六年级数学一题多解
小学六年级数学应用题大全及完整答案(全国通用)

小学六年级数学应用题大全一.解答题(共50题,共263分)1.菜市场运来一批新鲜蔬菜,其中萝卜占这批蔬菜的,青菜占这批蔬菜的35%。
已知青菜比萝卜多450千克,这批蔬菜一共有多少千克?2.王叔叔开车从甲地到乙地,第一天行了全程的28%,第二天行了 110千米,这时距离乙地还有一半路程,甲、乙两地相距多少千米?3.某商场七月份卖出电视机120台,卖出的电视机台数比空调的台数少,这个月一共卖出了空调多少台?4.现在的鱼缸里原来有26条鱼,现在增加了6条.(1)原来鱼的条数占现在的百分之几?(2)小岩家现在鱼缸里的鱼比原来约增加了百分之几?5.北京到青岛的铁路长约900千米,一列火车4小时行驶了全程的。
照这样计算,从北京到青岛大约需几小时?6.一个果园占地20公顷,其中的种苹果树,种梨树,苹果树和梨树共种了多少公顷?7.随着地铁六号线一期的全线贯通,天津地铁日均客流量由原来的80万人次,增加到现在的100万人次.天津地铁日均客流量增加了百分之几?8.一本故事书有120页,小明第一天读了全书的,第二天读了余下的。
(1)第一天读了多少页?(2)第二天读了多少页?(3)第三天应从第几页读起?9.学校有学生1200人,体育测验中没有达标的有12人,体育达标率和未达标率各是多少?(按达标率、未达标率的顺序填写)10.先比较,再答题(1)学校六月份用水56吨,七月份用水量是六月份的,七月份用水多少吨?(2)学校六月份用水56吨,七月份用水量比六月份节约了,七月份用水多少吨?11.家乐福连锁店2018年11月份的营业额是42万元,比10月份增加了5万元。
11月份营业额比10月份增加了百分之几?12.要在底面半径是14厘米的圆柱形水桶外面打上一个铁丝箍,接头部分是6厘米,需用铁丝多少厘米?13.一种铝制面盆是用直径30厘米的圆形铝板冲压而成的,要做1000个这样的面盆至少需要多少平方米的铝板?14.圆形的花园內,工人要在中间种花,外围种草。
六年级数学解决问题解答应用题专项专题训练(经典版)带答案解析

六年级数学解决问题解答应用题专项专题训练(经典版)带答案解析一、六年级数学上册应用题解答题1.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。
28846450.2413.76S S S π=-=⨯-⨯=-=正阴影圆(1)图2的阴影部分面积是多少?(列式计算)(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是( )。
解析:(1)13.76(2)13.76。
【分析】(1)图2的阴影部分面积是用正方形的面积减去4个小圆的面积。
(2)把图2的计算结果和图1的结果进行对比,会有所发现。
用正方形的面积减16个小圆的面积进行图3的阴影部分的面积的验证。
【详解】(1)288(42)4S π=⨯-⨯÷⨯阴影26424π=-⨯⨯6416π=- 6450.24=-=13.76(2)两个图形的阴影部分的面积相等,都是13.76。
图3的阴影面积288(22)16S π=⨯-⨯÷⨯阴影6416π=- 6450.24=-=13.76 【点睛】本题是计算组合图形的面积,能知道用正方形的面积减去里面一个或多个圆的面积就是阴影部分的面积是解答本题的关键。
2.仔细观察下面的点子图,看看有什么规律.(1)根据上面图形与数的规律接着画一画,填一填.(2)探索填空:按照上面的规律,第6个点子图中的点子数是;第10个点子图中的点子数是.解析:(1)(2)27;65【详解】(2)第6个点子图中的点子数是:2+3+4+5+6+7=2+5+(3+7+4+6)=27(个)第10个点子图中的点子数是:2+3+4+5+6+7+8+9+10+11=13×5=65(个)答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.3.数与形。
(1)仔细观察每幅图和它下面的算式之间的关系,根据发现的规律,接着画出后面的两个图形,并完成图形下面的算式。
新人教版小学六年级上册数学应用题附答案解析

新人教版小学六年级上册数学应用题附答案解析一、六年级数学上册应用题解答题1.4月23日是世界读书日,每年的这一天,世界上百多个国家都会举办各种各样的庆祝和图书宣传活动。
某书店这天在图书定价的基础上降价20%出售某种图书,售价每本19.2元。
已知该图书的进价为图书定价的50%,则降价后每卖一本书可以盈利多少元? 解析:2元 【分析】某书店这天在图书定价的基础上降价20%出售某种图书,说明售价是定价的1-20%=80%,每本19.2元,据此求出定价;书的进价为图书定价的50%,求出书的进价,最后求盈利即可。
【详解】19.2-19.2÷(1-20%)×50% =19.2-12 =7.2(元)答:降价后每卖一本书可以盈利7.2元。
【点睛】本题考查百分数,解答本题的关键是理解定价、售价、进价之间的关系。
2.六年级举行“小制作比赛”,六(1)班同学上交32件作品,六(2)班比六(1)班多交14,六(2)班交了多少件? 解析:40件 【分析】由于六(2)班比六(1)班多交14,所以可利用乘法求出六(2)班交了多少件。
【详解】 13214⎛⎫⨯+ ⎪⎝⎭=5324⨯=40(件)答:六(2)班交了40件。
【点睛】本题考查了分数乘法的应用,已知一个数比另一个数多几分之几,求这个数,用乘法。
3.学校买来一批书,分给高年级25后,剩下的按4∶3的比分给中年级和低年级。
已知中年级分得240本,这批书一共有多少本? 解析:700本 【分析】用24074÷ 算出的是分给高年级25后剩下的书的本数,420本对应的分率是 215⎛⎫- ⎪⎝⎭,所以用242015⎛⎫÷- ⎪⎝⎭可求出这批书一共有多少本。
【详解】 240÷47=420(本) 420÷(1)25-=420÷35=700(本)答:这批书一共有700本。
【点睛】本题考查按比例分配、分数除法,解答本题的关键是掌握按比例分配解题的方法。
小学六年级数学工程问题例题详解及练习(有答案)

工程问题(一)顾名思义,工程问题指的是与工程建造有关的数学问题。
其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。
在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。
但在不引起误会的情况下,一般不写工作效率的单位。
例1 单独干某项工程,甲队需100天完成,乙队需150天完成。
甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。
甲队单独干需100天,甲的工作效例2某项工程,甲单独做需36天完成,乙单独做需45天完成。
如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。
问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。
答:甲队干了12天。
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。
开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。
问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?分析与解:这道题可以分三步。
首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
小学六年级数学应用题大全含解析答案

小学六年级数学应用题大全一.解答题(共50题,共269分)1.用两根长3.14米的铁丝分别围成一个正方形和一个圆,哪个面积大?大多少?2.饭店第一季度的营业额为16万元,第二季度的营业额为18万元。
第二季度的营业额比第一季度增长了百分之多少?3.现在的鱼缸里原来有26条鱼,现在增加了6条.(1)原来鱼的条数占现在的百分之几?(2)小岩家现在鱼缸里的鱼比原来约增加了百分之几?4.一张长方形的纸,长25cm、宽13cm,最多可以剪几个半径为3cm的小圆片?5.摩天轮的半径大约是10米,笑笑坐着它转动5周,她大约在空中转过多少米?6.有一根钢管,第一次用去全长的25%,第二次用去15米,还剩下30米,这根钢管原来长多少米?7.小明家挂钟的分针长24cm,1小时后,分针的尖端所走的路程是多少厘米?10小时后呢?8.儿童玩具厂生产了800个玩具,其中5个不合格,这批玩具的合格率是多少?9.商场举行促销活动,保暖衣降价6%,在此基础上,商场又返还售价5%的现金。
此时买保暖衣,相当于降价百分之多少?10.小明两天看完一本240页的故事书.第一天看了全书总页数的,第二天应看多少页?11.一个圆形花坛的直径是8m,在花坛的周围摆放盆花,每隔1.57m放一盆,一共可以放几盆花?12.无脊椎动物中游泳速度最快的是乌贼,它的最高速度每分约是km,海豚的速度是乌贼的,海豚每分约能游多远?13.先算出下面各题中圆的面积,再把它们按从大到小的顺序排列起来。
①一个半径是3厘米的圆。
②一个直径是0.5分米的圆。
③一个周长是25.12厘米的圆。
14.小强的爸爸靠着墙用篱笆围成一个半圆形的花坛,半径是3米,爸爸需要约多少米长的篱笆?15.为缓解交通拥挤的状况,某市正在进行道路拓宽,团结路的路宽由原来的12米增加到25米,拓宽了百分之几?16.端午节那天,张阿姨一共包了150只粽子,其中蛋黄粽占总数的20%,蛋黄粽与肉粽的比是3:2。
六年级数学分数四则混合运算试题答案及解析

六年级数学分数四则混合运算试题答案及解析1.果园里有苹果树98棵,比桃树多,果园里有桃树多少棵?【答案】84棵【解析】解:98÷(1+)=98÷=84(棵)答:果园里桃树有84棵。
2.今年农场产小麦280吨,比去年增产,增产了()吨。
【答案】56吨【解析】280÷(1+)×=280÷ ×,=56(吨)即增产了56吨。
3. 10吨煤烧了后,又烧了吨,现在剩()吨。
A.5.6 B.4.4 C.2【答案】A【解析】10-10× -=10-4-=6-=5.6(吨)答:现在剩5.6吨.4.图是一个园林的规划图,其中,正方形的是草地;圆的是竹林;竹林比草地多占地450平方米.问:水池占多少平方米?【答案】150【解析】正方形的是草地,那如果水池占1份,草地的面积便是3份;圆的是竹林,水池占1份,竹林的面积是6份。
从而竹林比草地多出的面积是(6-3=)3份。
3份的面积是450平方米,可见1份面积是450÷3=150(平方米),即水池面积是150平方米。
5. [1–(+)]÷–×÷3【答案】3,0【解析】[1–(+)]÷=(1-)×8=3–×÷3=-÷3=0脱式计算有小括号和中括号的要先算小括号里面的,再算中括号里面的。
6. (1–×)÷ [(1–)×]÷4【答案】;【解析】(1–×)÷=(1-)×=[(1–)×]÷4=(×)×=7.(18分)计算,能简算的要简算588÷21﹣1.6×3.5 25×125×16 3.6﹣2.8+7.4﹣6.28.6÷+1.4×2.7 4÷﹣÷4 ÷[(+)÷].【答案】①22.4 ②50000 ③2 ④27 ⑤⑥【解析】①、⑤、⑥根据四则混合运算的顺序计算;②根据乘法的交换律和结合律计算;③根据加法的交换律及结合律计算;④根据除以一个数等于乘以这个数的倒数以及乘法的分配律;解:①588÷21﹣1.6×3.5,=28﹣5.6,=22.4;②25×125×16,=25×125×2×8,=(25×2)×(125×8),=50×1000,=50000;③3.6﹣2.8+7.4﹣6.2,=3.6+7.4﹣2.8﹣6.2,=(3.6+7.4)﹣(2.8+6.2),=11﹣9,=2;④8.6÷+1.4×2.7,=8.6×+1.4×2.7,=8.6×2.7+1.4×2.7,=(8.6+1.4)×2.7,=10×2.7,=27;⑤4÷﹣÷4,=4×﹣×,=9﹣,=;⑥÷[(+)÷],=÷(÷),=÷(×),=÷,=×,=;点评:此题考查了乘法的交换律和结合律和分配律,加法的交换律及结合律,以及按四则混合运算的顺序计算.8.(8分)直接写出得数720÷80=×0.8=450×0.02=+=÷0.25=42×=(﹣40%)×=321﹣196=【答案】720÷80=9 ×0.8=0.1 450×0.02=9 +=÷0.25=3 42×=36(﹣40%)×=0 321﹣196=125【解析】根据四则运算的计算法则计算即可求解.解:720÷80=9 ×0.8=0.1 450×0.02=9 +=÷0.25=342×=36 (﹣40%)×=0 321﹣196=125点评:考查了四则运算,关键是熟练掌握计算法则正确进行计算.9.(4分)(2014•江东区模拟)直接写出得数.3﹣2= 1÷= 321﹣178+257=0.875÷= 409×10﹣409= 2.25+7=(+)×18= 3+2.7+2+1.3=【答案】3﹣2=, 1÷=, 321﹣178+257=400,0.875÷=, 409×10﹣409=3681, 2.25+7=9.5,(+)×18=14, 3+2.7+2+1.3=10.【解析】根据分数、整数和小数加减乘除的计算方法进行计算.(+)×18根据乘法分配律进行计算;3+2.7+2+1.3根据加法交换律和结合律进行计算.解:3﹣2=, 1÷=, 321﹣178+257=400,0.875÷=, 409×10﹣409=3681, 2.25+7=9.5,(+)×18=14, 3+2.7+2+1.3=10.点评:口算时,注意运算符号和数据,然后再进一步计算.10.(8分)(2014•上海模拟)列式计算.(1)甲数是30的,乙数的是25,甲数是乙数的百分之几?(2)2.4与0.6的和除这两个数的差,商是多少?【答案】(1)答:甲数是乙数的20%.(2)答:商是.【解析】(1)先用30乘上求出甲数,再用25除以求出乙数,最后用求出的甲数除以乙数即可;(2)先用2.4加上0.6求出和,再用2.4减去0.6求出差,最后用求出的和除以求出的差即可.解:(1)(30×)÷(25÷),=6÷30,=20%;答:甲数是乙数的20%.(2)(2.4+0.6)÷(2.4﹣0.6),=3÷1.8,=;答:商是.点评:这类型的题目要分清楚数量之间的关系,找出单位“1”,以及先求什么再求什么,找清列式的顺序,列出算式计算.11.(16分)6.8×+0.32×4.2﹣8÷251+2+3+4+…+106(x﹣5)+2x=2=.【答案】(1)3.2(2)55(3) x=4(4)x=7【解析】(1)根据乘法分配律计算即可;(2)首先分别求出每个加数整数部分、分数部分的和,然后把求出的和相加,求出算式的值是多少即可;(3)首先化简,然后根据等式的性质,两边同时加上30,最后两边再同时除以8即可;(4)首先根据比例的基本性质化简,然后根据等式的性质,两边再同时减去x,两边再同时减去6即可.解:(1)6.8×+0.32×4.2﹣8÷25=6.8×0.32+0.32×4.2﹣0.32=(6.8+4.2﹣1)×0.32=10×0.32=3.2(2)1+2+3+4+…+10=(1+2+3+…+10)+(++++…+)=55+()=55==55(3)6(x﹣5)+2x=28x﹣30=28x﹣30+30=2+308x=328x÷8=32÷8x=4(4)=2x+6=13+x2x+6﹣x=13+x﹣xx+6=13x+6﹣6=13﹣6x=7点评:(1)此题主要考查了分数的巧算问题,注意乘法分配律的应用;(2)此题还考查了根据等式的性质解方程的能力,即等式两边同时加上或同时减去、同时乘以或同时除以一个数(0除外),两边仍相等.12.(5分)(2014•泸西县校级模拟)直接写出得数:4×=﹣=+0.25=÷×=﹣3﹣2=【答案】4×=﹣=+0.25=3 ÷×=﹣3﹣2=﹣5.【解析】根据分数四则运算的计算法则,以及负数的减法法则,直接进行口算即可.解:4×=﹣=+0.25=3 ÷×=﹣3﹣2=﹣5.点评:此题考查的目的是理解掌握分数四则运算的计算法则,并且能够正确熟练地进行口算,提高口算能力.13.(6分)(2010•成都)实外初一年级四个班为希望工程捐款,一班捐了总数的,二班捐了600元,三班是一班、二班总和的一半,四班捐了500元,问四个班共捐了多少元?【答案】答:四个班共捐了2450元【解析】把这四个班共捐款数看作单位“1”,设这四个班共捐了x元,由题意知:一班捐的钱数是x元,三班捐的钱数是[(x+600)×]元,从总捐款钱数里去掉一班和三班的捐款钱数就是二班和四班的捐款钱数和,由此列方程求解.解:设这四个班共捐了x元,由题意得x﹣x﹣(x+600)×=600+500,x﹣x﹣300=1100,x=1400,x=2450;答:四个班共捐了2450元.点评:本题利用算术求解的方法:因为三班是一班、二班总和的一半,所以三班捐款的钱数是总钱数的再加上300元,如果三班少捐300元,就会捐到总钱数的,这样一班和三班共捐总数的(+),其它两个班就需要捐(600+300+500)元,也就是总钱数的[1﹣(+)],由此用除法求出总钱数,具体解答如下:(600+500+600÷2)÷[1﹣(+÷2)]=(600+500+300)÷[1﹣]=1400÷=2450(元)答:四个班共捐了2450元.14.(6分)(2014•江油市校级模拟)原来甲、乙两个书架上共有图书900本,将甲书架上的书增加,乙书架上的书增加,这样,两个书架上的书就一样多,原来甲、乙两个书架各有图书多少本?【答案】答:原来甲、乙两个书架各有图书400本、500本【解析】本题可列方程进行解答,设甲书架原有x本书,则乙书架原有(900﹣x)本,甲书架上的书增加,则甲书架有(1+)x本,同理,乙书架有(900﹣x)×(1+),这样,两个书架上的书就一样多,由此列方程为(1+)x=(900﹣x)×(1+)解:设甲书架原有x本书,则乙书架原有(900﹣x)本,得(1+)x=(900﹣x)×(1+)x=(900﹣x)×x=1170﹣x=1170x=400900﹣400=500(本)答:原来甲、乙两个书架各有图书400本、500本.点评:通过设未知数,根据所给条件列出等量关系式是完成本题的关键.15.(3分)(2014•泸州校级模拟)定义新运算:规律a*b=﹣,则[2*(5*3)]+=.【答案】.【解析】利用规定的运算方式,按照运算顺序计算即可.注意计算2*时得到﹣可以减少计算量.解:5*3=﹣=,2*(5*3)=2*=﹣=﹣,[2*(5*3)]+=﹣+=.故答案为:=.点评:此题考查定义新运算,关键是搞清运算顺序与定义新运算的运算方法.16.(20分)(2015•北京模拟)计算、能减算的要简算.[(35.16×+38.42÷2)×﹣1.64﹣2.36]×4;[4﹣÷(+2.25×)]÷;19+9+7+3+8+4+;[10+(3﹣1.5×1]÷12.【答案】(1)6.4;(2)3;(3)50;(4).【解析】(1)先算小括号里面的乘法和除法,再算里面的加法,再算中括号里面的减法,最后算括号外面的乘法;(2)先算乘法,再算加法,再算括号里面的除法,再算减法,最后剖算括号外面的除法;(3)分整数部分和分数部分分别想加,分数部分加上,再减去;(4)先算乘法,再算减法,再算加法,最后算除法.解:(1)[(35.16×+38.42÷2)×﹣1.64﹣2.36]×4=[(8.79+19.21)×﹣1.64﹣2.36]×4=[28×﹣1.64﹣2.36]×4=[5.6﹣1.64﹣2.36]×4=1.6×4=6.4;(2)[4﹣÷(+2.25×)]÷=[4﹣÷(+)]÷=[4﹣×]÷=[4﹣]÷=×=3;(3)19+9+7+3+8+4+;=(19+9+7+3+8+4)+(++++++﹣)=50+1﹣=50;(4)[10+(3﹣1.5×1]÷12=[10+(3﹣)]÷12=[10+2]÷12=×=.点评:混合运算的关键抓住运算顺序,正确按运算顺序计算,适当利用运算定律简算.17.(20分)计算题÷[+×(1﹣37.5%)];1+2+3+4+5;[(+1)×﹣0.75]÷;[14.8+(6﹣4.5)×1]÷2.【答案】(2)15(3)11(4)6.3【解析】(1)(3)(4)首先计算小括号里面的,然后计算中括号里面的,最后计算中括号外面的即可.(2)首先分别求出每个加数的整数部分、小数部分的和是多少,然后用整数部分的和加上小数部分的和即可.解:(1)÷[+×(1﹣37.5%)]=÷[+×]=÷[+=÷=(2)1+2+3+4+5=(1+2+3+4+5)+(++++)=15=15=15(3)[(+1)×﹣0.75]÷=[×﹣0.75]×12=[]×12==20﹣9=11(4)[14.8+(6﹣4.5)×1]÷2=[14.8+×1]÷2=[14.8+2]÷2=16.8÷2=6.3点评:此题主要考查了分数、百分数、小数四则混合运算,注意运算顺序,注意乘法运算定律的应用.18.(3分)(2007•江阴市)菜场有黄瓜250千克,黄瓜的重量比西红柿少.菜场有西红柿多少千克?【答案】答:菜场有西红柿300千克【解析】把西红柿的重量看作单位“1”,由题意可知:西红柿重量的(1﹣)是250千克,根据“对应数÷对应分率=单位“1”的量”进行解答即可.解:250÷(1﹣),=250÷,=250×,=300(千克);答:菜场有西红柿300千克.点评:解答此题的关键:判断出单位“1”,根据“对应数÷对应分率=单位“1”的量”进行解答.19.(2010秋•潮州校级月考)学校食堂九月份用煤气640立方米,十月份计划用气是九月份的,而十月份实际用气比原计划节约,十月份节约用气多少立方米?【答案】十月份节约用气48立方米【解析】根据条件“十月份计划用气是九月份的”,把九月份用煤气的数量看作单位“1”,根据一个数乘分数的意义,用乘法求出十月份的计划用量,而十月份实际用气比原计划节约,再把十月份的计划用量看作单位“1”,再用乘法求出十月份节约用气多少立方米.解:640××=576×=48(立方米);答:十月份节约用气48立方米.点评:此题解答关键是找准单位“1”,一般是“谁”、占“谁”、比“谁”,就把“谁”看作单位“1”.20.(思明区)120的比它的多多少?【答案】多42【解析】分析:依据分数乘法意义分别求出120的和120的分别是多少,再用它们所得的积相减即可解答.解答:解:120×﹣120×,=90﹣48,=42;答:多42.点评:本题主要考查学生依据分数乘法的意义解决问题的能力.21.(2011•新泰市)小军读一本书,7天读了这本书的,以后5天共读40页,正好读完.这本书有多少页?【答案】这本书共有120页【解析】7天读了这本书的,则还剩下全部的1﹣,以后5天共读40页,即40页占全部的1﹣,则这本书共有40÷(1﹣)页.解答:解:40÷(1﹣)=40,=120(页);答:这本书共有120页.点评:完成本题要注意后来“5天共读40页”,而不是每天读40页.本题中的“7天、5天”为多余条件.22.(2013•济南)某装订车间的三个工人要将一批书打包后送往邮局(要求每个包内所装书的册数同样多).第一次,他们领来这批书的,结果打了14个包还多35本.第2次他们把剩下的书全部领来了,连同第一次多的零头一起,刚好又打11包.这批书共有多少本?【答案】这批书共有1500本【解析】把这批数的总本书看作单位“1”;根据“打了14个包还多35本”和“连同第一次多的零头一起,刚好又打了11包.”可以求得整批书共打了:14+11=25(包),那么14包书就占整批书的:;所以第一次取来的书相当于整批书的还多35本,又因为“他们领来这批书的十二分之七,”进而可以看出35本对应的分率是:();然后用35除以对应的分率即可求出这批数的总本书.解答:解:根据题意可知,整批书共打了:14+11=25(包),第一次取来的书相当于整批书的:还多35本,而它又是整批书的,所以这批书有:35÷(),=35,=1500(本);答:这批书共有1500本.点评:本题的解答关键是依题意求出第一次取来的书相当于整批书的还多35本;本题还用到的知识点是:已知单位“1”的几分之几是多少,求单位“1”的量用除法计算,即用对应的数量除以对应的分率=单位“1”的量.23.(西城区)东东家去年五月份用水24吨,今年五月份比去年五月份节约,今年五月份比去年节约用水多少吨?【答案】今年五月份比去年节约用水4吨【解析】分析:去年五月份用水24吨,今年五月份比去年五月份节约,根据分数乘法的意义,今年五月份比去年节约用水24×吨.解答:解:24×=4(吨).答:今年五月份比去年节约用水4吨点评:求一个数的几分之几是多少,用乘法.24.运输队分三次运一批大米,第一次运总数的,第二次运总数的,第三次比第一次多运40包,第三次运了多少包?【答案】第三次运了130包【解析】把这批大米的总数看作单位“1”,由“第一次运总数的,第二次运总数的”可知,第三批运总数的1﹣﹣=;则第三次比第一次多运﹣=,因为“第三次批第一次多运40包”,所以40包所对应的分率是,用对应量40除以对应分率,就是这批大米的总量;用大米总量乘第三次大米所占总数的分率,就是第三次运的大米数量.解答:解:40÷(1﹣﹣﹣)×(1﹣﹣),=40÷×,=300×,=130(包);答:第三次运了130包.点评:解决此题的关键是,找出40包的对应分率,从而求出这批大米的总量,进而求得第三次运的大米的数量.25.(云阳县)只列式不计算.①凑24.(如图)②师徒两人加工一批零件,师傅单独做10天完成,徒弟单独做15天完成.现在师徒两人合做,多少天完成全部零件的.【答案】①(6﹣2+4)×3;②现在师徒两人合做,3天完成全部零件的.【解析】分析:①利用整数的加减乘除得到:6﹣2+4=8,8×3=24,据此解答即可;②把这批零件个数看作单位“1”,依据:合作时间=工作总量÷工效之和,即可解答.解答:解:①(6﹣2+4)×3;②÷(+)=÷=3(天);答:现在师徒两人合做,3天完成全部零件的.点评:本题考查的是整数的混合运算以及工作时间、工作总量、工作效率的关系.26.(和平区)脱式计算:(1)205×28﹣3930 (2)×(+)(3)(﹣)÷(+)(4)×[÷(﹣)].【答案】(1)1810;(2);(3);(4)3.【解析】(1)先计算乘法,再计算减法;(2)根据乘法分配律进行简算;(3)先计算小括号里面的减法和加法,再计算除法;(4)先计算小括号里面的减法,再计算中括号里面的除法,最后计算乘法.解答:解:(1)205×28﹣3930,=5740﹣3930,=1810;(2)×(+),=×+×),=+,=;(3)(﹣)÷(+),=÷,=;(4)×[÷(﹣)],=×[÷],=×4,=3.点评:四则混合运算,先弄清运算顺序,然后再进一步计算即可;能简算的要简算.27.(葫芦岛)两个鸡笼共养了84只鸡,如果从甲笼取出,从乙笼取出,两个笼里剩下的鸡正好相等.求两个笼里原来各有几只鸡?【答案】两个笼里原来各有35只、49只鸡【解析】本题可列方程进行解答,设原来甲笼有鸡x只,则乙笼有鸡84﹣x只,甲笼取出后还剩(1﹣)×x袋,乙笼取出后还剩(1﹣)×(84﹣x)袋,由于此时两个笼里剩下的鸡正好相等,则可得等量关系式:(1﹣)×x=(1﹣)×(84﹣x),解此方程即得甲笼里原来有鸡的只数,进而求出乙笼原来有鸡的只数.解答:解:设原来甲笼有鸡x只,则乙笼有鸡(84﹣x)只,甲笼取出后还剩(1﹣)×x袋,乙笼取出后还剩(1﹣)×(84﹣x)袋,由题可得:(1﹣)×x=(1﹣)×(84﹣x),x×35=×(84﹣x)×35,28x=20×(84﹣x),28x+20x=1680﹣20x+20x,48x÷48=1680÷48,x=35,乙笼有鸡84﹣x=84﹣35=49(只),答:两个笼里原来各有35只、49只鸡.点评:解答此题关键是通过设未知数,根据它们分别取出一部分后剩下的部分相等列出等量关系式是完成本题的关键.28.(张家港市)某班学生上体育课,一位男生走出队伍统计人数,结果发现,队伍里的男生人数与女生人数的比是3:5,换成一位女生走出队伍统计人数,结果发现,队伍里女生人数是男生的.这个班男、女学生各多少人?【答案】男生有16人,女生有25人【解析】本题把走出一人后队伍的总人数看作“1”,第一次男生走出队伍,队伍里女生比男生多队伍总数的,第二次女生比男生多队伍总数的;但是第二次是女生走出队伍,相对来说队伍里的人就比前次少了2位女生,因此2位女生所对应的分率就是=,那么队伍里的总人数就用对应的量除以对应的分率,就是40人;那么现在就用按比例分配的方法求出女生的人数,再用队伍里的人数﹣女生人数+队伍外的1位男生=男生人数.解答:解:把走出一人后队伍的总人数看作“1”,①1名男生走出队伍,女生比男生多总数的:(5﹣3)÷(5+3)=;②1名女生走出队伍,女生比男生多总数的:(3﹣2)÷(3+2)=;③女生人数为:(1+1)÷()×,=2÷×,=40×,=25(人);④男生人数:40﹣25+1=16(人).答:男生有16人,女生有25人.点评:此题解题的关键是先求出走出一人后队伍的总人数,用按比例分配的方法求出女生的人数,进而求出男生人数.29.(浦口区)一堆货物,第一天运了总数的,第二天比第一天多运了15吨,还剩45吨货物没运,这堆货物共有多少吨?【答案】这堆货物共有100吨.【解析】把货物总重量看作单位“1”,第二天比第一天多运了15吨,也就是说第二天运走货物总重量的还多15吨,设这堆货物共有x吨,依据总重量﹣运走重量=剩余重量可列方程:x﹣(x+x+15)=45.依据等式的性质即可求解.解答:解:设这堆货物共有x吨x﹣(x+x+15)=45x﹣(x+15)=45x﹣x﹣15+15=45+15x=60x=100答:这堆货物共有100吨.点评:解答本题用方程比较简便,关键是明确数量间的等量关系,只要依据数量间的等量关系,列出方程即可解答.30.(岳麓区)将2000减去它的,再减去余下的,又减去余下的,…最后减去余下的,结果是()A.1B.20C.200D.2000【答案】B【解析】先列出算式为2000×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)然后求出各个括号内的得数,这时可以通过约分,即可得出答案.解答:解:根据题意列式得,第一次剩下:2000×(1﹣)第二次剩下:2000×(1﹣)×(1﹣)第三次剩下:2000×(1﹣)×(1﹣)×(1﹣)…最后一次剩下:2000×(1﹣)×(1﹣)×(1﹣)×(1﹣)=2000××××…××=2000×=20.故选:B.点评:对于此类问题,应仔细审题,发现规律后再进行计算.31.(南昌)一项工程,甲做完成任务所需天数比甲、乙合作所需的天数多5天,乙独做完成任务所需天数比甲乙合作完成任务所需时间多20天,甲、乙合作完成这项工程需要天.【答案】10【解析】根据题意“甲做完成任务所需天数比甲、乙合作所需的天数多5天,”即甲5天做的=合作天数乙做的;“乙独做完成任务所需天数比甲乙合作完成任务所需时间多20天,”即合作天数甲做的=乙20天做的;因为工作总量一定,工效和时间成反比例,甲乙天数z之比为:5:合作的天数=合作的天数:20,甲乙工效之比为:合作的天数:5=20:合作的天数,最后解比例求出甲乙合作需要的天数.解答:解:根据题意,可得两个条件:即甲5天做的=合作天数乙做的;即合作天数甲做的=乙20天做的;合作的天数:5=20:合作的天数,合作的天数×合作的天数=20×5,合作的天数×合作的天数=100,因为10×10=100,所以合作的天数=10.故答案为:10.点评:此题主要考查工程问题,解答此题根据甲乙的工效比,计算甲乙合作需要的天数.32.(2014秋•金昌期末)能简便的要用简便方法计算12÷0.4÷;÷9+×; 1.8×+1.2×﹣.【答案】40;;【解析】(1)根据除法的性质进行简算;(2)、(3)根据乘法分配律进行简算.=12÷(0.4×)=12÷0.3=40;(2)÷9+×=×+×=(+)×=×=;(3)1.8×+1.2×﹣=(1.8+1.2﹣1)×=2×=.点评:考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.33.一批水泥,第一天运走全部的,第二天运走全部的,两天共运56吨,这批水泥共多少吨?【答案】这批水泥共80吨【解析】把这批水泥的质量看作单位“1”,那么56吨对应的分率是(+),根据分数除法的意义,用56除以(+)解答即可.解答:解:56÷(+)=56÷=80(吨)答:这批水泥共80吨.点评:本题关键是找到具体数量对应的分率,解答依据:已知一个数的几分之几是多少,求这个数用除法计算.34.水果店原有橘子的重量比苹果多100千克.橘子卖出后,苹果的重量比橘子多25千克.水果店有橘子多少千克?【答案】水果店有橘子375千克【解析】把橘子的重量看作单位“1”,根据橘子卖出千克后,苹果的重量比橘子多25千克,得出(100+25)对应的分率,用数量(100+25)除以对应的分率解答:解:(100+25)÷,=125÷,=375(千克).答:水果店有橘子375千克点评:解决此题的关键是确定单位“1”,求单位“1”的量,用除法计算.35.甲数比乙数多,也就是乙数比甲数少..(判断对错)【答案】×.【解析】分析:先把乙数看作单位“1”,甲数比乙数多,那么甲数就是1×(1+)=,再把甲数看作单位“1”,用甲数比乙数多的分率除以甲数,最后与题干中表达的意义比较即可解答.=÷[1×]==故答案为:×.点评:明确单位“1”的变化对于解答本题来说非常关键.36.六年级参加合唱队的女生的与男生的共13人,男生的与女生的共12人.参加合唱队的女生有多少人?【答案】参加合唱队的女生有18人【解析】设参加合唱队的女生有x人,先根据分数除法意义求出,参加合唱队男生的人数,再根据男生的+女生的=12人,列方程解答.解答:解:设参加合唱队的女生有x人,参加合唱队的男生人数是:(13﹣x)÷,=13﹣x,=39﹣x,(39﹣x)×+x=12,39×x×+x=12,19.5﹣x=12,19.5﹣x+x=12x,19.5﹣12=12x﹣12,7.5=x,x=18答:参加合唱队的女生有18人.点评:解答本题的关键是根据女生人数,表示出男生人数.37.如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是平方厘米.【答案】200【解析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.解答:解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.38.直接写得数.+2﹣÷1÷﹣÷14.5÷×2.40.4+(﹣)×18.【答案】解:+=2﹣=1÷=1÷﹣÷1=34.5÷=9×2.4=1.40.4+=0.65(﹣)×18=7【解析】按运算顺序计算,能用运算定律巧算,可以巧算.解答:解:+=2﹣=1÷=1÷﹣÷1=34.5÷=9×2.4=1.40.4+=0.65(﹣)×18=7点评:按运算顺序计算,能用运算定律巧算,可以巧算.39. 20千克减少后再增加,结果还是20千克..(判断对错)【答案】错误.【解析】要判断该题对或错,首先要进行计算,即先求出20千克减少后是多少,用20﹣20×得出减少后的结果,然后再在此基础上增加,即增加减少后结果的,用减少后的结果+减少后结果×,得出,然后与20千克进行比较,得出结论.解答:解:20﹣20×=20﹣2=18(千克),18+18×=18+1.8=19.8(千克),故答案为:错误.点评:本题考查的是在一题中存在两个单位“1”的情况下,如何进行分析,要判断准单位“1',看增加或减少谁的几分之几.40.养殖场有鸡3200只,第一周卖出了总数的,第二周卖出了总数的,第二周比第一周多卖多少只?两周一共卖出多少只?【答案】第二周比第一周多卖80只,两周一共卖出2480只.【解析】把鸡的总只数看作单位“1”,第一周卖出了总数的,第二周卖出了总数的,第二周比第一周多卖总数的﹣,两周一共卖出了全部的+,根据分数乘法的意义可知,第二周比第一周多卖3200×(﹣),两周一共卖出了3200×(+)只.解答:解:3200×(﹣)=3200×=80(只)3200×(+)=3200×=2480(只)答:第二周比第一周多卖80只,两周一共卖出2480只.点评:此题解答的关键在于求出第二周比第一周多卖总数的几分之几以及两周一共卖出了全部的几分之几,根据分数乘法的意义解决问题.41.一本故事书,已读了,未读页数比已读页数多15页.这本书有多少页?【答案】这本书共有105页.【解析】已读了,根据分数减法的意义可知,未读的页数占全部的1﹣,则未读的比已读的多总数1﹣﹣,又未读页数比已读页数多15页,根据分数除法的意义可知,这本书共有15÷(1﹣﹣)页.解答:解:15÷(1﹣﹣)=15,=105(页).答:这本书共有105页.点评:首先根据分数减法的意义求出15页占总数的分率是完成本题的关键.42.解方程.x﹣x=0.36; 1.8﹣x=1.2.【答案】x=0.6;x=0.5.【解析】①先化简,根据等式的性质,在方程两边同时除以0.6求解;②根据等式的性质,在方程两边同时加上x,再同减去1.2,最后同除以求解.解答:解:①x﹣x=0.360.6x=0.360.6x÷0.6=0.36÷0.6x=0.6②1.8﹣x=1.21.8﹣x+x=1.2+x1.2+x﹣1.2=1.8﹣1.2x÷=0.6÷x=0.5.点评:本题考查了运用等式的性质解方程的方法,计算时要细心,注意把等号对齐.43.一段公路长600千米,甲队独修10天完成,乙队独修8天完成。
六年级数学解决问题解答应用题练习题50专项训练带答案解析(1)

六年级数学解决问题解答应用题练习题50专项训练带答案解析(1)一、人教六年级下册数学应用题1.在数轴上表示出下列各数。
4 2.5 -52.在一个圆柱形的储水箱里,把一段底面半径是5厘米的圆柱形钢材全部放入水中,水面就上升9厘米;把钢材竖着拉出水面8厘米后,水面就下降4厘米。
钢材的体积是多少?3.小乐家客厅是长方形的,用边长0.6m的方砖铺地,需要200块,如果改用边长0.5m 的方砖铺地,需用多少块?(用比例解)4.下图是装某种饮料的易拉罐。
请你灵活思考,解决下面的问题。
(1)制作1个这种易拉罐,大约需要多大面积的铝箔?(2)你认为饮料厂向易拉罐中装多少饮料合适?(3)饮料厂将12罐饮料装在一个盒子里,请你设计出两种不同的包装盒,并给出设计方案。
5.甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价。
后来都按定价的90%打折出售,结果仍获利131元,甲种商品的成本是多少元?6.—个棱长是6分米的正方体。
(1)它的表面积是多少?(2)如果把它削成一个最大的圆柱体,圆柱体的体积是多少?(3)如果把它削成一个最大的圆锥体,削去的体积是多少立方分米?7.某商品的成本为1500元,先按20%的成本利润定价,然后按八八折出售,这件商品出售后的利润是多少元?8.一种儿童玩具﹣陀螺(如图),上面是圆柱体,下面是圆锥体,经过测试,只有当圆柱直径4厘米,高5厘米,圆锥的高是圆柱高的时,才能旋转时又稳又快,试问这个陀螺的体积是多大?(保留整立方厘米)9.一个圆柱形的容器,底面周长是62.8厘米,容器里面水面高0.8分米,现把一个小圆柱体和一个与圆柱等底、高是圆柱一半的圆锥放入容器中,结果圆锥完全浸没在水中,圆柱有在水面之上,容器内的水比放入前上升了3厘米,求圆柱和圆锥的体积?10.小明调制了两杯蜂蜜水。
第一杯用了30毫升蜂蜜和360毫升水。
第二杯用了500毫升水,按照第一杯蜂蜜水中蜂蜜和水体积的比计算,第二杯应加入蜂蜜多少毫升?11.为了测量一个空瓶子的容积,一个学习小组进行了如下实验。
六年级下册数学试题-相遇和追及(ABC级).(解析版)全国通用

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。
⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学一题多解
例1:水泥厂原计划12天完成一项任务,由于每天多生产水泥4。
8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
方法一:
分析:实际每天比原计划多生产4。
8吨,那么,实际生产10天就比原计划生产10天就多了4。
8×10=48(吨),为什么会比原计划的10天多出48吨呢?是因为原计划生产12天,所以,多出的48吨实际就是原计划(12-10)天生产的吨数。
于是,可以求出原计划每天生产48÷(12-10)=24(吨)。
解答如下:
4。
8×10=48(吨)
48÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
方法二:
分析:把原计划1天生产的吨数看作1份,那么,12天就是生产12份,也就是这项任务一共就是12份。
但实际上,12份任务分在10天就完成了,所以实际每天生产的吨数为12÷10=1。
2份,那么,实际每天比计划每天多出了1。
2-1=0。
2份。
根据题目告知的实际每天多生产水泥4。
8吨可知,这0。
2份就是4。
8吨。
所以,1份就是4。
8÷0。
2=24(吨)。
当然,这里所说的1份,也可看作是单位“1”,道理都是一样的。
我之所以用份数来讲解,主要是为一些学困生考虑,容易接受。
解答如下:
1×12÷10=1。
2 【说明:此处不用带单位,因为算式中的1,实际上就是单位“1”】4。
8÷(1。
2-1)=24(吨)
答:原计划每天生产水泥24吨。
方法三:
分析:可以设原计划每天生产X吨,然后列方程解答。
因为无论是计划还是实际,生产的总量没变。
解答如下:
解:设原计划每天生产x吨。
x *12=(x+4。
8)*10
x = 24
答:原计划每天生产水泥24吨。
综上所述,在小学六年级数学应用题中,有很多题目是可以“一题多解”的。
不过,不同的学生适用不同的方法。
例2:小赵骑摩托车往返A、B两地,平均速度为每小时60千米。
如果去时每小时55千米,要按时回到A地。
返回时平均每小时行多少千米?
分析:
(一)我们可以把A、B两地的路程看作单位“l”。
根据时间=路程÷速度,可得知去的时间为,往返的总时间2÷60=,返回的平均速度可根据“路程÷时间=速度”,求出1÷(1/66)=66(千米)。
(二)可假设A、B两地的路程为330千米,去的时间为330÷55=6(小时),往返的总时间为330×2÷60=11(小时),返回时间为1l-6=5(小时),返回时平均每小时行330÷5=66(千米)。
列算式为 330 ÷(330×2+60—330÷55)=66(千米)
(三)设返回时平均每小时行x千米。
根据往返的总时间相等,可列出方程: 所以返回时平均每小时66千米。
例3:汽车甲和乙分别以每小时100千米和120千米的速度从A城开往B城。
甲车比乙车早l小时离开A城,但同时到达B城。
求两城间的路程。
分析:
(法一)因为甲车先走了100千米,乙车每小时能追上甲车(120-100)=20(千米) 追100千米要用(100÷20)=5(小时)
乙车5小时共走120×5=600(千米)就是A、B两城间的路程
列算式为 120[100÷(120-100)]=600(千米)
(法二)由于甲、乙两车行的路程相同,根据甲、乙两车速度的比是(100:120)=5:6可以知道,甲、乙两车所用时间的比为6:5,从而求出乙车用的时间为(小时)。
故A、B两城间的路程为120×5=600(千米)。
(法三)两车各走一千米所需的时间差:由于两车所用的时间差为1小时,所以两车各走 =600千米。