开环直流调速控制系统

合集下载

2.2稳态调速性能指标和直流调速系统的机械特性

2.2稳态调速性能指标和直流调速系统的机械特性
(1)如果要求 s≤30%,则 D=?
(2)如果要求 s≤20%,则 D=?
(3)如果要求 D=10,则 s=?
12
解 若要求 s≤ 30%时,调速范围 D 为
D = nNs = 1430× 0.3 = 5.3 ΔnN (1− s) 115× (1− 0.3)
若要求 s≤ 20%,则调速范围 D 为
= 0.216 =
21.6%
这已大大超过了5%的要求,更不必谈调到最低速了。
22
如果要求D = 20,s ≤ 5%,则由式(1-33)可知
ΔnN
=
nN s D(1− s)

1000× 0.05 20× (1− 0.05)
r
/
min
=
2.63r
/
min
由此可见,开环调速系统的额定速降是 275r/min, 而生产工艺的要求却只有2.63r/min,相差几乎百倍!
Te =TeN
(2-25)
其中nmax和nmin一般都指电动机额定负载时的
转速,对于少数负载很轻的机械,例如精密磨
床,也可用实际负载时的转速。
5
(2) 静差率
当系统在某一转速下运行时,负载由理想空
载增加到额定值时所对应的转速降落 ΔnN ,与理 想空载转速 n0 之比,称作静差率 s ,即
s = ΔnN n0
稳态性能指标调速范围稳态性能指标调速范围生产机械要求电动机提供的最高转速nmax和最低转速nmin之比叫做调速范围用字母d表示即225minmax其中nmaxmin一般都指电动机额定负载时的转速对于少数负载很轻的机械例如精密磨床也可用实际负载时的转速
2.2 稳态调速性能指标和 直流调速系统的机械特性

直流调速系统基本概念

直流调速系统基本概念

2. 比例控制的特点 作用及时、快速、控制作用强,而且Kp值越大,
系统的静特性越好、静差越小。
二、 积分控制与积分调节器
是指系统的输出量与输入量对时间的 积分成正比例的控制,简称I控制。
积分控制
1. 积分( I )调节器
式中 KI——I 调节器的积分常数; ——I调节器的积分时间, =1/KI。
2. 积分控制的特点 可以消除输出量的稳态误差,能实现无静差控制, 这是积分控制的最大优点。

理想空载转速 在给定电压一定时,有: n0 f 转速降
n0 Ce ( 1 K ) 1 K
K GU g
n0 f n0 如果将系统闭环与开环的理想空载转速调得一样,即, 为了获得同开环相同的 理想空载转速 R n n f Ia 闭环给定电压 U g f U g 1 K Ce ( 1 K ) 1 K
范围: M p 10% ~ 35%
超调量
2. 过渡过程时间T
从输入控制(或扰动)作用于系统 开始直到被调量 n 进入(0.05 ~0.02)n2 稳定值区间时为止(并且以后不再越出 这个范围)的一段时间,叫作过渡过程 时间。
3. 振荡次数 N
过渡过程时间 在过渡过程时间内,被调量n在其稳定值 上下摆动的次数,
1稳态uguf不变3稳速ug不变负载变化使uf变化???????????????nuuuuuundkfgf????当负载增加使???????????????nuuuuuundkfgf????当负载减小使当负载发生变化使速度发生变化后系统通过反馈能维持速度基本不变这种状态称为稳速
直流调速系统基本概念
直流调速系统主要性能指标 机电传动控制系统选择调速方案的依据: 生产机械对调速系统提出的调速技术指标 静态指标 调速系统的调速技术指标 动态指标 一、静态技术指标

2.1转速负反馈有静差调速系统

2.1转速负反馈有静差调速系统


由测速发电机引出与被调量转速成正比的负反馈电压 与给定电压(与给定转速对应)相比较,得到偏差电压 (为转速偏差信号),经放大器产生触发装置的控制电压, 从而控制电动机的转速。该系统用转速偏差信号进行调速, 产生自动纠正转速偏差的作用,从而减小了转速降落。
系统只有一个转速反馈环,为转速负反馈单闭环 调速系统。
静差率与机械特性硬度的区别
调压调速系统在 不同转速下的机械 特性互相平行 。 对于同样硬度的 特性,理想空载转 速越低时,静差率 越大,转速的相对 稳定度越差。
n n0a ∆ nNa
a n0b
∆ nNb b 0 O
TN
Te
举例
在1000r/min时降落10r/min,只占1%;在 100r/min时同样降落10r/min,就占10%; 如果在只有10r/min时,再降落10r/min, 就占100%。
调速系统的静差率指标是以最低速时所能 达到的数值为准。也就是说系统的静差率 指的是最低速时的静差率。
调速范围、静差率和额定速降之间的关系
电机额定转速nN为最高转速,转速降落为nN,系 统的静差率应该是最低速时的静差率,即
nN nN s n0 min nmin nN
于是,最低转速为
的。
4. 闭环控制系统的精度依赖于给定和反馈检测精度
如果给定电压的电源发生波动,反馈控制系统无 法鉴别是对给定电压的正常调节还是不应有的电 压波动。因此,高精度的调速系统必须有更高精 度的给定稳压电源。
•检测精度——反馈检测装置的误差也是反馈控制系 统无法克服的,因此检测精度决定了系统输出精度。
6-4
触发电路
作用:是向晶闸管门极提供所需的触发信号,并能根据 控制要求使晶闸管可靠导通,实现整流装置的控制。

晶闸管-直流电动机单闭环调速系统

晶闸管-直流电动机单闭环调速系统

1.直流调速系统的动态指标对于一个调速系统,电动机要不断地处于启动、制动、反转、调速以及突然加减负载的过渡过程,此时,必须研究相关电机运行的动态指标,如稳定性、快速性、动态误差等。

这对于提高产品质量和劳动生产率,保证系统安全运行是很有意义的。

(1)跟随指标:系统对给定信号的动态响应性能,称为“跟随”性能,一般用最大超调量σ,超调时间t和震荡次数N三个指标来衡量,图s2.1是突加给定作用下的动态响应曲线。

最大超调量反映了系统的动态精度,超调量越小,则说明系统的过渡过程进行得平稳。

不同的调速系统对最大超调量的要求也不同。

一般调速系统σ可允许10%~35%;轧钢机中的初轧机要求小于10%,连轧机则要求小于2%~5%,;而在张力控制的卷曲机反映了系统的快速性。

系统(造纸机),则不允许有超调量。

调整时间ts为0.2s~0.5s,造纸机为0.3s。

振荡次数也反映了系统的例如,连轧机ts稳定性。

例如,磨床等普通机床允许震荡3次,龙门刨及轧机则允许振荡1次,而造纸机不允许有振荡。

图2.1突加给定作用下的动态响应曲线(2)抗扰指标:对扰动量作用时的动态响应性能,称为“抗扰”性能。

一般用最大动态速降Δnmax ,恢复时间tf和振荡次数N三个指标来衡量。

用图2.2是突加负载时的动态响应曲线。

最大动态速降反映了系统抗扰动能力和系统的稳定性。

由于最大动态速降及扰动量的大小是有关的,因此必须同时注明扰动量的大小。

恢复时间反映了系统的抗扰动能力和快速性。

振荡次数N同样代表系统的稳定性及抗扰动能力图2.2突加负载时的动态响应曲线2.晶闸管电动机直流调速系统存在的问题图2.3 V-M系统的运行范围晶闸管整流器也有它的缺点。

首先,由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。

由半控整流电路构成的V-M 系统只允许单象限运行(图2.3a),全控整流电路可以实现有源逆变,允许电动机工作在反转制动状态,因而能获得二象限运行(图2.3b)。

直流调速中开环机械特性与闭环静特性的关系

直流调速中开环机械特性与闭环静特性的关系

4按转子磁链定向控制的基本思想:通过坐标变换,在按转子磁链定向同步旋转正交坐标系中,得到等效的直流电动机模型,仿照直流电动机模型的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制。

5 按转子磁链定向同步旋转正交坐标系上的数学模型是同步旋转正交坐标系模型中的一个特例。

通过按转子磁链定向,将定子电流分解为励磁风量和转矩分量,转子磁链仅由励磁分量产生,而电磁转矩正比于转子磁链和定子电流分量的乘积,实现了定子电流两个分量的解耦,而且还降低了微分方程组的阶次。

6转速闭环控制能够通过调节电流转矩分量来抑制转子磁链波动所引起的电磁转矩变化,但这种调节只有当转速变化后才起作用。

为了改善动态性能,可以采用转矩控制方式,常用的转矩控制方式有两种:转矩闭环控制和在转速调节器的输出增加除法环节。

7矢量控制系统的特点(1)按转子磁链定向,实现了定子电流励磁分量和转矩分量的解耦,需要电流闭环控制。

(2)转子磁链系统的控制对象是稳定的惯性环节,可以采用磁链闭环控制,也可以采用开环控制。

(3)采用连续的PI控制,转矩与磁链变化平稳,电流闭环控制可以有效的限制起制动电流。

8矢量控制系统的问题(1转子磁链计算精度易受易于变化的转子电阻的影响,转子磁链的角度精度影响定向的准确性。

(2需要进行矢量变换,系统结构复杂,运算量大。

9直接转矩控制系统的基本思想“根据定子磁链幅值偏差的正负符号和电磁转矩的正负符号,再根据当前定子磁链矢量所在的位置,直接选取合适的电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩与定子磁链的控制。

10 usd决定电子磁链幅值的增减,而usq决定定子磁链矢量的旋转角速度,从而决定转差频率和电磁转矩。

11直接转矩控制系统的特点(1 转矩与磁链的控制采用双位式控制器,并在PWM逆变器中直接用着两个控制信号产生输出电压,省去了旋转变换和电流控制,简化了控制器的结构。

直流调速系统实验指导书

直流调速系统实验指导书

直流调速系统实验指导书江西理工大学应用科学学院机电工程系2007年10月目录实验一晶闸管直流调速系统参数和环节特性的测定 (1)实验二晶闸管直流调速系统主要单元调试 (6)实验三不可逆单闭环直流调速系统静特性的研究 (9)实验四双闭环晶闸管不可逆直流调速系统 (13)实验五逻辑无环流可逆直流调速系统 (18)实验六双闭环可逆直流脉宽调速系统 (22)实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解电力电子及电气传动教学实验台的结构及布线情况。

2.熟悉晶闸管直流调速系统的组成及其基本结构。

3.掌握晶闸管直流调速系统参数及反馈环节测定方法。

二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数T d5.测定直流电动机电势常数C e和转矩常数C M6.测定晶闸管直流调速系统机电时间常数T M三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。

本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。

四.实验设备及仪器1.教学实验台主控制屏。

2.NMCL—33组件3.NMEL—03组件4.电机导轨及测速发电机(或光电编码器)5.直流电动机M036.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。

2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。

3.电机堵转时,大电流测量的时间要短,以防电机过热。

六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。

转速电流反馈控制的直流调速系统

转速电流反馈控制的直流调速系统

典型Ⅰ型系统的闭环传递函数为
K K 2 n W ( s) s (Ts 1) T Wcl ( s ) 2 2 K 1 K 1 W ( s) s 2 n s n 2 1 s s s (Ts 1) T T (3-12) K 1 1 式中,n T ——自然振荡角频率; 2 KT ——阻尼比。
双闭环直流调速系统的起动过程有以下三 个特点: (1)饱和非线性控制 (2)转速超调 (3)准时间最优控制

2.动态抗扰性能分析
双闭环系统与单闭环系统的差别在于多了一个 电流反馈环和电流调节器。 调速系统,最主要的抗扰性能是指抗负载扰动 和抗电网电压扰动性能。

(1)抗负载扰动
负载扰动
图3-7 直流调速系统的动态抗扰作用



转速调节器ASR的输出限幅电压决定了电流给定的最大 值,电流调节器ACR的输出限幅电压限制了电力电子变 换器的最大输出电压; 当调节器饱和时,输出达到限幅值,输入量的变化不再 影响输出,除非有反向的输入信号使调节器退出饱和; 当调节器不饱和时,PI调节器工作在线性调节状态,其 作用是使输入偏差电压在稳态时为零。 对于静特性来说,为了实现电流的实时控制和快速跟随, 希望电流调节器不要进入饱和状态,因此只有转速调节 器饱和与不饱和两种情况,电流调节器不进入饱和状态 。
IdL 0 t1 t2 t3 t4 t
第Ⅲ阶段:转速调节阶段(t2以后)
n n
*



起始时刻是n上升 到了给定值n*。
t
0 Id Idm
IdL 0 t1 t2 t3 t4 t
在第Ⅲ阶段中, ASR和 ACR都不饱和,ASR起主 导转速调节作用,而ACR 力图使Id尽快地跟随给定值 Ui*,电流内环是一个电流 随动子系统。

任务四 龙门刨床主轴直流调速系统维修与调试

任务四  龙门刨床主轴直流调速系统维修与调试

(三)技能训练:认识元器件 1、实训器材
(1)实训操作台:THPDC—型电力电子及电气传动实训装置 2台。
(2)实训操作台:DSC—32—Ⅱ直流调速(调压)实训控制 柜3台。 2、实训内容及过程
(1)在实训台上找出直流稳压电源电路板,在电路板找出 整流电路、滤波电路、集成稳压块、电源指示灯。直流稳压电源 电路板如图4-20。
(三)技能训练:认识元器件 1、实训器材
(1)实训操作台:THPDC—1型电力电子及电气传动实训装置2台,如图 4-10。
(2)实训操作台:DSC—32—Ⅱ直流调速(调压)实训控制柜3台,如图 4-11所示
图4-11 DSC—32—Ⅱ直流调速(调压)实训控制柜
DSC-32型晶闸管直流调速系统实训柜前配电盘图如图4-12。
直流发电机
直流电动机
图4-14 直流电动机及直流发电机外形结构
(2)找出直流电动机,发电机的励磁绕组、电枢绕组,并通过外观的标 示说明它们的励磁方式,如图4-15。
励磁绕组
电枢绕组
励磁绕组
电枢绕组
(a) 直流发电机
(b) 直流电动机
图4-15 直流电动机及直流发电机绕组外观标识
(3)观察铭牌数据,找出励磁电压、电流、电枢电压、电流值及转速值, 如图4-16。
(四)评价标准
评价内容
能掌握直流电动机开环系统主电路组 成
能掌握直流电动机开环系统主电路各 部分作用
能认识直流电动机开环系统主电路各 元器件 安全意识 团结协作
自主学习能力 语言表达能力
合计
分值 自我评 价
20
20
20 10 10 10 10
评分
小组评 教师评

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 一、绪论 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型, Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。调速性能的不断提高,使直流调速系统的应用非常广泛。 2

二、开环直流调速控制系统组成及原理 2.1直流电机调压调速原理 直流电动机的稳态转速: n——转速(r/min); U——电枢电压(V); I——电枢电流(A); R——电枢回路总电阻(Ω); Ce ——电动机在额定磁通下的电动势系数。 调节直流电动机转速的方法有: (1)调节电枢供电电压; (2)减弱励磁磁通; (3)改变电枢回路电阻。 自动控制的直流调速系统往往以变压调速为主。 工作条件: 保持励磁  = N ; 保持电阻 R = Ra 调节过程:改变电压 UN  U ;U  n ; n0 

调速特性:转速下降,机械特性曲线平行下移,见图1。

图1 调压调速特性曲线 2.2晶闸管整流器-电动机系统组成及原理 图2给出了晶闸管—电动机调速系统(V—M系统)的原理图,图中VT是晶闸管可控整流器,GT是触发器,L是平波电抗器,M是直流电动机,给定信号Uc能控制GT触发器的触发角度,从而控制整流器VT的整流输出电压值,达到控制电机调速的目的。

eUIRnC3 图2 晶闸管—电动机调速系统电气原理图 2.3直流电动机开环调速系统仿真的原理 直流电动机电枢由三相晶闸管整流电路经平波电抗器L供电,并通过改变触发器移相控制信号Uc 调节晶闸管的控制角,从而改变整流器的输出电压实现直流电动机的调速。该系统的仿真模型如图3所示。在仿真中为了简化模型,省略了整流变压器和同步变压器,整流器和触发同步使用同一交流电源,直流电动机励磁由直流电源直接供。

图3 直流开环调速系统电气原理 任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。例如,最高转速与最低转速之间的范围,是有级调速还是无级调速,在稳态运行时允许转速波动的大小,从正转运行变到反转运行的时间间隔,突加或突减负载时允许的转速波动,运行停止时要求的定位精度等等。归纳起来,对于调速系统转速控制的要求有以下三个方面: (1) 调速。在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速。 (2) 稳速。以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量。 (3) 加、减速。频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起、制动尽量平稳。 为了进行定量的分析,可以针对前两项要求定义两个调速指标,叫做“调速范围”和“静差率”。这两个4

指标合称调速系统的稳态性能指标。 (1) 调速范围 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,用字母D表示,即

minmaxn

nD

其中,和一般都指电动机额定负载时的最高和最低转速,对于少数负载很轻的机械,例如精密磨床,也可用实际负载时的最高和最低转速。 (2) 静差率 当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落,与理想空载转速之比,称作静差率S,即

0nnsN

显然,静差率是用来衡量调速系统在负载变化时转速的稳定度的。它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定度就越高。 然而静差率与机械特性硬度又是有区别的。一般变压调速系统在不同转速下的机械特性是互相平行的,对于同样硬度的特性,理想空载转速越低时,静差率越大,转速的相对稳定度也就越差。 由此可见,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。在调速过程中,若额定速降相同,则转速越低时,静差率越大。如果低速时的静差率能满足设计要求,则高速时的静差率就更能满足要求了。因此,调速系统的静差率指标应以最低速进所能达到的数值为准。 (3) 直流变压调速系统中调速范围、静差率和额定速降之间的关系 在直流电动机变压调速系统中,一般以电动机的额定转速作为最高转速,若额定负载下的转速降落为,则按照上面分析的结果,该系统的静差率应该是最低速时的静差率,即

NNNnnnnnsminmin0 于是,最低转速为 

snsnsnnNNN1

min

而调速范围为

minminmaxnnnnDN

将上面的式代入,得 snsnDNN1

上式表示变压调速系统的调速范围、静差率和额定速降之间所应满足的关系。对于同一个调速系统,值一定,由上式可见,如果对静差率要求越严,即要求S值越小时,系统能够允许的调速范围也越小。 三、 数学模型建立与动态结构图 3.1晶闸管传递函数 若用单位阶跃函数表示滞后,则晶闸管触发器与整流器的输入—输出关系为 5

)(10sctsdTtUKU 利用拉氏变换的位移定理,可求出晶闸管触发器与整流器的传递函数为

sTsctdsseKsUsUsW)()()(0

由于上式中包含指数函数,它使系统成为非最小相位系统,分析和设计都比较麻烦。 为了简化,将该指数函数按泰勒(Taylor)级数展开,则变成

3322!31!211)(sTsTsTKeKeKsWsssssTs

sT

sss

s

考虑到很小,因而可忽略高次项,则传递函数便近似成为一阶线性环节。sTKsWsss1)( 3.2 直流电动机数学模型 他励直流电动机在额定励磁下的等效电路如图5所示。

图4 他励直流电动机在额定励磁下的等效电路 假定主电路电流连续,动态电压方程为:

EdtdILRIUddd0

电动机轴上的动力学方程:

dtdnGDTTLe3752

额定励磁下的感应电动势和电磁转矩分别为: ——包括电动机空载转矩在内的负载转矩, 2GD

——电力拖动装置折算到电动机轴上的飞轮惯量,

emCC30——电动机额定励磁下的转矩系数,

memCCRGDT375

2——电力拖动系统机电时间常数。

在零初始条件下,取拉氏变换,得电压与电流间的传递函数为 6

011()()()1ddIsR

UsEsTs

电流与电动势间的传递函数为 ()()dmEsRIsTs

(a)电压电流间的结构框图 (b)电流电动势间的结构框图 (c)直流电动机的动态结构框图 图5 额定励磁下直流电动机的动态结构框图 直流电动机的输入量:施加在电枢上的理想空载电压Ud0,是控制量。 3.3 V-M开环调速系统的动态结构图 V-M开环调速系统的动态结构图如图6所示。

图6 V-M开环调速系统的动态结构图 四、 电路仿真 4.1 仿真原理图

()doUs + E (s) ()dIs 11/1R

Ts- m

RTs

()dIs ()Es

()ns()doUs + E (s) ()dIs 11/1R

Ts- m

RTs

()Es1

eC

()ns()doUs +

()Es ()dIs

11/1R

Ts

- m

R

Ts

()Es1

eC 1ssKT ()cUs

相关文档
最新文档