苏科版八年级下学期数学《分式》章节测试题(含解析)
八年级数学下册第八章分式检测试卷及答案苏科版

适用精选文件资料分享八年数学下册第八章分式卷及答案( 科版)八年数学 ( 下) 第八章分式达卷分:100分:60分得分:_________ 一、 ( 每小 3分,共 24 分) 1.(2009?福州 ) 若分式有意, x 的取范是 () A.x≠1 B.x>1 C.x=1 D.x<1 2.若分式的 0, x 的 ( )A.1 B.- 1 C.± 1 D.2 3.以下分式中,属于最分式的是 () A.B.C.D.4.如果把分式中的 x 和 y 都大 5 倍,那么分式的 () A.大 5倍 B.大 10 倍 C.不 D.小 5 .(2009?西 ) 化的果是 () A.a -b B.a+b C.D.6 .以下运算中,正确的选项是 ( ) A.B . C.D.7 .方程的解 ( ) A.0 B.2 C.-2 D.无解 8 .某商店售一批衣饰,每件售价150 元,可利 25%,求种衣饰的成本价.种衣饰的成本价 x 元,可获得方程 ( ) A.B .150-x=25% C.x=150×25%D.25%?x=150 二、填空 ( 每小 2 分,共 20 分) 9.(2008?广州 )函数与的自量 x 的取范是 _________.10 .(2009?) 化:=_________. 11 .分式、和的最公分母是 _________. 12 .当m=________,分式方程会生增根.13.(2009?佳木斯)算:=__________. 14 .小从家到学校每小走m千米,从学校返回家里每小走 n 千米,他来回家里和学校的均匀速度是每小走_________千米. 15 .甲做 180 个部件与乙做 240 个部件所用的相等,假如两个人每小共做 140 个部件,那么甲、乙两个人每小各做多少个部件 ?若甲每小做 x 个部件,乙每小做 _________个部件,所列方程 _____________. 16 .(2009?庄 )a 、b 数,且 ab=1,,, P______Q( 填“>”、“<”或“ =”) .17 .若,,=_________. 18 .已知,,⋯⋯若 (a 、b 正整数 ) ,ab=__________.三、解答 ( 共 56 分) 19.(8 分) 算:(1);(2).20.(8 分) 解分式方程: (1);(2).21.(5 分)(2009 ?邵阳 ) 已知、,用“ +”或“-” 接 M、N,有三种不一样的形式: M+N、M-N、N-M,你任此中一种行算,并化求,此中 x:y=5:2.22.(5 分) 下边是小后作中的一道:算:.解:原式=.你赞同她的做法 ?假如赞同,明原由;假如不一样意,把你正确的做法写下来.23.(6 分) 在“村村通公路”建中,某决定一段公路行改造.已知工程由甲工程独做需要40 天完成;假如由乙工程先独做 10 天,那么剩下的工程需要两合做20 天才能完成. (1) 求乙工程独完成工程所需的天数.(2) 求两合做完成工程所需的天数.24.(8 分)(2008? 天津 ) 注意:了使同学更好地解答本,我供给了一种解思路,你可以依照个思路,填写表格,并完成本解答的全程.假如你用其余的解方案,此,不用填写表格,只需依照解答的一般要求,行解答即可.天津市奥林匹克中心体育――“水滴”位于天津市西南部的奥林匹克中心内,某校九年学生由距“水滴” 10 千米的学校出前去参.一部分同学自行先走,了 20 分后,其余同学乘汽出.果他同到达.已知汽的速度是自行同学速度的 2 倍,求自行同学的速度. (1) 同学的速度 x 千米/.利用速度、、行程之的关系填写下表. ( 要求:填上合适的代数式,完成表格 ) 速度/( 千米/ ) 所用/所走的行程/千米自行乘汽(2)列出方程 ( ) ,并求出的解.25.(8 分) 在数学学程中,平时是利用已有的知与,通研究象行察、、推理、抽象概括,数学律,揭露研究象的本特色.比方“同底数的乘法法”的学程是利用有理数的乘方看法和乘法合律,由“特别”到“一般” 行抽象概括的:22×23=25,23×24=27,22×26=28⋯ 2m×2n=2m+n⋯am×an=am+n(m、 n 都是正整数 ) .我亦知:,,,⋯⋯ (1)你依据上边的资料出a、b、c(a >b>0,c>0) 之的一个数学关系式. (2) 用 (1) 中你的数学关系式,解下边生活中的一个象:“若 m克糖水里含有n克糖,再加入k克糖(仍不和),糖水更甜了”.26.(8 分)(2008? 湛江 ) 先察以下等式,而后用你的律解答以下.,,⋯⋯ (1) 算: =__________. (2) 研究:=__________(用含有 n 的式子表示 ) . (3) 若,求 n 的值.参照答案 1 .A 2.D 3.B 4.C 5.B 6.D 7.D 8.A 9.x≠l 10.a+2 11.xy2 (m-n) 或 xy2 (n -m) 12.6 13. 14 . 15 .(140 -x) 16.= 17.3 18 .720 19 .(1)x -2 (2) 20 .(1) 无解 (2)x=3 21 .答案不独一,如选择,当 x:y=5:2 时,,原式 = 22.不一样意.正确的计算为:原式 = 23 .(1) 设乙工程队单独完成这项工程需要 x 天.依据题意,得.解得 x=60.经检验, x=60 是原方程的根.因此乙工程队单独完成这项工程所需的天数为 60 天 (2) 设两队合做完成这项工程需要 x 天.依据题意,得.解得 y=24.因此两个人合做完成这项工程所需的天数为 24 天 24 .(1) 2x (2) 依据题意,列方程得.解得x=15.经检验,x=15 是原方程的根.因此骑车同学的速度为每小时15 千米 25 .(1) 依据所给的式子之间的关系,可以用a、b、c 的数学关系式表示出一般的规律.考据:.由于a>b>0,c>0,所以.因此 (2) 由于,说明本来糖水中糖的质量分数小于加入k克糖后糖水中糖的质量分数,因此糖水更甜了26 .(1) (2) (3)由,得 n=17.经检验 n=17 是方程的根.因此n=17。
2020-2021学年苏科版八年级下册数学 第十章 分式方程 单元测试(含解析)

第十章分式方程单元测试一.选择题1.下列各式:,,分式有()A.1个B.2个C.3个D.4个2.分式的值是零,则x的值为()A.2B.3C.﹣2D.﹣33.下列分式,,,中,最简分式有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.形如的式子叫分式B.分式不是最简分式C.分式与的最简公分母是a3b2D.当x≠3时,分式有意义5.下列计算正确的是()A.=B.C.D.6.已知分式A=,B=+,其中x≠±2,则A与B的关系是()A.A=B B.A=﹣B C.A>B D.A<B7.计算的结果是()A.x﹣1B.C.D.8.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示,接力中,自己负责的一步出现错误的同学是()A.甲B.乙C.丙D.丁9.工人A加工180个零件与工人B加工240个零件所用时间相同,已知两人每天共加工70个零件,若设A每天加工x个零件,则可列方程为()A.B.C.D.10.若关于x的分式方程有增根,则m的值是()A.4B.3C.2D.1二.填空题11.分式有意义,字母x满足的条件为.12.若分式的值大于0,则x满足的条件是.13.分式,,﹣的最简公分母是.14.将分式约分可得,依据为.15.计算:+=.16.计算:=.17.当时,计算=.18.分式方程的解是.19.某商场分别用2000元和2400元购进相同数量的甲、乙两种商品,已知乙种商品每件进价比甲种商品每件进价多8元,则甲种商品每件进价为元.20.若关于x的分式方程﹣=5的解为非负数,则a的取值范围为.三.解答题21.当x为何值时,分式﹣有意义?22.按要求答题:(1)约分(2)通分,.23.解分式方程:①;②.24.先化简,再求值(﹣)÷,其中m满足m2+2m﹣6=0.25.某学生化简分式出现了错误,其解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.26.某商店五月份销售A型电脑的总利润为4320元,销售B型电脑的总利润为3060元,且销售A型电脑数量是销售B型电脑的2倍,已知销售一台B型电脑比销售一台A型电脑多获利50元.(1)求每台A型电脑和B型电脑的利润;(2)该商店计划一次购进两种型号的电脑共100台且全部售出,其中B型电脑的进货量不超过A型电脑的2倍,该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?27.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.参考答案一.选择题1.解:,,是分式,故选:C.2.解:由题意得,x+3=0且x﹣2≠0,解得x=﹣3.故选:D.3.解:∵=﹣,=,∴,,,中,最简分式有,,一共2个.故选:B.4.解:A、B中含有字母的式子才是分式,故本选项不符合题意.B、分式的分子、分母中不含有公因式,是最简分式,故本选项不符合题意.C、分式与的最简公分母是a2b,故本选项不符合题意.D、x≠3时,分子x﹣3≠0,分式有意义,故本选项符合题意.故选:D.5.解:(A)原式==,故A错误.(C)原式=,故C错误.(D)原式==﹣1,故D错误.故选:B.6.解:∵B==,∴A和B互为相反数,即A=﹣B.故选:B.7.解:=[﹣]•(x﹣3)=()•(x﹣3)=1﹣==,故选:C.8.解:老师到甲:=,故选项A不符合题意;甲到乙:=﹣,故选项B符合题意;乙到丙:=,故选项C不符合题意;丙到丁:=,故选项D不符合题意;故选:B.9.解:设甲每天做x个零件,根据题意得:.故选:A.10.解:,方程两边都乘(x﹣1)得2m﹣1﹣7x=5(x﹣1),∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,2m﹣1﹣7=0,解得m=4.故选:A.二.填空题11.解:由题意得,x+3≠0,解得,x≠﹣3,故答案为:x≠﹣3.12.解:∵>0,∴x﹣1>0,∴x>1,∵x﹣1≠0,∴x≠1;故答案为:x>1.13.解:∵2、4、5的最小公倍数为20,x的最高次幂为1,y的最高次幂为2,∴最简公分母为20xy2,故答案为:20xy2.14.解:=(根据分式的基本性质,分式的分子和分母都除以2xy3),故答案为:,分式的基本性质.15.解:原式=+=+==1,故答案为:1.16.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.17.解:==÷=•=,当x=﹣1时,原式==,故答案为:.18.解:,﹣=2,方程两边都乘以x﹣3得:2﹣(x﹣1)=2(x﹣3),解得:x=3,检验:当x=3时,x﹣3=0,所以x=3是增根,即原方程无解,故答案为:无解.19.解:设甲种商品每件进价为x元,则乙种商品每件进价为(x+8)元,依题意得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意.故答案为:40.20.解:方程两边同时乘以(2x﹣2)得:6﹣(a﹣1)=5(2x﹣2),解得:x=1.7﹣0.1a,∵解为非负数,∴1.7﹣0.1a≥0,解得:a≤17,∵x﹣1≠0,∴x≠1,∴1.7﹣0.1a≠1,∴a≠7.故答案为:a≤17且a≠7.三.解答题21.解:由题意得,x﹣1≠0,x+2≠0,解得x≠1,x≠﹣2.22.解:(1)=﹣;(2)=,=.23.解:①分式方程变形得:+=1,去分母得:3x+2=x﹣1,解得:x=﹣,检验:把x=﹣代入得:x﹣1=﹣≠0,则x=﹣是分式方程的解;②去分母得:(x+3)2=4(x﹣3)+(x+3)(x﹣3),整理得:x2+6x+9=4x﹣12+x2﹣9,移项合并得:2x=﹣30,解得:x=﹣15,检验:把x=﹣15代入得:(x+3)(x﹣3)=﹣12×(﹣18)=216≠0,则x=﹣15是分式方程的解.24.解:(﹣)÷=[+]=()===,∵m2+2m﹣6=0,∴m2+2m=6,当m2+2m=6时,原式==3.25.解:(1)学生的解答过程从第二步出现错误,原因是括号前是负号,去括号时未变号,故答案为:二,括号前是负号,去括号时未变号;(2)原式=﹣====﹣.26.解:(1)设每台A型电脑的利润为x元,则每台B型电脑的利润为(x+50)元,根据题意得=×2,解得x=120.经检验,x=120是原方程的解,则x+50=170.答:每台A型电脑的利润为120元,每台B型电脑的利润为170元;(2)设购进A型电脑a台,这100台电脑的销售总利润为y元,据题意得,y=120a+170(100﹣a),即y=﹣50a+17000,100﹣a≤2a,解得a≥33,∵y=﹣50a+17000,∴y随a的增大而减小,∵a为正整数,∴当a=34时,y取最大值,此时y=﹣50×34+17000=15300.即商店购进34台A型电脑和66台B型电脑,才能使销售总利润最大,最大利润是15300元.27.解:(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,依题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:A生产线每小时生产防护服16套,B生产线每小时生产防护服12套.(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25﹣a﹣b)小时,依题意得:该企业防护服的日产量=16a+12b+24(25﹣a﹣b)=(600﹣8a﹣12b)套.②∵该企业防护服日产量不少于440套,∴600﹣8a﹣12b≥440,∴2a+3b≤40.设k=a+b,则2k+b≤40,∴b值越小,k值越大.∵a,b为正整数且不超过12,∴当a=12时,b≤,b可取的最大值为5,此时k的最大值为17,25﹣a﹣b=25﹣k=8;当a=11时,b≤6,b可取的最大值为6,此时k的最大值为17,25﹣a﹣b=25﹣k=8;当a=10时,b≤,b可取的最大值为6,此时k的最大值为16,25﹣a﹣b=25﹣k=9;当a=9时,b≤,b可取的最大值为7,此时k的最大值为16,25﹣a﹣b=25﹣k=9.∴C生产线运行时间的最小值为8小时.。
2017年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (18)

1第11章 一元一次不等式 单元测试卷一、精选择题(每题3分,共21分)1.已知a >b ,c ≠0,则下列关系一定成立的是 ( )A .ab > bcB .a c >b cC .c a ->c b -D .c a +>c b + 2.在数轴上与原点的距离小于8的点对应的x 满足 ( )A .一8<x <8B .x <一8或x >8C .x <8D .x >83.设a b c 、、表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是 ( )A .c <b <aB .b <c <aC .c <a <bD .b <a <c4.下列四个判断:①2ac >2bc ,则a >b ;②若a >b ,则a c >b c ;③若a >b ,则b a<1 ④若a >0,则b a -<b .其中正确的有 ( )A .1个B .2个C .3个 D.4个5.三个连续自然数的和不大于15,这样的自然数组有 ( )A .3组B .4组C .5组D .6组 6.已知关于x 的不等式组 21x x x a <⎧⎪>-⎨⎪<⎩,无解,则a 的取值范围是 ( )A .a ≤一lB .一l<a <2C .a ≥0D .a ≤27.某种商品的进价为900元,出售时标价为1650元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打 ( )A .6折B .7折C .8折D .9折二、填空题。
(每空3分,共24分)8.用不等式表示“7与m 的3倍的和是正数”就是 .9.不等式10420x x -≥⎧⎨-<⎩的最小整数解是 .210.若32,23a a x y ++==,且x >2>y ,则a 的取值范围是 . 11.若不等式组2123x a xb -<⎧⎨->⎩的解集为一1<x <1,那么(1)(1)a b +-的值等于 . 12.如果关于x 的不等式3xm - ≤0的正整数解是1、2、3,那么m 的取值范围是 .13.按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 .14.学生若干人,往若干房间,若每间住4人,则剩19人没处住,若每间住6人,则有一间不满也不空,则共有 个房间,有 人.三、解答题。
苏科版八年级数学下册第10章《分式》10.1~10.2课时练习试题(含答案)

第10章《分式》10.1~10.21. 有一段坡路,小明骑自行车上坡的速度为每小时1v km,下坡时的速度为每小时2v km ,则他在这段路上、下坡的平均速度是每小时( )。
A. 122v v + km B. 12111v v + C. 12211v v +km D. 无法确定 2. 已知分式2(1)(2)1x x x -+-的值为0,那么x 的值是( )。
A. -1 B. -2 C. 1 D. 1或-23. 若代数式32x --的值为正,则x 的取值满足 。
4. 已知当2x =-时,分式x b x a -+无意义,且当4x =时,此分式的值为0,求a b +的值。
5. 当2x =时,分式413x x a +-没有意义,求a 的值。
6. 对分式1(0)a a >,有位同学认为“a 越大,1a的值越小”, 你认为这种说法正确吗?说明理由.若正确,请估计,当a 无限大时,1a接近什么数?7. 将3a a b-中的a b 、都扩大3倍,则分式的值( )。
A. 不变 B. 扩大3倍 C. 扩大9倍 D. 扩大6倍8. 分式22x-可变形为( )。
A. 22x + B. 22x -+ C. 22x - D. 22x -- 9. 计算242x x --,结果是( )。
A. 2x -B. 2x +C.42x - D. 2x x + 10. 下列运算正确的是( )。
A. 54ab ab -=B. 112a b a b+=+ C. 624a a a ÷= D. 2353()a b a b =11. 化简:2422x x x+--= 。
12. 若2a b=,则2222a ab b a b -++= 。
13. 已知4x y xy -=,求2322x xy y x xy y+---的值。
14. 先化简,再求值: (1)分式225210x x --,其中2x =-; (2)分式22244x y x xy y --+,其中1,3x y =-=。
初中数学八年级数学下册下学期第一单元《分式》单元达标检测试题(两份整理含答案)

八年级数学(下)《分式》单元达标检测试题A 卷(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.当x 时,分式15x -无意义、当m = 时,分式2(1)(2)32m m m m ---+的值为零.2.各分式121,1,11222++---x x x x x x 的最简公分母是 . 3.若a =23,2223712a a a a ---+的值等于_______.4.已知y x 11-=3,则分式yxy x y xy x ---+2232的值为_______. 5.已知:23(1)(2)12x A Bx x x x -=+-+-+,则A =______,B =________.6.科学家发现一种病毒的长度约为0.000043mm ,科学记数法表示0.000043的结果为 .7.不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x .8.化简:3222222232a b a b a abab a ab b a b+--÷++-= . 9.如果方程5422436x x kx x -+=--有增根,则增根是_______________. 10.已知x y =32;则x y x y -+= __________.11.m≠±1时,方程m (mx-m+1)=x 的解是x =_____________.12.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f.若f =6厘米,v =8厘米,则物距u = 厘米. 13.已知:15a a+=,则4221a a a ++=_____________. 14.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,那么代数式2222a b a b--的值是____________.二、选择题(共4小题,每题3分,共12分) 15.若分式x -51与x322-的值互为相反数,则x = ( ) A .-2.4 B .125C .-8D .2.416.将()()1021,3,44-⎛⎫-- ⎪⎝⎭这三个数按从小到大的顺序排列,正确的结果是 ( )A .()03-<114-⎛⎫ ⎪⎝⎭<()24- B .114-⎛⎫⎪⎝⎭<()03-<()24-C .()24-<()03-<114-⎛⎫ ⎪⎝⎭ D .()03-<()24-<114-⎛⎫⎪⎝⎭17.若22347x x ++的值为14,则21681x x +-的值为 ( ) A .1 B .-1 C .-17D .1518.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5 天交货,设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+三、解答题(共60分)19.(4分)计算:(1)22225103721x y y y x x ÷; (2)2113()1244x x x x x x x -++-÷++++.20.(4分)先化简代数式222222()()()a b a b aba b a b a b a b +--÷-+-+,然后请你任意先择一组你自己所喜欢的,a b 的值代入求值.21.(4分)有这样一道数学题:“己知:a =2009,求代数式a(1+a1)-112--a a 的值”,王东在计算时错把“a =2009”抄成了“a =2090”,但他的计算结果仍然正确,请你说说这是怎么回事.22.(6分)解方程:(1)21133x x x -+=--; (2)1617222-=-++x x x x x .23.(6分)已知下面一列等式.(1)请你按这些等式左边的结构特征写出它的一般性等式:1×12=1-12;12×13=12-13;13×14=13-14;14×15=14-15;…… (2)验证一下你写出的等式是否成立. (3)利用等式计算:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x ++++++++++.24.(6分)若方程122-=-+x ax 的解是正数,求a 的取值范围.关于这道题,有位同学做出如下解答:解 :去分母得,22x a x +=-+. 化简,得32x a =-.故23ax -=. 欲使方程的根为正数,必须23a->0,得a <2. 所以,当a <2时,方程122-=-+x ax 的解是正数.上述解法是否有误?若有错误请说明错误的原因,并写出正确解答;若没有错误,请说出每一步解法的依据.25.(6分)用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价是多少元?26.(8分)为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?27.(8分)为增强市民节水意识,某自来水公司水费计算办法如下:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收取较高的定额费用.2月份,小王家用水量是小李家用水量的23,小王家当月水费是17.5元,•小李家当月水费是27.5元,求超过5m3的部分每立方米收费多少元?28.(8分)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y 均为正整数,且x<15,y<70,求x、y.八年级数学(下)《分式》单元达标检测试题B 卷(时间90分钟 满分100分)一、填空题(共14小题,每题2分,共28分)1.当x = 时,分式127x -无意义;当x = 时,分式242x x -+的值为零.2.公式21P U R -=可以改写成P= 的形式.3.226()(1)x x A y =+,那么A =_____ ____.4.计算232()()y x y x y-÷-= .5.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.6.函数y =2(3)12x x-+--中,自变量x 的取值范围是___________.7.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.8.已知u =121s s t -- (u≠0),则t =___________. 9.当m =______时,方程233x m x x =---会产生增根. 10.用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x+-- =____________. 12.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.13.小聪的妈妈每个月给她m 元零花钱,她计划每天用a 元(用于吃早点、乘车)刚好用完,而实际她每天节约b 元钱,则她实际可以比原计划多用 天才全部消费完.14.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么11(1)(2)()(3)()23f f f f f ++++ 1()()f n f n+++=___ ____(结果用含n 的代数式表示,n 为正整数). 二、选择题(共4小题,每题3分,共12分)15.小明通常上学时从家到学校要走一段上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时. A .2n m + B .2mn m n + C .mn m n + D .mnn m +16.已知1ab =,1111M a b =+++,11a b N a b=+++,则M 与N 的大小关系为 ( ) A .M =N B .M >N C .M <N D .不确定17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b +,如2※4113244=+=.根据这个规则,则方程x ※(2x -)=1的解为 ( ) A .-1 B .1 C .16-D .1618.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x 页,则根据题意可列出方程为 ( ) A .80705x x =- B .80705x x =+ C .80705x x =+ D .80705x x =-三、解答题(共60分)19.(4分)当x的取值范围是多少时,(1)分式213xx+-有意义?(2)分式2361xx-+值为负数?20.(4分)计算:(1)2222()()64x xy y÷-;(2)21322()(2)a b ab----;21.(4分)化简:(1)2221()111m m m mm m m-+÷---;(2)22224421yxyxyxyxyx++-÷+--.22.(6分)先将分式121312-+÷⎪⎭⎫ ⎝⎛-+x x x 进行化简,然后请你给x 选择一个你认为合适的数值代入,求原式的值.23.(6分)分式)3)(1()2)(1(a a a a -+++的值可能等于41吗?为什么?24.(6分)解方程:(1)214111x x x +--=--; (2)0)1(213=-+--x x x x .25.(6分)为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数.26.(8分)某校统考后,需将成绩录入电脑,为防止出现差错,全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍,然后经过电脑比对输入成绩数据是否一致.已知甲的输入速度是乙的速度的2倍,结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据?27.(8分)请阅读某同学解下面分式方程的具体过程.解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ②22116843x x x x =-+-+, ③∴22684 3.x x x x -+=-+ ④∴52x =. 把52x =代入原方程检验知52x =是原方程的解.请你回答:(1)得到①式的做法是;得到②式的具体做法是;得到③式的具体做法是;得到④式的根据是.(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答:.错误的原因是(若第一格回答“正确”的,此空不填).(3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).28.(8分)5.12汶川特大地震给我们国家造成巨大损失,有许多人投入了抗震救灾战斗之中,身为医护人员的小刚的父母也投身其中.如图,小刚家、王老师家,学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车接小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?学校八年级数学(下)《分式》单元达标检测试题(A 卷)参考答案一、填空题1.x =5,m =1 2.2(1)(1)x x x +- 3.12- 4.35 5.A =1,B =1 6. 54.310-⨯ 7.100650025x x --- 8.2ab 9.x=2 10.15 11.x =1m m + 12.24 13.24 14.5 二、选择题15.D 16.A 17.A 18.D三、解答题19.(1)32x y ;(2)21x x +-+ 20.a b +,(取值要求:a b ≠) 21.略 22.(1)2x =;(2)3x = 23.(1)1n ·11111n n n =-++;(2)成立;(3)244x x + 24.略 25.9元 26.12个月 27.2元/吨 28.(1)100天;(2)x=14,y=65八年级数学(下)《分式》单元达标检测试题(B 卷)参考答案一、填空题1. 3.5,2 2.2U R 3.3(1)y + 4.2xy 5.()aA m m a - 6.x≥-12且x≠12,x≠3 7.-2 8.12u s s u +- 9.-3 10.2y 2-13y-20=0 11.x+y 12. 3015265x x +=+ 或26(x+5)-30x=15 13.()m m a b a -- 14.12n - 二、选择题 15.B 16.A 17.D 18.D三、解答题19.(1)x ≠3±;(2)x <2 20.(1)2249x y ;(2)44a b 21.(1)11m m+-;(2)y x y -+ 22.1x +,(x ≠1,2±-) 23. 不可能,原式等于14时,1x =-,此时分式无意义 24.(1)3x =-;(2)无解 25.(1)60天;(2)24天 26. 甲每分钟输入22名,乙每分钟输入11名 27.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)55,2x x == 28.王老师步行的速度是5千米/时,骑自行车的速度是15千米/时。
苏科版八年级数学下册分式单元测试卷10

苏科版八年级数学下册分式单元测试卷10一、选择题(共10小题;共50分)1. 若关于的分式方程有增根,则的值是A. B. C. D. 或2. 如果分式的值是整数,那么整数可取的值的个数是A. B. C. D.3. 若分式的值为正整数,则整数的值有A. 个B. 个C. 个D. 个4. 下列等式正确的是A. B.C. D.5. 为保证达万高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用天,乙队单独完成这项工程比规定时间多用天,如果甲、乙两队合作,可比规定时间提前天完成任务.若设规定的时间为天,由题意列出的方程是B.C.6. 分式有意义,则的取值范围是A. B. C. D. 一切实数7. 下列方程中,分式方程有①②③④⑤A. 个B. 个C. 个D. 个8. 下列计算正确的是A. C. D.9. 计算的结果为A. B. C.10. 若关于无解,则的值是A. 或B.C. D. 或二、填空题(共6小题;共30分)11. 分式除以分式,把除式的分子、分母后,与被除式相乘.12. “,两数的平方和”用代数式表示为.13. 若关于无解,则的值为.14. 已知的值为整数,则可取的值有个.它们是.15. 若关于的分式方程无解,则常数的值为.16. 将下列分式化为最简分式:();();().三、解答题(共8小题;共104分)17. 确定下列各分式的最简公分母.(1),,;(2,.18. .19. .20. 已知多项式是六次四项式,单项式与该多项式的次数相同,求、的值.21. 判断下列关于的方程,哪些是分式方程?(;();();().22. 先化简,再求值:,其中,.23. 若方程无解,求的值24. 计算:.答案第一部分1. A 【解析】方程两边都乘,得.因为分式方程有增根,所以,解得,所以,解得.2. B 【解析】的值是整数,,,,,的取值有个.3. B4. A5. B【解析】设规定时间为天,则甲队单独一天完成这项工程的,乙队单独一天完成这项工程的,甲、乙两队合作一天完成这项工程的.则.6. B7. B8. D9. B 【解析】10. A【解析】去分母得:,由分式方程无解,得到或,把代入整式方程得:;把代入整式方程得:.第二部分11. 颠倒位置12.或【解析】原式去分母得,,当时,方程无解,所以,当时,时,方程无解,此时,综上,或时方程无解.14. ,,,【解析】,根据题意,得,则.又,.或【解析】化为整式方程后.解得.由分式方程无解可得该分式方程有增根.令.解得.16.第三部分17. (1)最简公分母是;(2)最简公分母是.18. .19.20. 因为已知多项式的次数是六次,所以,即,所以.因为已知多项式与已知单项式的次数相同,所以,即,所以.21. 方程()是分式方程.22.当,时,23. 去分母,得①,整理关于的一次方程,得当即时,原方程无解;当时,原方程有增根,原方程无解;分别将,代入方程①当时,无解;当,解题.综上,当或无解..。
2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。
苏科版八年级数学下册-第十章分式-综合测试卷(包含答案)

第十单元 分式 综合测试卷一、选择题(母题2分,共20分)1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a-+----+--、、、、,其中最简分式的个数是 ( )A .1个B .2个C .3个D .4个2.下列分式约分正确的是 ( )A .632x x x= B .0x y x y +=+ C .21x y x xy x +=+ D .222142xy x y = 3.若1,2x y =-=,则2221648x x y x y---的值等于 ( ) A .117-B .117C .116D .115 4.当3a =时,代数式 213(1)24a a a --÷--的值为 ( )A .5B .一1C .5或一1D .05.计算2322()n a b - 与333()2n a b -的结果 ( )A .相等B .互为倒数C .互为相反数D .以上都不对6.无论x 取什么数,总是有意义的分式是 ( )A .221x x +B .21x x +C .331x x +D .25x x -7.若不论x 取何实数时,分式22ax x a -+总有意义,则a 的取值范围是 ( )A .a ≥1B .a >1C .a ≤1D .a <18.下列各式的变形中,不正确的是 ( )A .a b a b cc ---=- B .b a a b c c --=- C .()a b a b c c -++=- D .a b a b c c --+=-9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5 小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需( )A.7.5小时B.10小时C.12.5小时D.15小时10.为保证某高速公路在2014年4月底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x天,由题意列出的方程是( )A.111104014x x x+=--+B.111104014x x x+=++-C.111104014x x x-=++-D.111101440x x x+=-+-二、填空题(每题2分,共20分)11.下列各式中11152235a n a ab ym b zπ++-、、、、、中分式有个.12·当a时,分式123aa-+有意义.13.若分式33xx--的值为0,则x= .14·若41(2)(1)21a m na a a a-=++-+-,则m= ,n= .15·若关于x的分式方程2133mx x=+--有增根,则m= .16·当x= 时,52343xx-+与的值互为倒数.17.若a:b:c=1:2:3,则33a b ca b c+--+= .18·已知a ba b+=,则abab的值为.19.某同学从家去学校上学的速度为a,放学回家时的速度是b,则该同学上学、放学的平均速度为.20.设A、B、C为三个连续的正偶数,若A的倒数与C的倒数的2倍之和等于B的倒数的3倍.设B数为x,则所列方程是.三、解答题(共60分)21.(本题12分)计算.2421(1)422x x x ++-+-;(÷;22(3)(1)b a a b a b ÷--+; 211(4)()1211x x x x x x ++÷--+-22.(本题8分)解下列方程.54410(1)1236x x x x -+=---2324(2)111x x x +=+--23.(本题6分)先化简,再求值:222412)4422a a a aa a --÷-+--,其中a 是方程23100x x +-= 的根24.(本题6分)有这样一道题:“计算2221112x x x x x x x -+-÷--+的值,其中x =2 014”·小明把“x =2014,,错抄成“x =2410”,但他的计算结果也正确.你能说明这是为什么吗?25.(本题6分)已知2113 xx x =-+,求2421xx x++值.26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?参考答案—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B二、11.3 12.≠32-13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b + 20.12322x x x +=-+三、21.(1)12x +(2)2x - (3)1a b - (4)1xx -22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解.23.原式2(3)322a a a a ++==∵a 是方程23100x x +-=∴2310a a +=∴原式=1052=24.原式=2(1)(1)0(1)(1)1x x x x x x x -+⨯-=+--,∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.25.由2113x x x =-+得21x x x -+,进而14x x +=,求得22114x x +=,2421115x x x =++26.设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x +10)天,由题意,得453010x x =+,解得:20x =.经检验,x =20是原方程的解,∴x +10=30(天) 答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队至少再单独施工a 天,由题意,得3232303020a +≥⨯,解得:a ≥3. 答:甲队至少再单独施工3天.27.解:(1)设B 型汽车每辆可装计算机x 台,则A 型汽车每辆可装计算机34x 台.依题意得27027030134x x +=+解得:x =60.经检验,x =60是原方程的解.则34x =45(台).即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此 时总运费为350×2+400×3=1900(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级下学期数学《分式》章节测试题(含解析)一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)46.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠110.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。