,∠12P B D∠=∠+∠().②11802P B D∠=︒-∠+∠(),理由如下:如图4,∠AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,∠BAD=180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD+∠B=∠BCD+∠D,∠(180°﹣2∠1)+∠B=(180°﹣2∠3)+∠D,在四边形APCB中,∠BAP+∠P+∠3+∠B=360°,即(180°﹣∠2)+∠P+∠3+∠B=360°,⑥在四边形APCD中,∠2+∠P+∠PCD+∠D=360°,即∠2+∠P+(180°﹣∠3)+∠D=360°,⑦⑥+⑦得:2∠P+∠B+∠D+∠2﹣∠2+∠3﹣∠3=360°∠2∠P+∠B+∠D=360°,∠11802P B D∠=︒-∠+∠();③1902P B D∠=︒+∠+∠(),理由如下:如图5,∠AP平分∠BAD,CP平分∠BCD的外角∠BCE,∠∠1=∠2,∠3=∠4,由题干结论得:∠BAD+∠B=∠BCD+∠D,即2∠2+∠B=(180°﹣2∠3)+∠D⑧,∠2+∠P=∠PCD+∠D,即∠2+∠P=(180°﹣∠3)+∠D⑨,⑨×2﹣⑧得:2∠P ﹣∠B =180°+∠D, ∠1902P B D ∠=︒+∠+∠().【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.26.(1)证明见解析(2)2BF CH =,理由见解析(3)323【分析】(1)先根据垂直的定义可得90ADC CEB ∠=∠=︒,从而可得90DAC DCA ∠+∠=︒,再根据90ACB ∠=︒可得DAC ECB ∠=∠,然后根据AAS 定理即可得证;(2)作AM CG ∥交直线l 于点M ,连接GM ,先根据ASA 定理证出ACM CBF ≅△△,根据全等三角形的性质可得,CM BF AM CF ==,从而可得AM GC =,再根据ASA 定理证出AMH GCH ≅△△,根据全等三角形的性质可得MH CH =,由此即可得出结论; (3)先根据ADC CEB ≅可得15AD CE ==,再根据AMH GCH ≅△△可得40G AMH HC S S ==△,利用三角形的面积公式可得163MH =,然后根据MH CH =,2BF CH =即可得出答案.(1)证明:,AD DE BE DE ⊥⊥,90ADC CEB ∴∠=∠=︒,90DAC DCA ∴∠+∠=︒,90ACB ∠=︒,90ECB DCA ∴∠+∠=︒,DAC ECB ∴∠=∠,在ADC 和CEB △中,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴≅△△.(2)解:2BF CH =,理由如下:如图,作AM CG ∥交直线l 于点M ,连接GM ,180MAC ACG ∴∠+∠=︒,3603609090180ACG BCF ACB FCG ∠+∠=︒-∠-∠=︒-︒-︒=︒,MAC BCF ∠=∠∴,90ACM BCE ∠+∠=︒,90BCE CBF ∠+∠=︒,ACM CBF =∠∴∠,在ACM △和CBF 中,MAC FCB AC CB ACM CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ACM CBF ∴≅△△,,CM BF AM CF ∴==,Rt FCG 是等腰直角三角形,CF GC ∴=,AM GC ∴=,又AM CG ∥,MAH CGH ∴∠=∠,AMH GCH ∠=∠,在AMH 和GCH △中,MAH CGH AM GC AMH GCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMH GCH ≅△△,MH CH ∴=,2BF CM CH ∴==.(3)解:如图,作AM CG ∥交直线l 于点M ,连接GM ,ADC CEB ≅△△,15CE =,15AD CE ∴==,AMH GCH ≅△△,40GHC S =, 40G AMH HC S S ∴==△,0124AD MH ∴⋅=,即420115MH =⨯, 解得163MH =, 又MH CH =,2BF CH =,3223BF MH ∴==. 【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的定义,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

河北省邢台地区2022-—2023学年上学期八年级期末考试数学试卷(含答案)

河北省邢台地区2022-—2023学年上学期八年级期末考试数学试卷(含答案)

2022——2023学年度第二学期期末教学质量检测八年级数学试卷(人教版)说明:本试卷共6页;考试时间:120分钟;满分120分三题号一二21222324252627总分得分一、精心选一选(本大题共16个小题, 1-6小题,每小题2分,7-16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数据2,4,3,4,5,3,4的众数是( )A .5B .4C .3D .22.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③3.下列各式中,一定能成立的是 ( )A .B .C .D .4.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( ) ①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A .1个B .2个C .3个D .4个5.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k 的值是( )A .5B .4C .3 D.16.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A.平均数B.众数C.方差D.中位数7.计算的结果是( ) A. B.C. D. 8.三角形的三边长分别为6,8,10,它的最长边上的高为( )A .2.4B .4C .4.8D .89.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差 S 甲2=0.006,乙10次立定跳远成绩的方差S 乙2=0.035,则( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定得 分评卷人22)5.2()5.2(=-22)(a a =1122-=+-x x x 3392+∙-=-x x x 32827⨯-333433532C .甲、乙两人的成绩一样稳定D .甲、乙两人成绩的稳定性不能比较10.如图,在△ABC 中,点D 、E 、F 分别是边AB 、BC 、CA 上的中点,且AB=6cm ,AC=8cm ,则四边形ADEF 的周长等于( )A. 6 cm B .8 cm C .12 cm D .14 cm11.关于x 的一次函数y=kx+k 2+1的图象可能正确的是( )A .B .C .D .12.对于函数y=﹣3x+1,下列结论正确的是( )A .它的图象必经过点(1,3) B.它的图象经过第一、二、四象限C .当x >0时,y <0D .y 的值随x 值的增大而增大13.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD ,BD .则下列结论: ①AC=AD;②BD⊥AC;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .313题图 14题图 15题图14.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A.﹣1﹣B .1﹣C .﹣D .﹣1+15.在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这 10个参赛单位的成绩,下列说法中错误的是()A.众数是90B.平均数是90C.中位数是90D.极差是1516.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,两人行驶的路程y (km)与行驶的时间x (h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是( )A .甲的速度是60km/hB .乙比甲早1小时到达C .乙出发3小时追上甲D .乙比甲的速度快二、耐心填一填(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.函数y =中,自变量x 的取值范围是____________.得分评卷人5555x 518.一个正方形的面积是5,那么这个正方形的对角线的长度为 .19.若一次函数y=kx+b 图象如图,当y>0时,x 的取值范围是_______________ .20.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这 两组20人的平均分为 .三、细心做一做(本大题有7个小题,共61分.解答应写出文字说明、证明过程或演算步骤)21(6分)方格纸中小正方形的顶点叫格点.点A 和点B 是格点,位置如图.(1)在图1中确定格点C 使△ABC 为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D 使△ABD 为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D 有__________个.22(6分)阅读:,,……, (1)观察上面结果,直接写出. (2)利用以上提供的方法计算: .得分评卷人121212)12)(21(12211-=--=-+-=+32431-=+=++11n n 100991431321211++++++++23(8分)已知一次函数y=X+5,画出这个函数的图像(写出正确的步骤,作出正确的图形)24(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.25(10分)为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表每周做家务的时间(小时)01 1.52 2.53 3.54人数(人)2268121343根据上表中的数据,回答下列问题:(1)这组数据的中位数.众数分别是:小时,小时(2)该班学生每周做家务劳动的平均时间应是多少小时?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.26(11分)如图,直线l1的解析表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)点D的坐标是:(2)求直线l2的解析表达式;(3)求△ADC的面积.27(12分)为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)课外阅读时间的中位数落在哪一时间段内?(3)求课外阅读时间在1.5-2小时的人数(4)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?八年级数学试卷参考答案一.精心选一选1.B 2.D 3.A 4.C 5.D 6.D 7.C 8.C 9.A10.D 11.C 12.B 13.D 14.A 15.B 16.C二.耐心填一填17. x≤5 18.19.<-1 20.74三.细心做一做21.解:(1)(2)如图所示:………4分(3)在图2中满足题(2)条件的格点D有4个.………6分22.(1)………2分(2)=-1+-+-+…+-=-1=10-1=9………6分23. 解:(1)列表……2分x01y56(2)描点……3分(3)连线……4分作图正确……8分24.解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.………3分(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,OD=OB,∠AOB=90°,………5分由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,∴四边形CODE的周长=2(3+4)=14.………8分25.解:(1)这组数据的中位数是2.5(小时),众数是3(小时).………4分(2)该班学生每周做家务劳动的平均时间为=2.44(小时).答:该班学生每周做家务劳动的平均时间为2.44小时.………8分(3)答案不统一:只要叙述内容与上述数据有关或与做家务劳动有关,并且态度积极即可.………10分26.解:(1)D(1,0)………2分(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,∴, ………4分∴,∴直线l2的解析表达式为; ……… 6分(3)由,解得,∴C(2,-3), ……… 9分∵AD=3,∴S△ADC=×3×|-3|=. ……… 11分27.解:(1)总人数=30÷25%=120人;………3分(2)落在1~1.5内.………6分(3)24人………9分(4)不少于1.5小时所占的比例=10%+20%=30%,∴不少于1.5小时的人数=800×30%=240人.………12分。

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。

人教版2022-2023学年度上学期八年级期末测试数学试卷1(含解析)

人教版2022-2023学年度上学期八年级期末测试数学试卷1(含解析)

2022-2023学年八年级上期期末试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中是轴对称图形的是()A.B.C.D.2.(3分)正六边形的每一个外角等于()A.30°B.60°C.120°D.135°3.(3分)如图,△ABC≌△DEF,若∠A=130°,∠FED=15°,则∠C等于()A.15°B.25°C.35°D.45°4.(3分)若分式的值为0,则x的取值为()A.x=1B.x=±1C.x=﹣1D.x=05.(3分)若分式有意义,则x的取值范围是()A.x>2B.x<2C.x≠2D.x=26.(3分)如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD 的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.37.(3分)题目:“如图,∠B=45°,BC=4,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d=3,乙答:d≥4,丙答:d=,则正确的是()A.只有乙答的对B.乙、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整8.(3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.B.C.D.9.(3分)如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.1110.(3分)如图,△ABC中,∠BAC=90°,AB=AC、BM是AC边的中线,有AD⊥BM;垂足为点E交BC于点D.且AH平分∠BAC交BM于N.交BC于H.连接DM.则下列结论:①∠AMB=∠CMD;②HN=HD;③BN=AD;④∠BNH=∠MDC;错误的有()个.A.0B.1C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.(3分)点A(﹣5,m)和B(n,﹣3)关于y轴对称,m+n=.12.(3分)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,AB=5,AC=7,则△AMN 的周长为.13.(3分)一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是.14.(3分)已知(a2+b2+3)(a2+b2﹣3)=7,ab=3,则(a+b)2=.15.(3分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三.解答题(共14小题,满分75分)16.(8分)先化简,再求值:(1﹣)÷,x取一个合适的值代入.17.(8分)如图,在所给的平面直角坐标系中,正方形网格单位长度是1,△ABC的顶点都在格点上、(1)已知A(﹣5,0),B(﹣1,0),C(﹣3,2),作出△ABC关于y轴对称的△A'B'C’,并写出点A',B’,C’的坐标;(2)在y轴上作出点P,使P A+PC最小.18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.19.(9分)我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5,余式是;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除,请直接写出a、b的值.20.(10分)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.21.(10分)第24届冬奥会将于2022年2月4日在北京市和张家口市举行,某经销商预测有“冰墩墩”吉祥物标志的甲、乙两种纪念品能畅销.经核算,用1650元购买甲种纪念品的数量比用4400元购买乙种纪念品的数量多10个,且乙种纪念品的单价是甲种纪念品的4倍.(1)求甲、乙两种纪念品的单价;(2)现该经销商计划购买甲、乙两种纪念品共2100个,购买甲种纪念品的数量不超过800个,且甲种纪念品的数量不低于乙种纪念品的数量的一半,求购买甲种纪念品的数量的取值范围.22.(10分)如图,已知△ABC是等边三角形,点D是BC边上一点.(1)如图1,以AD为边构造等边△ADE(其中点D、E在直线AC两侧),猜想CE与AB的位置关系,并证明你的结论;(2)如图2,过点C作CM∥AB,在CM上取一点F,连接AF、DF,使得∠ADF=60°,猜想△ADF的形状,并证明你的结论.23.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.2022-2023学年八年级上期期末试卷(1)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中是轴对称图形的是()A.B.C.D.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.2.(3分)正六边形的每一个外角等于()A.30°B.60°C.120°D.135°【解答】解:正六边形的每一个外角等于360°÷6=60°,故选:B.3.(3分)如图,△ABC≌△DEF,若∠A=130°,∠FED=15°,则∠C等于()A.15°B.25°C.35°D.45°【解答】解:∵△ABC≌△DEF,∠FED=15°,∴∠B=∠DEF=15°,∴∠C=180°﹣∠B﹣∠A=180°﹣15°﹣130°=35°,故选:C.4.(3分)若分式的值为0,则x的取值为()A.x=1B.x=±1C.x=﹣1D.x=0【解答】解:∵分式的值为0,∴2x+2≠0且x2﹣1=0.∴x=1.故选:A.5.(3分)若分式有意义,则x的取值范围是()A.x>2B.x<2C.x≠2D.x=2【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:C.6.(3分)如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD 的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.3【解答】解:∵直线MN为线段AD的垂直平分线,P为MN上的一个动点,∴点A与点D关于直线MN对称,∴AC与这些MN的交点即为点P,PC+PD的最小值=AC的长度=1,故选:A.7.(3分)题目:“如图,∠B=45°,BC=4,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d=3,乙答:d≥4,丙答:d=,则正确的是()A.只有乙答的对B.乙、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【解答】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=4,∴AC=BC•sin45°=4×=2,即此时d=2,②当CA=BC时,∵∠B=45°,BC=4,∴∠CAB=45°,∠ACB=90°,∴AC=4,即d≥4,综上,当d=2或d≥4时能作出唯一一个△ABC,故选:B.8.(3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.B.C.D.【解答】解:A、=≠,故A不符合题意.B、≠,故B不符合题意.C、=,故C不符合题意.D、=,故D符合题意.故选:D.9.(3分)如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.11【解答】解:如图所示:满足条件的点C有9个,故选:B.10.(3分)如图,△ABC中,∠BAC=90°,AB=AC、BM是AC边的中线,有AD⊥BM;垂足为点E交BC于点D.且AH平分∠BAC交BM于N.交BC于H.连接DM.则下列结论:①∠AMB=∠CMD;②HN=HD;③BN=AD;④∠BNH=∠MDC;错误的有()个.A.0B.1C.3D.4【解答】解:如图,作KC⊥CA交AD的延长线于K.∵AB=AC,∠BAC=90°,AH平分∠BAC,∴AH⊥BC,BH=CH,∴AH=BH=CH,∵AD⊥BM,∴∠BHN=∠AEN=∠AHD=90°,∵∠BNH=∠ANE,∴∠HBN=∠DAH,∴△BHN≌△AHD(ASA),∴HN=DH,BN=AD,∠BNH=∠ADH=∠CDK,故②③正确,∵∠BAM=∠ACK=90°,∴∠BAE+∠CAK=90°,∴∠BAE+∠ABM=90°,∴∠ABM=∠CAK,∵AB=AC,∴△ABM≌△CAK(ASA),∴∠AMB=∠K,AM=CK=CM,∵∠DCM=∠DCK=45°,CD=CD,∴△CDM≌△CDK(SAS),∴∠CDK=∠CDM,∠K=∠CMD,∴∠AMB=∠CMD,∠BNH=∠MDC,故①④正确.故选:A.二.填空题(共5小题,满分15分,每小题3分)11.(3分)点A(﹣5,m)和B(n,﹣3)关于y轴对称,m+n=2.【解答】解:∵点A(﹣5,m)和B(n,﹣3)关于y轴对称,∴n=5,m=﹣3,∴m+n=2,故答案为:2.12.(3分)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,AB=5,AC=7,则△AMN 的周长为12.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴MO=MB,NO=NC,∵AB=5,AC=7,∴△AMN的周长=AM+MN+AN=AM+MO+ON+AN=AM+MB+NC+AN=AB+AC=5+7=12,故答案为:12.13.(3分)一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是八.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.14.(3分)已知(a2+b2+3)(a2+b2﹣3)=7,ab=3,则(a+b)2=10.【解答】解:∵(a2+b2+3)(a2+b2﹣3)=7,ab=3,即(a2+b2)2﹣32=7,∴(a2+b2)2=7+9=16,∴a2+b2=4,∴(a+b)2=a2+b2+2ab=4+2×3=4+6=10.故答案为:10.15.(3分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【解答】解:法一:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.法二:证明点O是△ABC的外心,推出∠BOC=108°,根据OB=OC,推出∠OCE=36°可得结论.故答案为:108.三.解答题(共14小题,满分75分)16.(8分)先化简,再求值:(1﹣)÷,x取一个合适的值代入.【解答】解:原式=(﹣)•=•=,由分式有意义的条件可知:x可取0,∴原式==﹣1.17.(8分)如图,在所给的平面直角坐标系中,正方形网格单位长度是1,△ABC的顶点都在格点上、(1)已知A(﹣5,0),B(﹣1,0),C(﹣3,2),作出△ABC关于y轴对称的△A'B'C’,并写出点A',B’,C’的坐标;(2)在y轴上作出点P,使P A+PC最小.【解答】解:(1)如图,△A'B'C’为所作,A′(5,0),B′(1,0),C′(3,2);(2)如图,点P为所作.18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.【解答】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=180°﹣40°﹣70°=70°.19.(9分)我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5,余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除,请直接写出a、b的值.【解答】解:我阅读:(iii)余式是﹣x+1,故答案为:0x2,﹣5x2,﹣5x2,﹣5x2+0x﹣5,﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1,∵x4+x3+ax2+x+b能被x2+x+1整除,∴(2﹣a)x+b﹣a+1=0,∴2﹣a=0且b﹣a+1=0,解得a=2,b=1.20.(10分)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.【解答】解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.21.(10分)第24届冬奥会将于2022年2月4日在北京市和张家口市举行,某经销商预测有“冰墩墩”吉祥物标志的甲、乙两种纪念品能畅销.经核算,用1650元购买甲种纪念品的数量比用4400元购买乙种纪念品的数量多10个,且乙种纪念品的单价是甲种纪念品的4倍.(1)求甲、乙两种纪念品的单价;(2)现该经销商计划购买甲、乙两种纪念品共2100个,购买甲种纪念品的数量不超过800个,且甲种纪念品的数量不低于乙种纪念品的数量的一半,求购买甲种纪念品的数量的取值范围.【解答】解:(1)设甲种纪念品的单价为x元,则乙种纪念品的单价为4x元,由题意得:﹣=10,解这个分式方程得:x=55,经检验,x=55是原方程的解,且符合题意,∴4x=4×55=220,答:甲种纪念品的单价为55元,乙种纪念品的单价为220元;(2)设购买甲种纪念品的数量为a个,则购买乙种纪念品的数量为(2100﹣a)个,由题意得:,解这个不等式组得:700≤a≤800,∴甲种纪念品的数量a的取值范围为700≤a≤800,且a为正整数.22.(10分)如图,已知△ABC是等边三角形,点D是BC边上一点.(1)如图1,以AD为边构造等边△ADE(其中点D、E在直线AC两侧),猜想CE与AB的位置关系,并证明你的结论;(2)如图2,过点C作CM∥AB,在CM上取一点F,连接AF、DF,使得∠ADF=60°,猜想△ADF的形状,并证明你的结论.【解答】解:(1)CE∥AB,理由如下:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠BAC=∠ACE,∴CE∥AB;(2)△ADF是等边三角形,理由如下:在BA上取点G,使BG=BD,连接DG,则△BDG是等边三角形,∴∠BGD=60°,BG=DG,∴∠AGD=120°,∵CM∥AB,∴∠DCF=180°﹣∠B=120°,∴∠AGD=∠DCF,∵∠ADF=∠B=60°,∴∠CDF+∠ADB=∠ADB+∠BAD,∴∠CDF=∠BAD,∵AB=BC,BG=BD,∴AG=CD,在△AGD和△DCF中,,∴△AGD≌△DCF(ASA),∴AD=DF,∵∠ADF=60°,∴△ADF是等边三角形.23.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE=CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件α+∠BCA=180°,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.【解答】解:(1)①∵∠BEC=∠CF A=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.②α+∠BCA=180°,理由如下:∵∠BEC=∠CF A=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.(2)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CF A中,∴△BEC≌△CF A(AAS).∴BE=CF,EC=F A.∴EF=EC+CF=F A+BE,即EF=BE+AF.。

上海市市西初级中学2022-2023学年八年级上学期期中考试八数学试卷带讲解

上海市市西初级中学2022-2023学年八年级上学期期中考试八数学试卷带讲解
【详解】解:延长 到E,使 ,连接
∵ 的中线,
∴ ,
在 中,

∴ ,
∴ ,
根故答案为: .
【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出 是解此题的关键.
16.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.
∵ ,
∴ ,
∵ ,
∴ ;
如图,当一腰上高在三角形外部时,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ;
综上所述,它的顶角度数为 或 .
故答案为: 或
【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.
15.若 中, ,则中线 的取值范围是____________.
【答案】
【分析】延长 到E,使 ,连接 ,证 ,推出 ,根据三角形的三边关系求出即可.
D、两条平行线被第三条直线所截,内错角的平分线互相平行说法正确,所以D选项不符合题意.
故选:C.
【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
【详解】解:∵ 0,


故答案为:
【点睛】本题考查二次根式的运算法则以及不等式的基本性质,解题的关键是判断 与0的大小关系,本题属于基础题型.
10.比较大小: ______ .
【答案】>
【分析】先求出 与 的倒数,然后进行大小比较.
【详解】∵

湖北省武汉市东湖高新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

湖北省武汉市东湖高新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

2022-2023学年湖北省武汉市东湖高新区八年级第一学期期末数学试卷一、选择题(共10小题.每小题3分,共30分).1.下列阿拉伯数字是轴对称图形的是( )A.6B.0C.11D.692.若分式有意义,则实数x的取值范围是( )A.x≠1B.x≠﹣1C.x=1D.x=﹣13.0.000000301用科学记数法表示为( )A.3.01×10﹣7B.3.01×10﹣6C.0.301×10﹣6D.30.1×10﹣7 4.下列运算正确的是( )A.x3•x﹣5=x﹣2B.(3x)3=9x3C.(﹣a﹣1b2)3=a﹣3b6D.5.如图,已知∠ACB=∠ACD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.AC平分∠BAD C.AB=AD D.∠B=∠D 6.计算结果为( )A.B.C.a﹣b D.7.下列因式分解正确的是( )A.a3﹣a=a(a2﹣1)B.16x2+24x+9=(8x+3)2C.25x2﹣y2=(5x+y)(5x﹣y)D.2m(m+n)+6n(m+n)=(2m+6n)(m+n)(m+n)8.如图,已知△CBE≌△DAE,连接AB、∠ABE=65°,∠BAD=30°,则∠CBE的度数为( )A.25°B.30°C.35°D.65°9.两个小组同时攀登一座480m高的山,第一组的攀登速度是第二组的1.5倍,第一组比第二组早0.5h到达顶峰,设第二组的攀登速度为vm/min,则下列方程正确的是( )A.B.C.D.10.如图,在△ABC中,AD平分∠CAB,下列说法:①若CD:BD=2:3,则S△ACD:S△ABD=4:9;②若CD:BD=2:3,则AC:AB=2:3;③若∠C=90°,AC+AB=20,CD=3,则S△ABC=30;④若∠C=90°,AC:AB=5:13,BC=36,则CD=10.其中正确的是( )A.①②B.②③C.①③④D.②③④二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.若分式的值为0,则x的值为 .12.若正n边形的每个内角的度数为140°.则n的值是 .13.已知,则= .14.如图,已知∠ABC=60°,DB=12,DE=DF,若EF=2,则BE= .15.已知,在△OPQ中,OP=OQ,OP的垂直平分线交OP于点D,交直线OQ于点E,∠OEP=50°,则∠POQ= .16.如图,△DOE的角平分线OF、EF相交于点F、若∠DOE=60°,EF交OD于A、DF 交OE于B.直接写出AD、BE、DE的数量关系 .三、解答题(共8小题.共72分)下列各题解答应写出文字说明,证明过程或演算过程17.(1)计算:(a+1)(a﹣3);(2)因式分解:(x+y)2﹣(2x)2.18.(1)解分式方程:.(2)先化简,再求值:,其中a=5.19.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,∠B=∠DEF,求证:∠A=∠D.20.如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=α,若DE=8,BD=2,求CE的长.21.如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点,E为AC上一格点,点D为AB上任一点.仅用无刻度的直尺在给定网格中完成画图,画图结果用实线表示,画图过程用虚线表示.(1)在图1中,先将线段AB向右平移得到线段CF、画出线段CF,再在CF上画点G,使CG=AD;(2)在图2中,先画出点D关于AC的对称点H、再在AB上找一点G,使∠GEA=∠DEC.22.“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:a(b+c)=ab+ac;例2:由图2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,从中你发现的结论用等式表示为 ;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如图4,拼成AMGN为大长方形,记长方形ABCD的面积与长方形EFGH的面积差为S.设CD=x,若S的值与CD无关,求a与b之间的数量关系.23.【问题提出】如图1,在△ABC中,AB=AC,D是BC延长线上的点.连AD,以AD 为边作△ADE(E、D在AC同侧),使DA=DE、∠ADE=∠BAC,连CE.若∠BAC=90°,判断CE与AC的位置关系,并说明理由.(1)【问题探究】先将问题特殊化.如图2,当D在线段BC上,∠BAC=60°时,直接写出∠ACE的度数 ;(2)再探究具体情形、如图1,判断CE与AC的位置关系,并说明理由.(3)如图3,在△ABC中,AB=AC.点E为△ABC外一点,AD⊥BE于D,∠BEC=∠BAC,DE=3,EC=2.则BD的长为 .24.在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a﹣4)2+|a﹣b|=0.(1)求点A、点B的坐标.(2)P(0,t)为y轴上一动点,连接AP,过点P在线段AP上方作PM⊥PA,且PM=PA.①如图1,若点P在y轴正半轴上,点M在第一象限,连接MB,过点B作PM的平行线交x轴于点R,求点R的坐标(用含t的式子表示).②如图2,连接OM,探究当OM取最小值时,线段OM与AB的关系.参考答案一、选择题(共10小题.每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.B.2.B.3.A.4.A.5.C.6.B.7.C.8.C.9.D.10.D.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.1.12.9.13.11.14.5.15.65°或115°.16.DE=DA+EB.三、解答题(共8小题.共72分)下列各题解答应写出文字说明,证明过程或演算过程17.解:(1)(a+1)(a﹣3)=a2+a﹣3a﹣3=a2﹣2a﹣3;(2)(x+y)2﹣(2x)2=(x+y+2x)(x+y﹣2x)=(3x+y)(y﹣x).18.解:(1)方程两边乘x(x+3),得2(x+3)=5x解得x=2经检验,x(x+3)≠0所以,原分式方程的解为x=2(2)===,当a=5时,原式=19.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.20.解:∵∠AEC=∠BAC=α,∴∠ECA+∠CAE=180°﹣α,∠BAD+∠CAE=180°﹣α,∴∠ECA=∠BAD,在△BAD与△ACE中,,∴△BAD≌△ACE({AAS}),∴CE=AD,AE=BD=2,∵DE=8,∴AD=DE﹣AE=8﹣2=6,∴CE=AD=6.21.解:(1)如图所示,CG即为所作,(2)如图,点G即为所作.22.解:(1)∵正方形面积为(a+b+c)2,小块四边形面积总和为a2+b2+c2+2ab+2bc+2ac ∴由面积相等可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)由(1)可知2ab+abc+2ac=(a+b+c)2﹣(a2+b2+c2),∵a+b+c=10,a2+b2+c2=36;∴2(ab+bc+ac)=(a+b+c)2﹣(a2+b2+c2)=100﹣36=64,∴.(3)由题意知,BC=2a,DE=3a,EH=CF=b,EF=CD+CF﹣DE=x+b﹣3a,∵S长方形ABCD﹣S长方形EFGH,∴S=CD•BC﹣EH•EF=x•2a﹣b•(x+b﹣3a),即S=2ax﹣bx﹣b2+3ab=(2a﹣b)x﹣b2+3ab,又∵S为定值,∴2a﹣b=0,即b=2a.23.解:(1)∵AB=AC,∠BAC=60°∴△ABC为等边三角形∴∠B=60°∵∠ADE=∠BAC∴∠ADE=60°∵DA=DE∴△ADE是等边三角形,∴∠DAE=60°∴∠DAE=∠BAC∴∠BAD=∠CAE又AB=AC,DA=DE∴△ABD≌△ACE,∴∠ACE=∠B=60°.故答案为:60°;(2)过D作DF⊥CD,交AC的延长线于F,如图所示:则∠FDC=90°,∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,∴∠ACB=45°,∴∠FCD=∠ACB=45°,∴△FDC为等腰直角三角形,∴DC=DF,∠CDF=90°,∵DA=DE,∠ADE=∠BAC,∴△ADE为等腰直角三角形,∴∠ADE=90°,∴∠ADE+∠ADC=∠CDF+∠ADC,即∠ADF=∠EDC,在△AFD和△ECD中,,∴△AFD≌△ECD(SAS),∴∠FAD=∠CED,∵∠FAD+∠ACE=∠CED+∠ADE,∴∠ACE=∠ADE=90°∴CE⊥AC(3)过A作AF⊥CE,交CE的延长线于F,如图所示:则∠AFC=90°,∵AD⊥BE,∴∠ADB=∠ADE=90°,∵∠BEC=∠BAC,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(AAS),∴BD=CF,AD=AF,在Rt△ADE和Rt△AFE中,,∴Rt△ADE≌Rt△AFE(HL),∴DE=EF=3,∴CF=CE+EF=5,∴BD=CF=5.故答案为:5.24.解:(1)∵a,b满足(a﹣4)2+|a﹣b|=0,(a﹣4)2≥0,|a﹣b|≥0,∴(a﹣4)2=0,|a﹣b|=0,解得,∴A(4,0),B(0,4);(2)①∵PM⊥AP,∴∠MPA=∠AOP=90°,∴∠MPB+∠APO=∠OAP+∠APO=90°,∴∠MPB=∠OAP,又∵BR∥MP,∴∠MPB=∠RBO,∴∠PAO=∠RBO,而A(4,0),B(0,4)∴OA=OB,在△OBR和△OAP中,,∴△RBO≌△PAO(ASA),∴RO=PO;∵P(0,t)且点P在y轴正半轴上,∴R(﹣t,0);②如图3,过点M作MN⊥y轴于N,∵PM⊥PA,∴∠MPA=90°,∵∠PAO+∠APO=90°,∴∠MPN=∠PAO,∵PM=PA,∠PNM=∠POA=90°,∴△PMN≌△APO(AAS),∴MN=PO,PN=OA,又∵OA=OB,∴OB=PN,∴BN=OP=MN,∴△BMN是等腰直角三角形,∴∠NBM=45°,∴M点在过B点且与y轴正半轴成45°夹角的直线上运动;如图4,设直线BM与x轴交于点D,当OM⊥BD时,OM最小,∵∠MBN=∠OBA=∠BAO=45°,∴△BDA是等腰直角三角形,∴△BOD是等腰直角三角形,且BD=BA,又∵OM⊥BD,∴△BMO、△DMO均是等腰直角三角形,∴,∠MOD=∠BAO,∴且OM∥AB;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年上学期上海八年级初中数学期末典型试卷2一.选择题(共10小题)1.(2022春•上海期末)直角三角形中两锐角平分线所交成的角的度数是( ) A .45°B .135°C .45°或135°D .都不对2.(2021秋•静安区期末)一个多边形的内角和是外角和的3倍,则这个多边形是( ) A .五边形B .六边形C .七边形D .八边形3.(2021秋•普陀区期末)如图,已知点B 、D 、C 、F 在同一条直线上,AB ∥EF ,AB =EF ,AC ∥DE ,如果BF =6,DC =3,那么BD 的长等于( )A .1B .32C .2D .34.(2022春•杨浦区校级期末)如图,在直角三角形ABC 中,∠ACB =90°,∠B =36°,点D 、E 在AB 上,如果BC =BD ,∠CED =∠CDE ,那么图中的等腰三角形共有( )个.A .3个B .4个C .5个D .6个5.(2021秋•虹口区校级期末)如图,△ABC 中,AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,若∠BAC =70°,则∠EAN 的度数为( )A .35°B .40°C .50°D .55°6.(2021秋•普陀区期末)如果2(5﹣a )(6+a )=100,那么a 2+a +1的值为( ) A .19B .﹣19C .69D .﹣697.(2021秋•宝山区期末)下列运算结果正确的是( )A .a •a 2=a 2B .(﹣2a )2=2a 2C .﹣2(a ﹣1)=2﹣2aD .a 5﹣a 5=a 08.(2021秋•宝山区期末)已知分式2ab a+b的值为25,如果把分式2ab a+b中的a 、b 同时扩大为原来的3倍,那么新得到的分式的值为( ) A .25B .45C .65D .4259.(2021秋•浦东新区期末)下列说法正确的是( ) A .若A 、B 表示两个不同的整式,则AB 一定是分式B .如果将分式xyx+y中的x 和y 都扩大到原来的3倍,那么分式的值不变C .单项式23ab 是5次单项式D .若3m =5,3n =4,则3m ﹣n =5410.(2021秋•浦东新区期末)下列约分正确的是( ) A .x 6x 2=x 3B .x 2+y 2x+y=x +yC .x+my+m=xyD .15b−5a 2a−6b=−52二.填空题(共10小题)11.(2021秋•普陀区期末)新型冠状病毒颗粒呈球形或者椭圆形,传染性非常强,传播速度非常快,它的直径约为125纳米(0.000000125米)左右,将0.000000125用科学记数法表示为 .12.(2021秋•宝山区期末)如果关于x 的方程x x−2+2=kx−2无解,那么k = .13.(2021秋•普陀区期末)因式分解:ax ﹣by +ay ﹣bx = .14.(2021秋•普陀区期末)已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 .15.(2022春•普陀区校级期末)如图,等腰三角形ABC 中,AB =AC ,∠A =24°,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,联结BE ,则∠CBE = 度.16.(2022春•杨浦区校级期末)如图,G 是直线HA 上的点,若HA ∥BF ,FH =FG ,∠HFG=46°,则∠HFB=度.17.(2022春•徐汇区校级期末)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.18.(2022春•徐汇区校级期末)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.19.(2022春•奉贤区校级期末)一个多边形的内角和等于540度,那么它的边数是.20.(2022春•徐汇区校级期末)三角形的三边分别为5,1﹣a,9,则a的取值范围为.三.解答题(共10小题)21.(2022春•上海期末)在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?22.(2022春•杨浦区校级期末)如图,已知:AB=BC,∠BAD=∠BCD,试说明BD平分∠ABC的理由.23.(2022春•普陀区校级期末)已知:如图,△ABC 中,∠ABC =45°,AD 为△ABC 的高,点E 在边AC 上,BE 与AD 交于点F ,且DF =DC .说明BE ⊥AC 的理由. 解:∵AD 为△ABC 的高,∴∠ADB =∠ADC =90° ( ).∵∠ABD +∠BAD +∠ADB = °,∠ABC =45°, ∴∠BAD =∠ABD =45°. ∴BD =AD ( ). 在△BDF 与△ADC 中, {BD =AD∠BDF =∠ADC DF =DC, ∴△BDF ≌△ADC ( )(完成以下说理过程).24.(2022春•上海期末)在直角坐标系中有P (﹣2,2)和Q (5,8)两点,M 是x 轴上的任意一点,则PM +QM 长度的最小值是?25.(2022春•上海期末)在等边△ABC 中,BD ⊥AC ,垂足为D ,延长BC 到E ,使CE =12BC ,连结D 、E .(1)BD 与DE 有怎样的关系?请说明你的理由. (2)把BD 改成什么条件,还能得到(1)中的结论?26.(2021秋•宝山区期末)计算:(x ﹣2y +3)(x +2y ﹣3). 27.(2021秋•普陀区期末)计算:(a ﹣b )2﹣(2a ﹣b )(2a +b ).28.(2022春•杨浦区校级期末)甲、乙两个工程队要在规定的时间内完成一项工程,甲队单独做可以提前2天完工,乙队单独做要延期5天完成,现在两个工程队先合作4天,余下的由乙队继续去做正好如期完工,求这项工程规定的时间是多少天?29.(2021秋•普陀区期末)解方程:1+11−x2=x x+1.30.(2021秋•普陀区期末)计算:(2xyx+y )﹣1−2(x−y)x2÷x2−y2xy.2022-2023学年上学期上海八年级初中数学期末典型试卷2参考答案与试题解析一.选择题(共10小题)1.(2022春•上海期末)直角三角形中两锐角平分线所交成的角的度数是()A.45°B.135°C.45°或135°D.都不对【考点】三角形内角和定理;角平分线的定义.【分析】利用三角形的内角和定理以及角平分线的定义计算.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:C.【点评】①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;③三角形的外角通常情况下是转化为内角来解决.2.(2021秋•静安区期末)一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180=3×360,解得:n=8.故选:D.【点评】本题考查了多边形的内角和定理以及外角和定理,正确理解定理是关键.3.(2021秋•普陀区期末)如图,已知点B、D、C、F在同一条直线上,AB∥EF,AB=EF,AC∥DE,如果BF=6,DC=3,那么BD的长等于()A .1B .32C .2D .3【考点】全等三角形的判定与性质;平行线的性质.【专题】线段、角、相交线与平行线;图形的全等;推理能力.【分析】由平行线的性质得到∠B =∠F ,∠ACB =∠EDF ,证得△ABC ≌△EFD ,得到BC =FD ,进而得到BD =FC ,即可得出BD =12(BF ﹣DC )=32. 【解答】解:∵AB ∥EF , ∴∠B =∠F , ∵AC ∥DE , ∴∠ACB =∠EDF , 在△ABC 和△EFD 中, {∠ACB =∠EDF∠B =∠F AB =EF,∴△ABC ≌△EFD (AAS ), ∴BC =FD ,∴BC ﹣DC =FD ﹣DC , ∴BD =FC ,∴BD =12(BF ﹣DC )=12(6﹣3)=32. 故选:B .【点评】本题主要考查了全等三角形的判定与性质,证得ABC ≌△EFD 是解决问题的关键.4.(2022春•杨浦区校级期末)如图,在直角三角形ABC 中,∠ACB =90°,∠B =36°,点D 、E 在AB 上,如果BC =BD ,∠CED =∠CDE ,那么图中的等腰三角形共有( )个.A.3个B.4个C.5个D.6个【考点】等腰三角形的判定.【专题】等腰三角形与直角三角形;运算能力.【分析】先求出各个角的度数,然后根据等腰三角形的判定即可求出答案.【解答】解:∵∠ACB=90°,∠B=36°,∴∠A=54°,∵BC=BD,∴∠CDB=∠DCB=72°,∴∠ECB=36°,∠ACE=54°,∴CE=BE,AE=CE,∴△BCD,△CDE,△CEB,△ACE都是等腰三角形,故选:B.【点评】本题考查等腰三角形的判定,解题的关键是求出各个角的度数,本题属于基础题型.5.(2021秋•虹口区校级期末)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70°,则∠EAN的度数为()A.35°B.40°C.50°D.55°【考点】线段垂直平分线的性质.【专题】三角形;应用意识.【分析】根据三角形内角和定理可求∠B+∠C,根据垂直平分线性质,EA=EB,NA=NC,则∠EAB=∠B,∠NAC=∠C,从而可得∠BAC=∠BAE+∠NAC﹣∠EAN=∠B+∠C﹣∠EAN,即可得到∠EAN=∠B+∠C﹣∠BAC,即可得解.【解答】解:∵∠BAC=70°,∴∠B+∠C=180°﹣70°=110°,∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴EA=EB,NA=NC,∴∠EAB=∠B,∠NAC=∠C,∴∠BAC=∠BAE+∠NAC﹣∠EAN=∠B+∠C﹣∠EAN,∴∠EAN=∠B+∠C﹣∠BAC,=110°﹣70°=40°.故选:B.【点评】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN的关系式是关键.6.(2021秋•普陀区期末)如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19B.﹣19C.69D.﹣69【考点】多项式乘多项式.【专题】整体思想;整式;运算能力.【分析】先根据多项式乘以多项式法则计算2(5﹣a)(6+a)=100,得:a2+a=﹣20,最后整体代入可得结论.【解答】解:∵2(5﹣a)(6+a)=100,∴﹣a2+5a﹣6a+30=50,∴a2+a=﹣20,∴a2+a+1=﹣20+1=﹣19.故选:B.【点评】本题考查多项式乘多项式和整体思想的运用,掌握多项式乘多项式的运算法则(用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加)是解题关键.7.(2021秋•宝山区期末)下列运算结果正确的是()A.a•a2=a2B.(﹣2a)2=2a2C.﹣2(a﹣1)=2﹣2a D.a5﹣a5=a0【考点】幂的乘方与积的乘方;零指数幂;整式的加减;同底数幂的乘法.【专题】整式;运算能力.【分析】直接利用积的乘方运算法则以及整式的混合运算法则分别判断得出答案.【解答】解:A.a•a2=a3,不合题意;B.(﹣2a)2=4a2,不合题意;C.﹣2(a﹣1)=2﹣2a,符合题意;D.a5﹣a5=0,不符合题意;故选:C.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.8.(2021秋•宝山区期末)已知分式2aba+b 的值为25,如果把分式2aba+b中的a、b同时扩大为原来的3倍,那么新得到的分式的值为()A .25B .45C .65D .425【考点】分式的基本性质. 【专题】分式;运算能力.【分析】根据分式的基本性质进行计算即可解答.【解答】解:因为a 、b 同时扩大为原来的3倍后变为3a ,3b , 所以2⋅3a⋅3b 3a+3b =18ab 3a+3b =6ab a+b,∵分式2ab a+b的值为25,∴6ab a+b=3•2aba+b=3×25=65, 故选:C .【点评】本题考查了分式的基本性质,熟练掌握分式的基本性质进行计算是解题的关键. 9.(2021秋•浦东新区期末)下列说法正确的是( ) A .若A 、B 表示两个不同的整式,则AB 一定是分式B .如果将分式xyx+y中的x 和y 都扩大到原来的3倍,那么分式的值不变C .单项式23ab 是5次单项式D .若3m =5,3n =4,则3m ﹣n =54【考点】分式的基本性质;整式;单项式;同底数幂的除法. 【专题】整式;分式;运算能力.【分析】根据分式的定义,分式的基本性质,同底数幂的运算、单项式的定义即可求出答案.【解答】解:A 、若A 、B 表示两个不同的整式,则AB 不一定是分式,故A 不符合题意.B 、如果将分式xyx+y中的x 和y 都扩大到原来的3倍,那么分式的值变为原来3倍,故B不符合题意.C 、单项式23ab 是2次单项式,故C 不符合题意.D 、若3m =5,3n =4,则3m ﹣n =54,故D 符合题意.故选:D .【点评】本题考查分式的定义,分式的基本性质,同底数幂的运算、单项式的定义,本题属于基础题型.10.(2021秋•浦东新区期末)下列约分正确的是( )A .x 6x 2=x 3 B .x 2+y 2x+y =x +y C .x+m y+m =x y D .15b−5a 2a−6b=−52 【考点】约分.【专题】计算题;分式;运算能力.【分析】根据分式的基本性质进行约分计算,然后作出判断.【解答】解:A .x 6x 2=x 4,故此选项不符合题意; B .x 2+y 2x+y的分子分母中不含有公因式,不能进行约分,故此选项不符合题意; C .x+m y+m 的分子分母中不含有公因式,不能进行约分,故此选项不符合题意;D .15b−5a 2a−6b =−5(a−3b)2(a−3b)=−52,正确,故此选项符合题意; 故选:D .【点评】本题考查了约分:首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.二.填空题(共10小题)11.(2021秋•普陀区期末)新型冠状病毒颗粒呈球形或者椭圆形,传染性非常强,传播速度非常快,它的直径约为125纳米(0.000000125米)左右,将0.000000125用科学记数法表示为 1.25×10﹣7 . 【考点】科学记数法—表示较小的数.【专题】实数;数感.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【解答】解:0.000000125=1.25×10﹣7. 故答案为:1.25×10﹣7. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.(2021秋•宝山区期末)如果关于x 的方程x x−2+2=k x−2无解,那么k = 2 .【考点】分式方程的解.【专题】分式方程及应用;运算能力.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:x+2x﹣4=k,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:k=2,故答案为:2.【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.13.(2021秋•普陀区期末)因式分解:ax﹣by+ay﹣bx=(a﹣b)(x+y).【考点】因式分解﹣分组分解法.【专题】计算题;因式分解;整式;运算能力;应用意识.【分析】先分组,再提取公因式,再提取公因式.【解答】解:ax﹣by+ay﹣bx=(ax﹣bx)+(ay﹣by)=x(a﹣b)+y(a﹣b)=(a﹣b)(x+y).故答案为:(a﹣b)(x+y).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,提取公因式的熟练应用是解题关键.14.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为±2.【考点】因式分解﹣十字相乘法等.【专题】整式;运算能力.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.15.(2022春•普陀区校级期末)如图,等腰三角形ABC中,AB=AC,∠A=24°,线段AB的垂直平分线交AB于点D,交AC于点E,联结BE,则∠CBE=54度.【考点】等腰三角形的性质;线段垂直平分线的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】由等腰三角形ABC中,AB=AC,∠A=20°,可求得∠ABC的度数,又由线段AB的垂直平分线交AB于点D,交AC于点E,可求得AE=BE,即可求得∠ABE的度数,继而求得答案.【解答】解:∵DE是线段AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=24°,∵等腰三角形ABC中,AB=AC,∠A=24°,∴∠ABC=∠ACB=12(180°﹣∠A)=78°,∴∠CBE=∠ABC﹣∠ABE=78°﹣24°=54°.故答案为:54.【点评】此题考查了线段垂直平分线的性质,三角形内角和定理以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.16.(2022春•杨浦区校级期末)如图,G是直线HA上的点,若HA∥BF,FH=FG,∠HFG =46°,则∠HFB=113度.【考点】等腰三角形的性质;平行线的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质以及三角形内角和定理求出∠H,再根据平行线的性质即可求出∠HFB.【解答】解:∵FH=FG,∠HFG=46°,∴∠H=∠FGH=12(180°﹣∠HFG)=67°,∵HA∥BF,∴∠HFB=180°﹣∠H=113°.故答案为:113.【点评】本题考查了等腰三角形的性质,三角形内角和定理已经平行线的性质.掌握各定理是解题的关键.17.(2022春•徐汇区校级期末)如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.【考点】全等三角形的性质.【分析】先求出AB的长度,再根据全等三角形对应边相等解答即可.【解答】解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.【点评】本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.18.(2022春•徐汇区校级期末)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.19.(2022春•奉贤区校级期末)一个多边形的内角和等于540度,那么它的边数是5.【考点】多边形内角与外角.【专题】方程思想;多边形与平行四边形;运算能力.【分析】根据多边形的内角和公式:(n﹣2)•180°列出方程,解方程即可得出答案.【解答】解:设多边形的边数为n,(n﹣2)•180°=540°,解得:n=5.故答案为:5.【点评】本题考查了多边形的内角与外角,考查方程思想,掌握多边形的内角和公式:(n ﹣2)•180°是解题的关键.20.(2022春•徐汇区校级期末)三角形的三边分别为5,1﹣a,9,则a的取值范围为﹣13<a<﹣3.【考点】三角形三边关系.【专题】三角形;推理能力.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,可得9﹣5<1﹣a<9+5,再解不等式即可.【解答】解:根据三角形的三边关系可得:9﹣5<1﹣a<9+5,解得﹣13<a<﹣3,故答案为:﹣13<a<﹣3.【点评】本题考查了三角形的三边关系.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.三.解答题(共10小题)21.(2022春•上海期末)在△ABC中,AB=AC,∠1=12∠ABC,∠2=12∠ACB,BD与CE相交于点O,如图,∠BOC的大小与∠A的大小有什么关系?若∠1=13∠ABC,∠2=13∠ACB,则∠BOC与∠A大小关系如何?若∠1=1n∠ABC,∠2=1n∠ACB,则∠BOC与∠A大小关系如何?【考点】三角形内角和定理;角平分线的定义.【专题】三角形;推理能力.【分析】根据三角形的内角和得到∠A=180°﹣(∠ACB+∠ABC),∠BOC=180°﹣(∠1+∠2),代入已知条件即可得到结论.【解答】解:∵AB=AC,∠1=12∠ABC,∠2=12∠ACB,∴∠BOC=180°﹣(∠1+∠2)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A),即∠BOC=90°+12∠A;∵∠1=13∠ABC,∠2=13∠ACB,∴∠BOC=180°﹣(∠1+∠2)=180°−13(∠ABC+∠ACB)=180°−13(180°﹣∠A),即∠BOC=120°+∠A;∵∠1=1n∠ABC,∠2=1n∠ACB,∴∠BOC=180°﹣(∠1+∠2)=180°−1n(∠ABC+∠ACB)=180°−1n(180°﹣∠A),即∠BOC=n−1n180°+1n∠A.【点评】本题考查了等腰三角形的性质,三角形的内角和,角平分线的定义,熟练掌握三角形的内角和是解题的关键.22.(2022春•杨浦区校级期末)如图,已知:AB=BC,∠BAD=∠BCD,试说明BD平分∠ABC的理由.【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【分析】由等腰三角形的判定与性质证出DA=DC,证明△BAD≌△BCD(SSS),由全等三角形的性质得出∠ABD=∠CBD,则可得出结论.【解答】解:∵AB=BC,∴∠BAC=∠BCA,∵∠BAD=∠BCD,∴∠DAC=∠DCA,∴DA=DC,又∵BD=BD,∴△BAD≌△BCD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,证明△BAD ≌△BCD 是解题的关键.23.(2022春•普陀区校级期末)已知:如图,△ABC 中,∠ABC =45°,AD 为△ABC 的高,点E 在边AC 上,BE 与AD 交于点F ,且DF =DC .说明BE ⊥AC 的理由.解:∵AD 为△ABC 的高,∴∠ADB =∠ADC =90° ( 三角形高的定义 ).∵∠ABD +∠BAD +∠ADB = 180 °,∠ABC =45°,∴∠BAD =∠ABD =45°.∴BD =AD ( 等角对等边 ).在△BDF 与△ADC 中,{BD =AD ∠BDF =∠ADC DF =DC,∴△BDF ≌△ADC ( SAS )(完成以下说理过程).【考点】全等三角形的判定与性质.【专题】图形的全等;推理能力.【分析】利用SAS 证明△BDF ≌△ADC ,根据全等三角形的性质求出∠C +∠FBD =90°,进而得到∠BEC =90°,据此即可得解.【解答】解:∵AD 为△ABC 的高,∴∠ADB =∠ADC =90° (三角形高的定义),∵∠ABD +∠BAD +∠ADB =180°,∠ABC =45°,∴∠BAD =∠ABD =45°,∴BD =AD (等角对等边),在△BDF 与△ADC 中,{BD =AD ∠BDF =∠ADC DF =DC ,∴△BDF ≌△ADC (SAS ),∴∠BFD =∠C ,∵∠FBD +∠BFD =90°,∴∠C +∠FBD =90°,∴∠BEC =90°,∴BE⊥AC.故答案为:三角形高的定义;180;等角对等边;SAS.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.24.(2022春•上海期末)在直角坐标系中有P(﹣2,2)和Q(5,8)两点,M是x轴上的任意一点,则PM+QM长度的最小值是?【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】点P关于x轴的对称点为P′(﹣2,﹣2),线段P′M的长就是PM+QM长度的最小值,根据坐标系中两点间的距离公式计算即可.【解答】解:如图,∵点P(﹣2,2)关于x轴的对称点为P′(﹣2,﹣2),∴线段P′Q的长就是PM+QM长度的最小值,∵Q(5,8),∴P′Q=√(5+2)2+(8+2)2=√149,则PM+QM长度的最小值是√149.【点评】本题考查了最短线路问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.25.(2022春•上海期末)在等边△ABC中,BD⊥AC,垂足为D,延长BC到E,使CE=12BC,连结D、E.(1)BD与DE有怎样的关系?请说明你的理由.(2)把BD改成什么条件,还能得到(1)中的结论?【考点】等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】(1)由等边三角形的性质CD=12AC=12BC,∠CBD=12∠ABC=12∠ACB,由CE=12BC,得CE=CD,则有∠E=∠CDE,再由三角形的外角性质∠ACD=∠E+∠CDE,即有∠E=12∠ACD,从而得∠E=∠CBD,故得BD=DE;(2)根据等边三角形的性质,等边三角形的相应的高线,中线,角平分线重合,据此进行求解即可.【解答】解:(1)BD=DE,理由如下:∵等边△ABC,BD⊥AC,∴CD=12AC=12BC,∠CBD=12∠ABC=12∠ACB,∵CE=12BC,∴CE=CD,∴∠E=∠CDE,∵∠ACD是△CDE的外角,∴∠ACD=∠E+∠CDE,∴∠E=12∠ACD,∴∠E=∠CBD,∴BD=DE;(2)∵等边△ABC,∴等边三角形的相应的高线,中线,角平分线重合,∴可把BD改为:BD是边BC的中线或BD是∠ABC的平分线.【点评】本题主要考查等边三角形的性质,解答的关键是对等边三角形的“三线合一”的掌握.26.(2021秋•宝山区期末)计算:(x﹣2y+3)(x+2y﹣3).【考点】平方差公式.【专题】整式;运算能力.【分析】原式利用平方差公式,及完全平方公式化简即可得到结果.【解答】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.27.(2021秋•普陀区期末)计算:(a﹣b)2﹣(2a﹣b)(2a+b).【考点】平方差公式;完全平方公式.【专题】整式;运算能力.【分析】根据完全平方公式和平方差公式化简即可.【解答】解:原式=a2﹣2ab+b2﹣(4a2﹣b2)=a2﹣2ab+b2﹣4a2+b2=﹣3a2﹣2ab+2b2.【点评】本题考查了整式的混合运算,掌握平方差公式和完全平方公式是解答本题的关键.28.(2022春•杨浦区校级期末)甲、乙两个工程队要在规定的时间内完成一项工程,甲队单独做可以提前2天完工,乙队单独做要延期5天完成,现在两个工程队先合作4天,余下的由乙队继续去做正好如期完工,求这项工程规定的时间是多少天?【考点】分式方程的应用.【专题】分式方程及应用;运算能力;推理能力;应用意识.【分析】设这项工程规定的时间是x天,则甲队单独做需要(x﹣2)天完工,乙队单独做要(x+5)天完成,由题意:两个工程队先合作4天,余下的由乙队继续去做正好如期完工,列出分式方程,解方程即可.【解答】解:设这项工程规定的时间是x天,则甲队单独做需要(x﹣2)天完工,乙队单独做要(x+5)天完成,由题意得:4x−2+xx+5=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,答:这项工程规定的时间是30天.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.29.(2021秋•普陀区期末)解方程:1+11−x2=x x+1.【考点】解分式方程.【专题】分式方程及应用;运算能力.【分析】按照解分式方程的步骤进行计算即可解答.【解答】解:1+11−x2=x x+1,1﹣x2+1=x(1﹣x),解得:x=2,检验:当x=2时,1﹣x2≠0,∴x=2是原方程的根.【点评】本题考查了解分式方程,一定要注意解分式方程必须检验.30.(2021秋•普陀区期末)计算:(2xy x+y )﹣1−2(x−y)x 2÷x 2−y 2xy . 【考点】分式的混合运算;负整数指数幂.【专题】分式;运算能力.【分析】根据负整数指数幂、分式的除法和减法可以解答本题.【解答】解:(2xy x+y )﹣1−2(x−y)x 2÷x 2−y 2xy =x+y 2xy −2(x−y)x 2⋅xy (x+y)(x−y) =x+y 2xy −2y x(x+y) =(x+y)(x+y)−2y⋅2y 2xy(x+y)=x 2+2xy+y 2−4y 22xy(x+y)=(x+3y)(x−y)2xy(x+y)=x 2+2xy−3y 22x 2y+2xy 2. 【点评】本题考查分式的混合运算、负整数指数幂、熟练掌握运算法则是解答本题的关键.。

相关文档
最新文档