各种群体寻优算法的比较
Tsp问题的几种算法的讲解

摘要本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。
分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。
此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。
关键词:旅行商问题TSPAbstractthis paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision.Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator目录1、摘要--------------------------------------------------------------12、Abstract---------------------------------------------------------13、Tsp问题的提法------------------------------------------------24、回溯法求Tsp问题--------------------------------------------35、分支限界法求Tsp问题--------------------------------------76、近似算法求解Tsp问题-------------------------------------107、动态规划算法解Tsp问题----------------------------------12引言tsp问题刚提出时,不少人都认为很简单。
pso算法综述

第2章微粒群优化算法综述微粒群优化算法(PSO)是一种基于种群的随机优化技术,由Eberhart 和Kennedy于1995年提出[1-2]。
微粒群算法模仿昆虫、兽群、鸟群和鱼群等的群集行为,这些群体按照一种合作的方式寻找食物,群体中的每个成员通过学习它自身的经验和其他成员的经验来不断改变其搜索模式。
Kennedy和Eberhart提出微粒群算法的主要设计思想与两个方面的研究密切相关:一是进化算法,微粒群算法和进化算法一样采用种群的方式进行搜索,这使得它可以同时搜索待优化目标函数解空间中的较多区域。
二是人工生命,即研究具有生命特征的人工系统,它采用的主要工具是计算机,主要方法是利用计算机编程模拟。
Millo nas在用人工生命理论来研究群居动物的行为时,对于如何采用计算机构建具有合作行为的群集人工生命系统,提出了五条基本原则[13]:(1)邻近原则(Proximity Princip le):群体应该能够执行简单的空间和时间运算。
(2)质量原则(Quality Princip le):群体应该能感受到周围环境中质量因素的变化,并对其产生响应。
(3)反应多样性原则(Princip le of Diverse Response):群体不应将自己获取资源的途径限制在狭窄的范围之内。
(4)稳定性原则(Princip le of Stability):群体不应随着环境的每一次变化而改变自己的行为模式。
(5)适应性原则(Principle of Adaptability):当改变行为模式带来的回报是值得的时候,群体应该改变其行为模式。
其中4、5两条原则是同一个问题的两面。
微粒群系统满足以上五条原则。
近十余年来,针对微粒群算法展开的研究很多。
目前国内外已有多人从多个方面对微粒群算法进行过综述[14-27];并出现了多本关于微粒群算法的专著[11, 28-29]和以微粒群算法为主要研究内容的博士论文[3, 30-36]。
《粒子群优化算法研究及在阵列天线中的应用》

《粒子群优化算法研究及在阵列天线中的应用》一、引言随着科技的发展,优化算法在众多领域得到了广泛的应用。
其中,粒子群优化算法(Particle Swarm Optimization,PSO)作为一种基于群体智能的优化算法,其独特的寻优策略在众多实际问题中展现出良好的效果。
本文将首先对粒子群优化算法进行深入研究,并探讨其在阵列天线设计中的应用。
二、粒子群优化算法研究2.1 粒子群优化算法概述粒子群优化算法是一种基于群体智能的优化算法,通过模拟鸟群、鱼群等生物群体的社会行为,利用个体间的信息共享和协同作用,实现全局寻优。
该算法具有实现简单、参数少、计算效率高等优点。
2.2 粒子群优化算法原理粒子群优化算法的基本思想是通过随机初始化一群粒子,并在迭代过程中根据粒子的位置和速度信息,更新粒子的状态。
粒子的状态由位置、速度和适应性等参数组成。
通过适应性评估函数对粒子进行评估,从而更新粒子的位置和速度,最终找到最优解。
2.3 粒子群优化算法的改进针对粒子群优化算法的不足,学者们提出了许多改进方法。
例如,引入惯性权重、增加粒子的多样性等策略,以提高算法的寻优能力和收敛速度。
此外,还有一些学者将其他优化算法与粒子群优化算法相结合,形成混合优化算法,进一步提高算法的性能。
三、粒子群优化算法在阵列天线中的应用3.1 阵列天线概述阵列天线是一种由多个天线单元组成的电子系统,通过调整各个天线单元的幅度和相位等参数,实现对空间信号的有效控制和利用。
阵列天线的性能主要取决于其设计方法和参数选择。
3.2 粒子群优化算法在阵列天线设计中的应用粒子群优化算法在阵列天线设计中具有广泛的应用前景。
通过将阵列天线的性能指标作为适应性评估函数,利用粒子群优化算法的全局寻优能力,可以实现对阵列天线参数的优化设计。
例如,可以通过优化阵列天线的幅度和相位等参数,提高天线的增益和波束指向精度等性能指标。
此外,粒子群优化算法还可以用于阵列天线的波束形成和波束赋形等问题的求解。
人工鱼群算法

5
算法旳收敛性分析
人工鱼群算法旳参数选用
视野(Visual ):因为视野对算法中各行为都有较大旳影响, 所以其变化对收敛性能旳影响也是比较复杂旳。当视野范围较小时 ,人工鱼群旳觅食行为和随机游动比较突出;视野范围较大时人工 鱼旳追尾行为和聚群行为将变得较突出。总体来看,视野越大,越 轻易使人工鱼发觉全局极值并收敛。所以对人工鱼旳视野进行合适 旳改善,是提升人工鱼群算法优化性能旳一种方向。
(4)δ:拥挤度因子,人工鱼群旳汇集规模; (5)Try-number:试探次数。人工鱼变化目前状态前旳尝试
次数,满足试探次数后,假如不满足变化状态旳条件, 则人工鱼需要根据规则选择下次行为继续寻优。
鱼群行为分析
这些行为在不同步刻会相互转换,而这种转换一般是鱼经过对环境旳感知来自主实现旳,这些 行为与鱼旳觅食和生存都有着亲密旳关系,而且与我们优化问题旳处理也有着亲密旳关系。
觅食行为
聚群行为
追尾行为
随机行为
鱼群算法在对以上四种行为进行评价后,自动选择合适旳行为,从而形成了一种高 效迅速旳寻优策略。
觅食行为
这是人工鱼旳一种趋向食物活动。一般经过视觉或味觉来感知水中旳食物量或浓度来
选择趋向。设人工鱼i旳目前状态为Xi,在其感知范围内随机选择一种状态Xj,则
X j Xi Visual Rand
尝试次数(Try-number):
尝试次数越多,人工鱼执行觅食行 为旳能力越强,收敛效率越高,但 在局部极值突出旳情况下,易错过 全局极值点,即人工鱼摆脱局部极 值旳能力越弱。所以,在一般优化 中,可合适增长尝试次数,以加紧 收敛速度;在局部极值突出旳情况 下,应降低尝试次数,增长人工鱼 随机游动旳概率。
其迅速到达食物点。即追尾行为是一种向邻近旳有最高适应度旳人工鱼追逐旳行为
蚁群算法

4.蚁群算法应用
信息素更新规则
1.蚁群算法简述 2.蚁群算法原理
最大最小蚂蚁系统
3.蚁群算法改进
4.蚁群算法应用
最大最小蚂蚁系统(MAX-MIN Ant System,MMAS)在基本AS算法的基础 上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的蚂蚁),或者至今 最优蚂蚁释放信息素。(迭代最优更新规则和至今最优更新规则在MMAS 中会被交替使用)
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
用轮盘赌法则选择下城市。假设产生的 随机数q=random(0,1)=0.05,则蚂蚁1将会 选择城市B。 用同样的方法为蚂蚁2和3选择下一访问 城市,假设蚂蚁2选择城市D,蚂蚁3选择城 市A。
蚁群算法
1.蚁群算法简述 2.蚁群算法原理 3.蚁群算法改进 4.蚁群算法应用
1.蚁群算法简述 2.蚁群算法原理
3.蚁群算法改进
4.蚁群算法应用
蚁群算法(ant colony optimization, ACO),又称蚂蚁 算法,是一种用来在图中寻找优 化路径的机率型算法。 由Marco Dorigo于1992年在他 的博士论文中提出,其灵感来源 于蚂蚁在寻找食物过程中发现路 径的行为
4.蚁群算法应用
例给出用蚁群算法求解一个四城市的TSP 3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数a=1,b=2,r=0.5。 解:
满足结束条件?
LM和BFGS算法的性能分析与比较-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要数值优化是机器学习的重要部分,不断研究和改进已有的优化算法,使其更快更高效,是机器学习领域的一个重要研究方向。
作为数值优化算法中具有代表性的两个二阶算法,LM和BFGS算法各有优缺点,对它们的性能进行分析和比较给二阶数值算法的改进及更广泛的应用提供重要参考。
本论文从LM和BFGS算法的数学基础开始阐述,通过对比两个算法求解多个函数极小值的问题,我们发现LM算法和BFGS算法的差异并不大。
大多数情况下LM算法能够达到更小的误差,但是迭代次数比BFGS算法稍多。
对于等高线为椭圆的函数,LM算法的收敛速度通常比BFGS算法快,但是后期运算的迭代次数比BFGS 算法多;而其他情况下LM算法和BFGS算法的收敛速度差别不大。
由于LM算法在大部分情况下的极值求解效率稍高,我们实现了基于LM算法在前向神经网络中的学习,并用于解决模式分类问题。
实验结果表明基于LM算法的前向神经网络在垃圾邮件分类应用中能取得90%以上的分类正确率。
关键词:数值优化,LM算法,BFGS算法,前向神经网络AbstractNumerical optimization is an important part of machine learning. The analysis study of existing optimization algorithms to make them faster and more efficient is an important research direction in the field of machine learning. As two popular second-order algorithms, the LM and BFGS algorithms have their own advantages and disadvantages. The analysis and comparison of their performance have great significance for the improvement of the second-order numerical algorithms and their wider application in engineering areas.This thesis starts from introducing the mathematical foundation of LM and BFGS algorithms. By comparing the performance of the two algorithms for finding the minima of different functions, we find that the LM and BFGS algorithms have similar performance for numerical optimization problems. In most cases of our experiments, the LM algorithm can achieve smaller error, but the number of iterations is slightly higher than that of the BFGS algorithm. For the functions with elliptical contours, the convergence speed of the LM algorithm is usually faster than that of the BFGS algorithm, but the iterations of later computation are much more than those of the BFGS algorithm. while in other cases,their convergence speed is almost the same. Because of the higher efficiency of the LM algorithm in most cases, the LM algorithm is employed to train feedforward neural networks which are applied to deal with some pattern classification problem. The experimental results show that the feedforward neural network trained by the LM algorithm can reach more than 90% classification accuracy in the applications of classify spam and none spam email.Keywords:Numerical optimization,LM algorithm,BFGS algorithm,Feedforward neural networks第一章绪论1.1研究背景优化算法是用来求解问题的最优解或近似最优解的[15]。
人工蜂群算法

• 蜂群产生群体智慧的最小搜索模型包含基 本的三个组成要素:食物源、被雇佣的蜜 蜂(employed foragers)和未被雇佣的蜜 蜂(unemployed foragers);两种最为基 本的行为模型:为食物源招募(recruit)蜜 蜂和放弃(abandon)某个食物源。
三 控制参数
• 蜜源的个数(与雇佣蜂或观察蜂相 等)SN • 算法终止的最大进化数(maximum evaluation number)MEN • limit。
基本ABC算法的流程为: • 1: 根据式(1)初始化种群解xi,i =1,…,SN • 2: 计算种群中各个蜜蜂的适应值 • 3: cycle = 1 • 4: repeat • 5: 雇佣蜂根据(2)产生新的解vi 并计算适应值 • 6: 雇佣蜂根据贪心策略选择蜜源 • 7: 根据(3)式计算选择蜜源xi的概率Pi • 8: 观察蜂根据概率Pi选择蜜源xi,根据(2)式在该蜜源附近 产生新的蜜源vi ,并计算新蜜源vi的适应值 • 9: 观察蜂根据贪心策略选择蜜源 • 10: 决定是否存在需要放弃的蜜源,如果存在,根据(1)式 随机产生一个蜜源替代它 • 11: 记录最优解 • 12: cycle = cycle + 1 • 13: until cycle = MCN
2. 新蜜源的更新搜索公式
• 蜜蜂记录自己到目前为止的最优值,并在 当前蜜源邻域内展开搜索,基本ABC在蜜 源附近搜索新蜜源的公式为: vij xij ij ( xij xkj ) (2) 式中,j∈{ 1, 2, … , D },k∈{ 1, 2, …, SN }, k为随机生成且k≠i,φik 为[ - 1, 1]之间的随 机数。
优化算法、智能算法、智能控制技术的特点和应用

优化算法、智能算法、智能控制技术的特点和应用在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。
随着信息技术的进步新方法和新技术进入工程化、产品化阶段。
这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。
下面介绍了优化算法、智能算法、智能控制技术的特点及应用。
优化算法特点及应用什么是优化?就是从各种方案中选取一个最好的。
从数学角度看,优化理论就是研究如何在状态空间中寻找到全局最优点。
优化算法通常用来处理问题最优解的求解,这个问题有多个变量共同决定的优化算法的一个特点往往给出的是一个局部最优解,不是绝对的最优解,或者说全局最优解。
一种优化算法是否有用很大程度取决问题本身,如果问题本身就是比较无序的,或许随机搜索是最有效的。
常用有3种优化算法:遗传算法、蚁群算法、免疫算法等。
遗传算法是一种基于模拟遗传机制和进化论的并行随机搜索优化算法。
遗传算法在控制领域中,已被用于研究离散时问最优控制、方程的求解和控制系统的鲁棒稳定问题等。
遗传算法用来训练神经网络权值,对控制规则和隶属度函数进行优化,也可用来优化网络结构。
蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。
蚁群算法小仅能够智能搜索、全局优化,而具有鲁棒性、正反馈、分布式计算、易与其它算法结合等特点。
等人将蚁群算法先后应用于旅行商问题、资源二次分配问题等经典优化问题,得到了较好的效果。
在动态环境下,蚁群算法也表现出高度的灵活性和健壮性,如在集成电路布线设计、电信路山控制、交通建模及规划、电力系统优化及故障分析等方面都被认为是目前较好的算法之一。
智能算法的特点及应用智能计算也有人称之为“软计算”。
是人们受生物界的启迪,根据其原理,模仿求解的算法。
智能计算的思想:利用仿生原理进行设计(包括设计算法)。
常用的智能算法:1)人工神经网络算法、2)遗传算法、3)模拟退火算法、4)群集智能算法。
其应用领域有:神经元和局部电路建模系统神经生物学和神经建模、进化计算、模式识别、信息检索、生物信息学、语音、图像处理、自然语言理解智能控制技术的特点和应用在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种群体寻优算法的比较【蚁群优化算法、粒子群优化算法、细菌觅食算法、萤火虫算法、人工鱼群算法】计算机技术不断发展,算法技术也在不断更新。
群体智能(Swarm Intelligent,SI) 算法始于20 世纪90 年代初,主要是受自然界生物群体智能现象的启发,通过模仿社会性动物的行为,而提出的一种随机优化算法。
群体智能是基于种群行为对给定的目标进行寻优的启发式搜索算法,其的核心是由众多简单个体组成的群体能够通过相互之间的简单合作来实现某一较复杂的功能。
所以群体智能可以在没有集中控制并且缺少全局信息和模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。
作为计算智能的一个重要的学科分支,群体智能优化算法是一类通过模仿生物界的遗传进化机理和群体协作行为而提出的仿生类随机搜索算法。
该算法以其高效的寻优速度,无需考虑问题的过多初始信息等特点而受到人们的普遍关注。
群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。
因此,群体智能优化算法可以建立一个基本的理论框架模式:Step1:设置参数,初始化种群;Step2:生成一组解,计算其适应值;Step3:由个体最有适应着,通过比较得到群体最优适应值;Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。
统一框架下的群体智能优化算法,可以根据优化对象的特性只能地选择适合的更新规则,进行运算得到理想的优化结果。
蚁群算法(Ant Colony, ACO):是模拟真实的蚁群秘觅食过程寻求最短路径的原理,由意大利学者Dorigo等在20世纪90年代首先提出。
最初的蚁群算法成为蚂蚁系统,对于旅行商问题(TSP)及二次分配问题(QAP)等取得了较好效果,经过改进后成为蚂蚁算法或蚁群算法。
蚁群算法吸收了蚂蚁群体行为的典型特征:一是能觉察小范围区域内情况,并能判断出是否有食物或其他同类的信息素轨迹;而是释放自己的信息素;三是所遗留的信息素会随时间而逐步减小。
蚁群算法通过候选解组织群体的过程来寻求最优解,这个过程包括适应阶段和协作阶段。
在适应阶段,各候选解根据积累的信息不断调整自身的结构;在协作阶段各候选解间通过信息交流,以便产生系能更好的解。
1991 年意大利学者Dorigo M 等受到自然界中蚁群觅食行为启发而提出了蚁群算法(AntColony Optimization,ACO)。
蚁群算法的基本理念是蚁群生物性的利用最短路径的根据局部信息调整路径上的信息素找寻的特征,这个算法的优势非常的明显,而且具有较为突出的应用性,在这个过程中蚂蚁可以逐步地构造问题的可行解,在解的构造期间,每只蚂蚁可以使用概率方式向下一个节点跳转,而且由于这个节点是具有较强信息素和较高启发式因子的方向,直至无法进一步移动。
此时,蚂蚁所走路径对应于待求解问题的一个可行解。
蚁群算法目前已成功地用于解决旅行商TSP 问题、数据挖掘、二次指派问题、网络路由优化、机器人路径规划、图着色、物流配送车辆调度、PID 控制参数优化及无线传感器网络等问题。
蚁群算法的优点:1.蚁群算法与其他启发式算法相比,在求解性能上,具有很强的鲁棒性(对基本蚁群算法模型稍加修改,便可以应用于其他问题)和搜索较好解的能力。
2.蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。
3.蚁群算法很容易与多种启发式算法结合,以改善算法性能。
蚁群算法存在的问题:TSP问题是一类经典的组合优化问题,即在给定城市个数和各城市之间距离的条件下,找到一条遍历所有城市且每个城市只能访问一次的总路程最短的路线。
蚁群算法在TSP问题应用中取得了良好的效果,但是也存在一些不足:1.如果参数设置不当,导致求解速度很慢且所得解的质量特别差。
2.基本蚁群算法计算量大,求解所需时间较长。
3.基本蚁群算法中理论上要求所有的蚂蚁选择同一路线,该线路即为所求的最优线路;但在实际计算中,在给定一定循环数的条件下很难达到这种情况。
另一方面,在其它的实际应用中,如图像处理中寻求最优模板问题,我们并不要求所有的蚂蚁都找到最优模板,而只需要一只找到最优模板即可。
如果要求所有的蚂蚁都找到最优模板,反而影响了计算效率。
蚁群算法收敛速度慢、易陷入局部最优。
蚁群算法中初始信息素匮乏。
蚁群算法一般需要较长的搜索时间,其复杂度可以反映这一点;而且该方法容易出现停滞现象,即搜索进行到一定程度后,所有个体发现的解完全一致,不能对解空间进一步进行搜索,不利于发现更好的解。
粒子群优化算法(Particles warm optimization algorithm, PSO):最早是在1995年由Kennedy和Eberhart提出的一种基于智能启发的全局优化技术演化计算方法,起源于生物学家对鸟群觅食过程行为的观察研究,具有易理解、易实现、全局搜索能力强等特点备受科学工程领域的极大关注。
设想这样一个场景:一群鸟在随机搜索食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是他们当前的位置离食物还有多元。
那么找到食物的最优策略是什么呢,最简单有效的搜索目前离食物最近的鸟的周围区域。
PSO算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“微粒”,所有的微粒都有一个被优化的函数决定的适应值,每个微粒海有一个速度决定他们飞翔的方向和距离,然后微粒们就追随当前最优微粒在解空间中搜索。
PSO算法初始化为一群随机微粒(随机解),然后通过迭代找到最优解,在每次迭代中,微粒通过跟踪两个“极值“来更新自己。
第一个就是微粒本身所找到的最优解,这个解成为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。
粒子群算法的优点:(1)PSO算法没有交叉和变异运算,依靠粒子速度完成搜索,并且在迭代进化中只有最优的粒子把信息传递给其它粒子,搜索速度快;(2)PSO算法具有记忆性,粒子群体的历史最好位置可以记忆并传递给其它粒子;(3)需调整的参数较少,结构简单,易于工程实现;(4)采用实数编码,直接由问题的解决定,问题解的变量数直接作为粒子的维数。
粒子群算法的缺点:●缺乏速度的动态调节,容易陷入局部最优,导致收敛精度低和不易收敛;●不能有效解决离散及组合优化问题;●不能有效求解一些非直角坐标系描述问题,如有关能量场或场内粒子运动规律的求解问题(这些求解空间的边界大部分是基于极坐标、球坐标或柱坐标);●参数控制,对于不同的问题,如何选择合适的参数来达到最优效果。
细菌觅食算法(BFO)是模拟大肠杆菌在人体肠道内觅食时所表现出来的智能行为而提出的一类智能优化算法,由K.M.Passino于2002年提出。
它具有三个典型的行为模式,即趋化行为、复制行为和驱散行为。
趋化行为指细菌向食物丰富的区域聚集的行为,包括翻转和前进两种模式。
前者指细菌朝任意的方向移动一定距离;后者通过判断翻转后细菌的适应度函数值是否得到改善,来决定细菌是否要沿当前方向继续移动。
通过这一行为,细菌可获得连续局部寻优的能力。
复制行为是根据细菌的适应度函数值,选择让较差的细菌继承较好细菌的位置及步长。
通过该行为可加快细菌的寻优速度。
驱散行为是让细菌以一定概率被驱散到搜索空间中的任意位置,通过该行为可以避免细菌陷人局部极值。
整个菌群通过不断重复这三种行为,形成高效快速的寻优模式。
从细菌觅食优化算法提出来至今,已经有不少学者对其进行了深入地研究及改进,将其应用到实际工程中。
随着研究的不断深入,BFO算法的一-些缺点和问题也随之暴露出来。
其中主要集中在算法进行过程中参数的调整方面,包括细菌菌群的大小、细菌趋化的步长、细菌进行中的趋化操作、复制操作和迁移操作的上限次数,用BFO算法优化不同类型的问题时,其参数不具备自适应性,很难保:证求解的精度及收敛速度,因而算法不具备普遍性。
萤火虫算法(Glowworm Swarn Optimization, GSO) 是2005 年由印度学者Krishnanand和Ghose 提出的通过模拟萤火虫在觅食、求偶和警戒等生活习性中产生的因光而吸引并移动的行为来进行寻优的。
萤火虫算法的基本原理是:用搜索空间中的点模拟自然界中的萤火虫个体,将搜索和优化过程模拟成萤火虫个体的吸引和移动过程,将求解问题的目标函数度量成萤火虫个体所处位置的优劣,将萤火虫个体的优胜略汰过程类比为求解问题目标函数的搜索和优化过程中用好的解取代较差的解的迭代过程。
萤火虫算法在问题空间随机分布N只萤火虫,这些萤火虫都带有一定的荧光,每个萤火虫都具有自己的感知范围Rdi (0<Rdi <Rs),而RS是最大感知半径。
萤火虫实现寻优时,在其感知范围内寻找荧光素值较高的萤火虫,并且会朝着这个方向移动。
萤火虫移动之后,其感知半径要进行更新,最后大部分的萤火虫都会聚集在一个或多个极值上。
●优点:萤火虫算法不仅可以优化单峰函数和多峰函数,而且该算法具有较强的局部搜索能力可以在一个娇小的区域内找到该区域的最优解。
操作方便、实现简单、参数较少、而且参数对算法的影响较小。
●缺点:萤火虫算法必须要求感知范围内有优秀个体向其提供信息,否则个体将停止搜索,这种搜索方法对优秀个体的依赖程度太高,从而降低了收敛速度;而且,当个体距离峰值非常近时,由于步长可能大于该距离,将导致个体在峰值附近发生震荡现象。
人工鱼群算法(Artificial Fish-Swarm Algorithm,AFSA):是由李晓磊等在2002年提出的,源于对鱼群运动行为的研究,是一种新型的智能仿生优化算法.在基本的AFSA算法中,主要是利用了鱼群的觅食、聚群和追尾行为,从构造单条鱼的底层行为坐骑,通过鱼群中各个体的局部寻优,达到全局最优值在群体中突显出来的目的。
它具有较强的鲁棒性、优良的分布式计算机制、易于和其他方法结合等优点.目前对该算法的研究、应用已经渗透到多个应用领域,并由解决一维静态优化问题发展到解决多维动态组合优化问题。
2002 年由我国的李晓磊等受鱼群运动行为的启发而提出了人工鱼群算法(Artifi cialFish-Swarm Algorithm,AFSA)。
人工鱼群算法的思想主要是利用鱼个体的四种行为(觅食、聚群、追尾和随机)的特征,通过技术应用将人工鱼随机地分布于解空间中,解空间中包含着若干局部最优值和一个全局最优值。
在进行应用时,可以有效的利用相关特点进行,特别是应用的寻优期间,每次迭代执行完,人工鱼都将对比自身状态和公告板状态,如自身具有优势,则更新公告板状态,确保公告板为最优状态。