浙教版七年级下数学《第五章分式》单元检测试卷含答案.doc

合集下载

浙教版七年级数学初一下册第五章分式单元试卷含答案

浙教版七年级数学初一下册第五章分式单元试卷含答案

班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------分式综合测试一、选择题1. (2013 黑龙江省龙东地区) 已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是( ) (A )1a -≤ (B )12a a -≠-≤且 (C )12a a ≠-≤且 (D )1a ≤2.化简111a a a+--的结果为( ). (A ) -1 (B )1 (C )11a a +- (D )11a a+-3. 某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是 A .60045050x x =+ B .60045050x x=- C .60045050x x =+ D .60045050x x =- 4. (2014 广西贵港市)分式方程=的解是( )5. 关于x 的分式方程1+1x =的解为正数,则字母a 的取值范围为 ( ) A.a ≥-1 B .a >-1 C .a ≤-1 D .a <-16. (2014 黑龙江省牡丹江市) 若:1:3x y =,23y z =,则2x yz y+-的值是A.5-B.103-C.103 D. 57.已知:0132=+-a a ,则21-+aa 的值为( ) A .15- B . 1 C . -1 D . -58.分式方程的解为()9. (2014 江苏省南通市) 化简的结果是()10. (2014 浙江省温州市) 要使分式2x -有意义,则x 的取值应满足( ) A .2x ≠B .1x ≠-C .2x =D .1x =-二、填空题11. 方程xx x -=-212的根x = . 12.已知关于x 的分式方程111=--++x kx k x 的解为负数,则k 的取值范围是_______. 13.已知1132a b +=,则代数式254436a ab bab a b-+--的值为. 14. 若分式方程211x mx x-=--有增根,则这个增根是 15. (2014 四川省凉山州) 关于x 的方程112ax x +=--的解是正数,则a 的取值范围是16.已知a >b ,如果+=,ab=2,那么a ﹣b 的值为 .三、计算题17. (2014 山东省淄博市) 计算:22222155b a b a ab b ab -⋅+.18. 解方程:.19. (2014 四川省遂宁市) 先化简,再求值:(+)÷,其中x=﹣1.班级_____________________ 姓名____________________ 考场号____________ 考号___________----------------------------------------------------密--------------------------------封--------------------------------线-----------------------------------------------四、应用题20. (2014 四川省达州市) 某服装商预测一种应季衬衫能畅销市场,就用之于8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元。

浙教版七年级下册数学第五章分式测试卷(附答案

浙教版七年级下册数学第五章分式测试卷(附答案
(2)解:原式= = = = .
A.﹣2 B.﹣1 C. 0 D. 2
10.要使关于x的方程ax2﹣2x﹣1=0有两个实数根,且使关于x的分式方程 + =2的解为非负数的所有整数a的个数为()
A. 3个B. 4个C. 5个D. 6个
11.已知a+ = ,则a- 的值为()
A. ±2 B. 8 C. D. ±
二、填空题(共6题;共12分)
答:原计划每天铺设60米长的管道.
五、综合题
24.(1)②(2)解:a=4,a=-4,a=5(3)
25.(1)解:设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元,
根据题意,得 = ,
解得x=40.
经检验,x=40是所列方程的解,且符合题意,
∴x+8=48.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元.
三、计算题
18.解:∵ ﹣ =3,∴x﹣y=﹣3xy,∴
= = = .
19.(1)解:原式=4-2-6=-4
(2)解:原式 =
20.解:原式=( ﹣ )•
= • ﹣ •
= ﹣ = = ,
当x=﹣2+ 时,
原式= = = .
四、解答题
21.解:设货车速度是x千米/小时,
根据题意得: ﹣ =2,
解得:x=60,
21.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.
22.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求小轿车的速度.
23.列方程解应用题:
某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?

浙教版数学七年级下第五章分式单元检测试卷及答案

浙教版数学七年级下第五章分式单元检测试卷及答案

浙教版初中数学七年级下册第五章分式单元检测试卷班级_____________考号______________姓名_______________总分_________________一、选择题(10小题,每题3分,共30分)1.下面各式中,是分式的是()A. B. C. D.m-2n2.方程的解是()A.2 B.﹣2 C.4 D.﹣43.若分式的值等于0,则x的值是( )A.2 B.C.D.不存在4.若关于x的方程的解是x=3,则a的值为()A.5 B.﹣5 C.3 D.﹣35.若关于x的方程没有增根,则m的值不能是()A.3 B.2 C.1 D.﹣16.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍 B.扩大4倍 C.不变 D.缩小2倍7.若x+=3,则x-的值是( )A. B.- C.± D.±8.几名同学租一辆面包车去旅游,面包车的租价为240元,出发时又增加了2名同学,结果每个同学比原来少分摊了4元钱车费,设参加旅游的同学共x人,则所列方程为()A. B. C. D.9.计算的值为 ( )A. B.6ab2 C. D.110.设 (A,B为常数),则( )A. B. C. D.二、填空题(6小题,每题4分,共24分)11.当a=____________时,方程的解与方程的解相同.12.如10,12,15三个数的倒数满足:,我们称12是10与15的调和数,则6与12的调和数为____________.13.已知x为正整数,分式的值也是整数,则x的值可能为_________.14.化简的结果是__________.15.当x=-2017,y=2018时,代数式÷的值为______.16.用四则运算的加法与除法定义一种新运算记为☆.若对于任意有理数a,b,a☆b=,则方程(1☆x)=5的解是_______.三、解答题(8小题,共66分)17.解下列分式方程:(1);(2).18.化简:(1)8x2y3·;(2).19.若,对任意自然数n都成立,求实数a,b.20.因城市建设的需要,某市将长方形广场的一边增加12m,另一边减少12m,变成边长为a(m)的正方形广场,试问改建前后广场的面积比是多少?面积变大了吗?21.(1)先化简,再任意选一个你喜欢的数作为x的值代入求值.(2)先化简,再求值:,其中a2-a=0.(3)已知y=-x+3.试说明不论x为任何有意义的值,y的值均不变.22.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应的n、m的值.23.阅读下列材料:已知关于x的方程的解是,;方程(即)的解是,;方程的解是,;方程的解是,;……(1)结论:猜想方程(m≠0)的解是 .(2)应用:利用这个结论,解关于x的方程: .24.商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一”儿童节促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案1.【考点】分式的定义【分析】根据分式的性质即可判断.解:A. 分母没有字母,不是分式;B. 分母有分式,是分式;C. 分母没有字母,不是分式;D. m-2n没有分母不是分式,故选B.【点睛】此题主要考查分式的定义,熟知分母中有字母为分式是解题的关键.2.【考点】解分式方程【分析】先去分母,分式方程两边乘以x(x+2),再去括号,合并同类项即可.解:去分母得:2(x+2)=x,去括号,移项合并得:x=-4,经检验x=-4是分式方程的解.原方程的解是x=-4故选:D.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.【考点】分式有意义的条件【分析】分式等于零:分子等于零,且分母不等于零.解:由题意,得x2-4=0,且x+2≠0,解得,x=2.故选:A.【点睛】本题考查分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.【考点】分式方程的解【分析】分式方程去分母转化为整式方程,把x=3代入计算即可求出a的值.解:解:分式方程去分母得:10(x-a)=-2a(x-1),把x=3代入得:10(3-a)=-4a,解得:a=5,故选:A.【点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.5.【考点】分式方程的增根【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.解:将分式方程两边都乘以(x-1),得:m-1-x=0,把x=1代入m-1-x=0,解得m=2.∵原分式方程没有增根,∴m≠2.故选:B.【点睛】此题主要考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.【考点】分式的性质【分析】分式中的x和y都扩大2倍变为一个新的分式再进行约分,比较与原分式的大小变化即可.解:分式中的x和y都扩大2倍变为==,所以大小不变,选C.【点睛】此题主要考查分式的性质,解题的关键是对分式进行正确的约分判断.7.【考点】分式的值【分析】先求得(x+)2的值,然后变形得到(x﹣)2=5,再开平方即可得到答案.解:∵x+=3,∴(x+)2=x2+2+=9,即x2﹣2+=5,则(x﹣)2=5,即x﹣= ±.故选:D.【点睛】本题主要考查分式的值,解此题的关键在于利用完全平方公式进行变形求解.8.【考点】由实际问题抽象出分式方程【分析】设参加旅游的同学共x人,原有人数为(x-2)人,根据每个同学比原来少分摊了4元钱车费,列方程.解:设参加旅游的同学共x人,原有人数为(x-2)人,由题意得,故选:B.【点睛】本题考查由实际问题抽象出分式方程,解题关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.9.【考点】分式的混合运算【分析】原式先计算乘方运算,再计算乘除法运算即可得到结果.解:原式== .故选:C.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.【考点】分式的减法【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.解:.所以,解得.故选A.【点睛】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.11.【考点】分式方程的解,解分式方程【分析】根据解分式方程,可得第二个分式方程的解,根据方程的解相同,把方程的解代入第一个方程,可得关于a的方程,根据解方程,可得答案.解:,去分母,得x-4=3x.解得x=-2,经检验:x=-2是原分式方程的解.∵方程的解与方程的解相同.把x=-2代入得:解得a=经检验:a=是分式方程的解,∴当a=时,方程的解与方程的解相同.故答案为:【点睛】本题考查了分式方程的解,利用了解分式方程的步骤,注意要检验分式方程的解.12.【考点】解分式方程【分析】根据调和数的关系,计算即可.解:设6与12的调和数为x,则,解得,x=8.【点睛】此题考查了解分式方程,理解题意列出方程是解题关键.13.【考点】分式的性质【分析】按题意分情况讨论x为整数满足分式的值为整数的取值即可,注意分母不能为0的情况.解:因为x为正整数,分式=1+的值也为整数,所以x-1=1或2,满足条件的有以下情况:当x=2时,分式值为3;当x=3时,分式值为2;故答案为:2,3.【点睛】本题考查分式的性质,注意分式分母不能为0的隐性条件.解题关键是分类讨论思想,注意不要漏解.14.【考点】分式的混合运算【分析】先把各项分式的分子分母进行因式分解并化简后再运算.解:原式=.故答案为:.【点睛】运算之前对各分式进行因式分解并化简是解题关键.15.【考点】分式的化简求值【分析】先将分子、分母因式分解,再将除法转化为乘法后约分.解:原式====-x-y.当x=-2017,y=20118时,原式=-(-2017)-2018=2017-2018=-1.故答案为-1.【点睛】本题考查了分式的化简求值,熟悉约分、通分及分式的乘除法则是解题的关键.16.【考点】解分式方程【分析】利用题中的新定义化简已知等式,求出解即可.解:根据题意得:1☆x==5去分母得:1+x=5-5x,解得:x=经检验x=是分式方程的解.故答案为:x=【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.【考点】解分式方程【分析】(1)先去分母,再去括号整理即可;(2)方程两边都乘以x-7,再对所得答案进行检验即可.解:(1)去分母,得3x(x-2)+2(x+2)=3(x+2)(x-2),去括号,得3x2-6x+2x+4=3x2-12,整理,得-4x=-16,解得x=4.经检验,x=4是原方程的解,故原方程的解为x=4.(2)方程两边都乘以x-7,得x-8+1=8(x-7),解这个方程,得x=7.检验,当x=7时,x-7=0.因此x=7是原方程的增根,故原方程无解.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.18.【考点】分式的混合运算【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)先把括号内通分,并把除法转化为乘法,然后把分子、分母分解因式约分化简即可.解:(1)原式=8x2y3·=;(2)原式===x-1.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【考点】分式的计算【分析】先将计算得,由对任意自然数n都成立,可得=1,即2n(a+b)+a﹣b=1,故a+b=0,a﹣b=1,再解得a,b即可.解:∵=依题意可得=1∴2n(a+b)+a﹣b=1,即.解得:a=,b=﹣.【点睛】此题主要考查分式的计算,解题的关键是依题意找到关于a,b的式子进行求解.20.【考点】分式的乘除法【分析】根据题意表示出改建前中心广场的面积,以及改建后的面积,求出面积比,判断即可得到结果.解:改建前中心广场的面积为(a+12)(a-12)米2,改建后中心广场的面积a2(米2),故改建前后广场的面积比是,∵(a+12)(a-12)=a2-144,∴a2>(a+12)(a-12),则广场的面积增加了.【点睛】此题考查了分式的乘除法,弄清题意是解本题的关键.21.【考点】分式的化简求值【分析】(1)先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可;(2)首先把分子分母分解因式,然后相乘约分可得到a2-a-2,再把a2-a=0代入即可;(3)先把分子分母分解因式再化简约分即可.解:(1)原式====.当x=0时,原式==(x不能取±3和2,其余任意实数都可以)(2)原式==(a-2)·(a+1)=a2-a-2.当a2-a=0时,原式=0-2=-2.(3)y=-x+3=3,∴无论x取任何有意义的值,y的值均不变.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.【考点】分式方程的应用,二元一次方程的应用【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.解:(1)设第一次购书的进价为x元/本,根据题意得:,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7-6)+(2500-2000)×(-6)=100m,整理得:7n=2m+20,即2m=7n-20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.【点睛】此题考查了分式方程的应用,以及二元一次方程的应用,找出题中的等量关系是解本题的关键.23.【考点】解分式方程【分析】观察所给式子,可看出:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成某个常数,那么这样的方程可直接解得.利用这个结论,可解题.(1)根据阅读材料得到x1=c,x2=.然后将其代入已知方程进行验证即可;(2)将变形为(x-1)+=(a-1)+,求得x-1的值后再来求x的值即可.解:(1)【点睛】本题考查解分式方程,解题关键是需要学生具备观察、比较,猜想、逻辑分析能力.24.【考点】分式方程的应用,一元一次不等式的应用【分析】 (1)设4月份的销售单价为x元.由题意得-=50,解方程可得;(2)先求出4、6月份的销量,设销量为y件,由题意得160y-120y≥8 000×(1+25%),解不等式可得.解:(1)设4月份的销售单价为x元.由题意得-=50,解得x=200.经检验,x=200是原方程的解,且符合题意.所以4月份的销售单价为200元.(2)4月份的销量为20000÷200=100(件),则每件衣服的成本为(20000-8000)÷100=120(元).6月份的售价为200×0.8=160(元),设销量为y件,由题意得160y-120y≥8 000×(1+25%),解得y≥250,所以销量至少为250件,才能保证6月的利润比4月的利润至少增长25%.【点睛】本题考查了分式方程的应用及一元一次不等式的应用题,看懂题意,找到关系式是解题的关键.。

浙教版初中数学七年级下册第五单元《分式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第五单元《分式》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第五单元《分式》单元测试卷(较易)(含答案解析)考试范围:第五单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 要使分式1(x−1)(x+2)有意义,x的取值应满足( )A. x≠1.B. x≠−2.C. x≠1或x≠−2.D. x≠1且x≠−2.2. 分式x+5x−2的值是零,则x的值为( )A. 2B. 5C. −2D. −53. 如果ab =23,则a+bb=( )A. 23B. 43C. 53D. 354. 已知x=2y.则分式x−yx(x≠0)的值为( )A. −12B. 12C. −1D. 15. 下列计算错误的是( )A. 1a+b ·(a+b)=1 B. 4ab·b2a=2b2C. a2−9a ·a2a2+3a=a−3 D. (a−2)·a2−4a2−4a+4=a−26. 化简x÷xy •1x等于( )A. 1B. xyC. yxD. x y7. 下列各式中,计算结果正确的是( )A. 3xx2·x3x=x B. 8a2b2÷(−3a4b2)=−6a2−bC. (2x3y2)2=4x6y4D. −3m10xy·6m=−120xy8. 已知x=1+2m,y=1+12m,则y等于( )A. 2−xB. xx−1C. x+2x−1D. x+1x−19. 下列错误的有( )①2x−y π是分式; ②当x ≠1时,x 2−1x−1=x +1成立; ③当x =−3时,分式x+3|x|−3的值是零; ④a ÷b ×1b=a ÷1=a; ⑤a x +a y =2a x+y ; ⑥2−x ⋅32−x=3(x ≠2).A. 6个B. 5个C. 4个D. 3个10. 已知1a −1b =12,则aba−b 的值是.( ) A. 12B. −12C. 2D. −211. 师徒两人每小时共加工35个电器零件,徒弟做了120个时,师傅恰好做了160个.设徒弟每小时做x 个电器零件,则根据题意可列方程为( )A.120x=16035−x B. 12035−x =160xC.120x=16035+xD. 12035+x =160x12. 在公式1R =1R 1+1R 2中,已知R 1=3,R 2=2,求R ,正确的是( ) A. R =5B. R =1.5C. R =1.2D. R =1第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 填空:当 时,分式2xx−2的值是零. 14. 化简:ba ÷(−a)×1b = . 15. 填空2m +1m= .16. 方程21−x −3=0的两边同乘(1−x),可得整式方程: .三、解答题(本大题共9小题,共72.0分。

浙教版初中数学七年级下册第五单元《分式》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第五单元《分式》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第五单元《分式》单元测试卷(标准难度)(含答案解析)考试范围:第五单元; &nbsp; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项) 1. 分式x+a 2x−1中,当x =−a 时,下列结论正确的是.( ) A. 分式的值为零B. 分式无意义C. 若a ≠−12时,分式的值为零D. 若a =−12时,分式的值为零 2. 已知分式(x−1)(x+3)(x+1)(x−3)有意义,则x 的取值范围为( )A. x ≠−1且x ≠3B. x ≠3C. x ≠−1D. x ≠−1或x ≠3 3. 若62x+3表示一个整数,则整数x 可取值的个数是( )A. 2个B. 3个C. 4个D. 8个 4. 若x 2+x −2=0,则x 2+x −1x 2+x 的值为( )A. 32B. 12C. 2D. −32 5. 若y =x 1−2x ,则2x−3xy−2y y+xy−x 的值为( ) A. 13B. −1C. −53D. −73 6. 若x 2−y 2a 2x−a 2y ÷(x+y)2ax+ay 的值是5,则a 的值是( ) A. 5 B. −5 C. 15 D. −15 7. 下列各分式中,是最简分式的是( )A. a 2−b 2a 2b+ab 2 B. m 2−n 2m+n C. 3(x−y)7(x+y) D. x 2−y 2x 2−2xy+y 28. 小明、小亮参加学校运动会800米赛跑,小明前半程的速度为2x 米/秒,后半程的速度为x 米/秒,小亮则用3x2米/秒的速度跑完全程,结果是( ) A. 小明先到终点B. 小亮先到终点C. 同时到达D. 不能确定 9. 已知a +1a =4,则a 2+1a 2=( )A. 12B. 14C. 16D. 1810. 已知关于x的分式方程mx−1+2=−31−x的解为非负数,则正整数m的所有个数为( )A. 3B. 4C. 5D. 611. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程( )A. 25x −321.6x=15 B. 321.6x−25x=15 C. 321.6x−25x=14D. 25x−321.6x=1412. 某工厂接到一项制作12000朵假花的工作任务,由于采用了新工艺,每小时可以多加工500朵假花,完成这项工作的时间将缩短4小时,求采用新工艺前每小时可以加工多少朵假花若设采用新工艺前每小时加工x朵假花,则可列方程为( )A. 12000x −12000x+500=4 B. 12000x+500−12000x=4C. 12000x −12000x−500=4 D. 12000x−500−12000x=4第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知分式x−nx+m,当x=−3时,该分式没有意义;当x=−4时,该分式的值为0,试求(m+ n)2023的值;14. 在分式b8a ,a+ba−b,x−yx2−y2,x−yx2+2xy+y2中,最简分式有__________个.15. 若x+1x =136且0<x<1,则x2−1x2=______.16. 某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为______ .三、解答题(本大题共9小题,共72.0分。

浙教版七年级数学下册第五章 分式 章末检测(附答案)

浙教版七年级数学下册第五章 分式 章末检测(附答案)

浙教版七年级数学下册第五章分式章末检测(附答案)一、单选题(共10题;共30分)1.在式子、x、、中,属于分式的个数是()A. 0B. 1C. 2D. 32.下列分式中最简分式的是()A. B. C. D.3.张萌将分式进行通分,则这两个分式的最简公分母为()A. B. C. D.4.下列各分式中,与分式的值相等的是()A. B. C. ﹣ D. ﹣5.若分式中的a,b都同时扩大2倍,则该分式的值()A. 不变B. 扩大2倍C. 缩小2倍D. 扩大4倍6.计算1÷ (m2-1)的结果是( )A. -m2-2m-1B. -m2+2m-1C. m2-2m-1D. m2-17.化简的结果是()A. 1B.C.D. -18.当x=6,y=3时,代数式()• 的值是()A. 2B. 3C. 6D. 99.关于x的方程无解,则m的值为()A. ﹣5B. ﹣8C. ﹣2D. 510.用换元法解分式方程﹣=5时,设=y,原方程变形为()A. 2y2﹣5y﹣3=0B. 6y2+10y﹣1=0C. 3y2+5y﹣2=0D. y2﹣10y﹣6=0二、填空题(共6题;共24分)11.函数表达式y= 自变量x取值范围是________.12.约分:=________ .13.约分:=________14.已知,则=________.15.关于x的分式方程﹣= 有增根x=﹣2,那么k=________.16.在“校园文化”建设中,某校用8 000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿植植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.三、解答题(共8题;共66分)17.先化筒,再求值:x(x﹣2)﹣(x+3)(x﹣3),其中.18.解方程(1)(2)x2﹣6x﹣4=0(用配方法)19.已知分式,当x=-3时,该分式没有意义;当x=-4时,该分式的值为0.试求(m+n)2019的值.20.解方程:.21.先化简,再求值:÷(1﹣),其中m=22.阅读下列资料,解决问题:定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:这样的分式就是假分式,假分式也可以化为带分式(即:整式与真分式的和的形式). 如:.(1)分式是________(填“真分式”或“假分式”);(2)将假分式分别化为带分式;(3)如果分式的值为整数,求所有符合条件的整数x的值.23.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.为改善城市排水系统,某市需要新铺设一段全长为的排水管道.为了减少施工对城市交通的影响,实际施工时每天的工效是原计划的倍,结果提前天完成这一任务.(1)这个工程队原计划每天铺设管道多少?(2)在这项工程中,如果要求工程队提前天完成任务,那么实际施工时每天的工效比原计划增加的百分率是多少?答案一、单选题1. B2.D3. B4.A5. B6. B7. B8. C9.A 10. B二、填空题11.x>2 12.13. ""14. 15.116.解:设第二批绿植每盆x元.依题意,得解得.经检验,x = 150是原方程的解,且符合题意.答:第二批绿植每盆150元.三、解答题17. 解:x(x﹣2)﹣(x+3)(x﹣3)=x2﹣2x﹣x2+9=﹣2x+9,当x=()﹣2=4时,原式=﹣2×4+9=118. (1)解:原方程可变为:+ =-2去分母得,1+6-x=-2(x-3),整理,得x=1,检验:把x=1代入x-3≠0,所以x=1是原方程的解.(2)解:x2﹣6x﹣4=0x2﹣6x=4,x2﹣6x+9=4+9(x-3)2=13x-3=± ∴19. 解:∵x+m=0时,分式无意义,∴x≠-m,∴m=3,又因为x-n=0,分式的值为0,∴x=n,即n=-4,则(m+n)2019=[3+(-4)]2019=(-1)2019=-1.20. 解:去分母得,化简得,解得,.经检验是增根,∴原方程的根是.21. 解:原式==当m= 时,原式= =22. (1)假分式(2)解:=3 ;=x﹣2(3)解:=2x﹣3当x=﹣6、﹣4、﹣2、0时,分式的值为整数23. (1)解:设步行速度为x米/分,则自行车的速度为3x米/分,根据题意得:,解得:x=70,经检验x=70是原方程的解,即李明步行的速度是70米/分.(2)解:根据题意得,李明总共需要:.即李明能在联欢会开始前赶到.答:李明步行的速度为70米/分,能在联欢会开始前赶到学校.24. (1)解:设这个工程队原计划每天铺设管道x 米,根据题意,得,解得,经检验,是原方程的解,则这个工程队原计划每天铺设管道;(2)解:由(1)可知原计划所用天数为:天,∴提前天完成,用时为:天,∴实际每天铺设管道长度,,则实际施工时每天的工效比原计划增加.。

浙教版七年级下数学《第五章分式》单元综合检测试卷(及答案)

浙教版七年级下数学《第五章分式》单元综合检测试卷(及答案)

第五章分式一、选择题1.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A. 不变B. 是原来的2倍C. 是原来的4倍D. 无法确定2.下列各式中,正确的是()A. =2B. =0C. =1D. =-13.下列分式是最简分式的是()A. B. C. D.4.整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A. +=1B. +=1C. +=1D. +=15.若5x﹣3y=0,且xy≠0,则的值等于()A. B. ﹣ C. 1 D. ﹣16.去分母解关于x的方程时会产生增根,那么m的值为()A. 1B. ﹣1C. 2D. 无法确定7.某乡镇对公路进行补修,甲工程队计划用若干天完成此项目,甲工程队单独工作了3天后,为缩短完成的时间,乙工程队加入此项目,且甲、乙工程队每天补修的工作量相同,结果提前3天完成,则甲工程队计划完成此项目的天数是()A. 6B. 7C. 8D. 98.已知﹣=,则的值为()A. B. C. 2 D. -29.在分式中,如果a、b都扩大为原来的3倍,则分式的值将()A. 扩大3倍B. 不变C. 缩小3倍D. 缩小6倍10.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x,可列方程()A. 54+x=2(48﹣x)B. 48+x=2(54﹣x)C. 54﹣x=2×48D. 48+x=2×54二、填空题11.分式,,的最简公分母是________.12.已知a,b,c是不为0的实数,且,那么的值是________ .13.若分式的值为正数,则x的取值范围是________.14.如果4x﹣5y=0,且x≠0,那么的值是________.15.计算:=________ ,16.,﹣,的最简公分母是________.17.不改变分式的值,把的分子、分母各项系数化为整数得________ .18.已知,则的值是________三、计算题19.计算:(1);(2).20.求下列分式的值:(1),其中a=4,b=3;(2),其中a=﹣2,b=﹣.21.若无论x取何值,分式总有意义,则m应满足什么条件?22.先化简,再求值()÷ ,其中x的值是方程x2﹣x﹣2=0的根.23.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28…⇒2m×2n=2m+n…⇒a m×a n=a m+n(m、n都是正整数).我们亦知:,,,…(1)请你根据上面的材料,用字母a、b、c归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.参考答案一、选择题A A CB B B D B B A二、填空题11.(x﹣1)2(x+1)212.13.x>或x<﹣114.15.16.12a3b217.18.三、解答题19.(1)解:原式=﹣=﹣6xy;(2)解:原式= • ==20.(1)解:∵原式= = ∴将a=4,b=3代入原式=-(2)解:∵原式= = ,其中a=﹣2 b=﹣∴原式=321.解:由题意得:x2+x﹣m≠0,x2+x≠m,x2+x+≠m+,(x+)2≠m+,m+<0,解得:m<﹣.22.解:原式= • = ,由x2﹣x﹣2=0,得到x=2(舍去)或﹣1,则当x=﹣1时,原式=﹣.23.(1)解:根据上面的材料可得:.说明:∵﹣=﹣===,又∵a>b>0,c>0,∴a+c>0,b﹣a<0,∴<0,∴﹣<0,即:<成立;(2)解:∵原来糖水中糖的质量分数=,加入k克糖后糖水中糖的质量分数+,由(1)<可得<,所以糖水更甜了.。

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。

故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。

2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。

B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。

【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。

4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。

A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下数学《第五章分式》单元检测试卷含答案
第五章分式单元检测卷
姓名: __________ 班级: __________
题号一二三
评分
一、分式题(共11 题;每小题 4 分 ,共 44 分)
1.下列各式:(﹣m)2,,,x2+y2,5,,中,分式有()
A.1 个
B.2 个
C.3 个
D.4 个
2.关于 x 的方程=2+会产生增根,那么k 的值()
A.3
B.﹣3
C.1
D. ﹣1
3.要使分式有意义,x的取值范围为()
A. x≠﹣5
B. x >0
C. x≠﹣ 5 且 x> 0
D. x≥0
4.若 2x+y=0 ,则的值为()
A.-
B.-
C.1
D. 无法确定
5.化简﹣的结果是()
A. a+b
B. a
C. a ﹣ b
D. b
6.分式与下列分式相等的是()
A. B. C. D.-
7.方程的根是()
A. ﹣1
B.2
C.﹣1或2
D.0
8.如果把分式中x、y都扩大3倍,则分式的值()
A. 扩大 6倍
B. 扩大 3倍
C.不变
D. 扩大 1.5倍
9.如果把分式中的a、b都扩大5倍,那么分式的值一定()
A. 是原来的 3 倍
B. 是原来的 5 倍
C. 是原来的
D. 不变
10.若表示一个整数,则整数x 可取值共有 ()
A.3 个
B.4 个
C.5 个
D.6 个
11.计算,结果是()
A. x ﹣ 2
B. x+2
C.
D.
二、填空题(共10 题;共 30 分)
12.已知 a2﹣ 3a+1=0,求=________ .
13.不改变分式的值,把它的分式和分母中的各项的系数都化为整数,则所得结果为________
14.不改变分式的值,使分子、分母的第一项系数都是正数,则=________
15.化简( x﹣)÷( 1﹣)的结果是 ________
16. 分式,,的最简公分母为 ________.
17. 观察下列等式:
第1 个等式: x1= ;第 2 个等式: x2= ;
第3 个等式: x3= ;第 4 个等式: x4= ;
则 x l+x 2+x 3+ +x 10=________ .
18.不改变分式的值,把分子分母的系数化为整数:=________ .
19.已知 a,b, c 是不为 0 的实数,且,那么的值是 ________ .
20.分式与的最简公分母是 ________ .
21.x+
2
=________ =3,则 x +
三、解答题(共 3 题;共 26 分)
22. 先化简(﹣x+1)÷,再从﹣ 2、﹣ 1、0、 1 中选一个你认为适合的数作为x 的值代入求值.
23. 若无论 x 取何值,分式总有意义,则 m 应满足什么条件?
24.化简分式÷﹣1,并选取一个你认为合适的整数 a 代入求值.
参考答案一、选择题
BADBABBCDDB
二、填空题
12. 13. 14. 15. x﹣ 1
16. 12a2b2c2 17. 18.
19. 20. (m+3)( m﹣ 3)21. 7
三、解答题
22.解:原式=?=? =,
当 x= ﹣ 2 时,原式 =.
23.解:由题意得: x2 +x﹣ m≠0,
x2 +x ≠m,
x2 +x+ ≠ m+ ,
( x+ ) 2≠m+ ,
m+ < 0,
解得: m<﹣.
24. 解:原式 =?﹣1=﹣1=,
当 a=1 时,原式 =2.。

相关文档
最新文档