2019-2020学年北师大版广东省佛山市禅城区高三第一学期(上)调研数学试卷(理科)(解析版)

合集下载

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。

A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。

二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。

10.若一个正数的两个平方根是x-5和x+1,则x= 。

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023年初三模拟考试数学满分为120分,考试时间90分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数为( )A. 13−B. 1C.D. π 【答案】A【解析】【分析】先根据负指数幂进行计算,再根据实数的大小比较法则比较数的大小,即可得到答案. 【详解】解:1133−= , 11π3∴<<<, 故选:A .【点睛】本题考查了实数的大小比较,负指数幂,熟练掌握:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2. 如图,a b ∥,130∠=°,则2∠的度数是( )A. 150°B. 145°C. 35°D. 30°【答案】D【解析】 【分析】根据两直线平行,内错角相等可直接得到答案.【详解】∵,130a b ∠=° ,∴2130∠=∠=°,故选:D .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.3. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,车标图案既是轴对称图形,又是中心对称图形的是( )A.B. C. D.【答案】C【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、该图形不是轴对称图形,也不是中心对称图形,不符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形既是中心对称图形又是轴对称图形,符合题意;D 、该图形不是轴对称图形,是中心对称图形,不符合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键. 4. 下列各式中,正确的是( )A. B. 5=C. 6=D. = 【答案】D【解析】【详解】解:AB ,故本选项错误,不符合题意;CD故选:D .【点睛】本题主要考查了二次根式的加法、乘法、除法等知识点,熟练掌握二次根式的相关运算法则是解题的关键.5. 在平面直角坐标系中,将点(1,1)−向右平移2个单位后,得到点的坐标是( )A. (3,1)−B. (1,1)C. (1,3)−D. (1,1)−− 【答案】B【解析】【分析】把点()1,1−的横坐标加2,纵坐标不变,据此即可解答.【详解】解:点()1,1−向右平移2个单位长度后得到的点的坐标为()1,1.故选:B .【点睛】本题主要考查了坐标与图形变化﹣平移.掌握平移的规律“左右横,上下纵,正加负减”是解答本题的关键.6. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案. 法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.7. 如图是一个可以自由转动的转盘.转动转盘,当指针停止转动时,指针落在红色区域的概率是( )A. 1B. 23C. 12D. 13【答案】D【解析】【分析】用红色区域的圆心角除以周角度数即可. 【详解】解:转动转盘,当指针停止转动时,指针落在红色区域的概率是12013603°=°, 故选:D .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8. 如图,以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,已知13OA OA =',若四边形ABCD 的面积是2,则四边形A B C D ′′′′的面积是( )A. 3B. 6C. 9D. 18【答案】D【解析】 【分析】直接利用位似图形的性质得出面积比进而得出答案.【详解】解: 以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,13OA OA =', 21139ABCDA B C D S S ′′′′ ∴== 四边形四边形, 四边形ABCD 的面积是2,∴四边形A B C D ′′′′的面积是18,故选:D .【点睛】本题主要考查了位似变换,正确得出面积比是解决此题的关键.9. 如图,在ABC 中,AB AC BC >>,按如下步骤作图.第一步:作BAC ∠的平分线AD 交BC 于点D ;第二步:作AD 的垂直平分线EF ,交AC 于点E ,交AB 于点F ;第三步:连接DE .则下列结论正确的是( )A. DE AB ∥B. EF 平分ACC. CD DE =D. CD BD =【答案】A【解析】 【分析】如图,由角平分线和垂直平分线的性质可得1223∠=∠∠=∠、,进而得到13∠=∠,最后运用平行线的判定定理即可说明B 选项正确.【详解】解:如图:∵AD 是BAC ∠的角平分,EF AD 的中垂线,∴12∠=∠,AE DE =,∴23∠∠=,∴13∠=∠,∴DE AB ∥.故选:A .【点睛】本题主要考查了角平分线的定义、垂直平分线的性质以及平行线的判定,灵活运用相关知识成为解答本题的关键.10. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R >C. 当1000R >时,0.22I >D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R >,利用待定系数法求出()2200I R R>,然后求出当1000R =时, 2200.221000I =,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可. 【详解】解:设I 与R 的函数关系式是()0U IR R >, ∵该图象经过点()8800.25P ,, ∴()0.250880U R =>, ∴220U =,∴I 与R 的函数关系式是()2200IR R >,故B 不符合题意; 当1000R =时, 2200.221000I=, ∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若实数a ,b 满足2(2)|3|0a b −++=,则ab =_________.【答案】6−【分析】根据非负数的性质列出算式求出a ,b 的值,代入计算即可得到答案.【详解】解: 2(2)|3|0a b −++=,2(2)|3|00a b ≥−+≥,, 2030a b ∴−=+=,,23a b ∴==−,,()236ab ∴=×−=−,故答案为:6−.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 12. 如果一个三角形两边的长分别等于一元二次方程217660x x −+=的两个实数根,那么这个三角形的第三边的长可能是20吗?__________.(填“可能”或“不可能”)【答案】不可能【解析】【分析】先求出方程的解,再根据三角形三边关系定理判断即可得到答案.【详解】解: 217660x x −+=,()()1160x x ∴−−=, 11x ∴=或6x =,即三边为6、11、20,61120+< ,不符合三角形三边关系定理,∴这个三角形的第三边的长不可能是20,故答案为:不可能.【点睛】本题考查了解一元二次方程,三角形三边关系定理的应用,能求出一元二次方程的解是解此题的关键.13. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.【答案】16【分析】根据题目中的图形,可以发现“H ”的个数的变化特点,然后即可写出第7个庚烷分子结构式中“H ”的个数.详解】解:由图可得:甲烷分子结构中“H ”的个数是:2214+×=,乙烷分子结构中“H ”的个数是:2226+×=,丙烷分子结构中“H ”的个数是:2238+×=,……∴庚烷分子结构中“H ”的个数是:22716+×=,故答案为:16.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现“H ”的个数的变化特点. 14. 如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,依次连接E 、G 、F 、H 得到四边形是__________.【答案】平行四边形【解析】【分析】根据中位线性质和平行四边形的判定条件,即可解答;【详解】解: E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,,GF DC EH DC ∴∥∥,且11,22GF CD EH CD ==, GF EH ∴∥且GF EH =,∴四边形GFHE 为平行四边形,故答案为:平行四边形.【点睛】本题考查了中位线的性质,平行四边形的判定,能判断出GF 是BCD △的中位线,EH 是ACD 的中位线是解题的关键.15. 如图,AD 是一根3cm 的绳子,一端拴在柱子(点A )上,另一端(点D )拴着一只羊,EABC 为一道围墙,3AE >cm ,2AB =cm ,120ABC ∠=°,则羊最大的活动区域的面积是__________.(结果保【的留π)【答案】229cm 12π 【解析】【分析】羊最大的活动区域的面积是一个扇形+一个小扇形的面积.详解】解:如图所示:大扇形的圆心角是90度,半径是3, ∴面积229039cm 3604ππ°×°==, 小扇形圆心角是18012600°−°=°,半径是1, ∴面积226011cm 3606ππ°×°==,则羊最大的活动区域的面积是()2929cm 412ππ=, 故答案为:229cm 12π. 【点睛】本题关键是从图中找出小羊的活动区域是由哪几个图形组成的.三、解答题(一)(本大题共3小题,每小题8分,共24分)16. 求不等式组()3135131x x x x + >− −≥−的解集,并把不等式组的解集在数轴上表示出来.【答案】不等式组的解集为13x −≤<,图见解析【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无处找,即可得到解集,在数轴上画出解集即可.【【详解】解:()3135131x x x x + >− −≥−①②,解不等式①可得:()331x x +>−,333x x +>−,333x x −>−−,26x −>−,3x <,解不等式②可得:5133x x −≥−,5313x x −≥−,22x ≥−,1x ≥−,∴不等式组的解集为13x −≤<,在数轴上表示为:.大中间找,大大小小无处找,是解题的关键.17. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为__________,图①中m 的值为__________;(2)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.【答案】(1)20;30(2)统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8【解析】【分析】(1)用条形统计图中的数据除以扇形统计图中对应的占比,即可得到总人数;再用学生一周的课外阅读时长为9小时的人数除以总人数,即可得到m的值;(2)按照平均数,众数和中位数的概念,依次求出即可.【小问1详解】解:本次接受调查的人数为315%20÷=(人);根据条形统计图,学生一周的课外阅读时长为9小时的人数为6人,故学生一周的课外阅读时长为9小时的人数占比为6200.330÷==%,30m∴=,故答案为:20;30【小问2详解】解:36748596210820x×+×+×+×+×=,观察条形统计图,9出出现的次数最多,故众数为9;将这组数据从小到大排列,其中位于中间的两个数都是8,故中位数为8,∴统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8.键.18. 按下列程序计算,把答案填写在表格内,并回答下列问题:(1)根据上述计算你发现了什么规律?(2)你能说明你发现的规律是正确的吗?【答案】(1)输入除0以外的数,输出结果都为1;(2)见解析【解析】【分析】(1)输入-2时,输出结果为1,输入13−时,输出结果为1,即可得;(2)结合题意可将程序表示:221()(0)x x x x x+÷−≠,进行计算即可得. 【详解】解:(1)输入-2时,输出结果为1,输入13−时,输出结果为1,故可得规律:输入除0以外的数,输出结果都为1; (2)结合题意可将程序表示为:221()(0)x x x x x+÷−≠, 222221111()11x x x x x x x x x x x+÷−=+−=+−=,所以发现的规律是正确的.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序和运算法则.四、解答题(二)(本大题共3小题,每小题9分,共27分)19. 佛山奇龙大桥犹如一架巨大的竖琴,横跨于东平水道上,是禅城区的“东大门”,大桥采用独塔斜拉桥结构,全长395米,已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD 、AC 与桥面BC 的夹角分别为60°和45°,两固定点D 、C 之间的距离约为60m ,求主塔AB 的高度.(结果保留整数,参考数1.41≈1.73≈)【答案】141m 【解析】【分析】在Rt △ABD中,利用正切的定义求出=AB ,然后根据45C ∠=°得出AB BC =,列方程求出BD 即可解答. 【详解】解:∵AB BC ⊥,∴90ABC ∠=°, 在Rt △ABD中,tan 60AB BD =⋅°=,在Rt ABC △中,45C ∠=°,为∴AB BC=,∴AB BD CD=+,60BD=+,∴)301 BD=m,∴)16090141.3141 AB BC==30++=+=≈m.答:主塔AB的高度约为141m.【点睛】本题主要考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.20. 某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x−+;y2=13x2﹣4x+13;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=+=,解得237kb=−=.∴y1=﹣23x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+13.(2)收益W =y 1﹣y 2, =﹣23x+7﹣(13x 2﹣4x+13) =﹣13(x ﹣5)2+73, ∵a =﹣13<0,∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21. 如图,在△ABC 中,以边AB 为直径作⊙O ,交AC 于点D ,点E 为边BC 上一点,连接DE .给出下列信息:①AB =BC ;②∠DEC =90°;③DE 是⊙O 的切线.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论,组成一个命题.你选择的两个条件是______,结论是______(只要填写序号).判断此命题是否正确,并说明理由; (2)在(1)的条件下,若CD =5,CE =4,求⊙O 的直径.【答案】(1)①和②,③,真命题,证明见解析;(答案不唯一) (2)254【解析】【分析】(1)选择①和②为条件,③为结论,连接OD ,由等边对等角可得出∠A =∠C ,∠A =∠ODA ,即可推出∠C =∠ODA ,从而可证明//OD BC ,再根据平行线的性质和∠DEC =90°,可证明∠ODE =∠DEC =90°,即OD DE ⊥,说明DE 是⊙O 的切线;(2)连接BD ,由直径所对圆周角为直角得出DB AC ⊥.再结合等腰三角形三线合一的性质可得出AD =CD =5.又易证 ABD CDE ,即得出AB ADCD CE=,代入数据即可求出AB 的长. 【小问1详解】解:选择①和②为条件,③为结论,且该命题为真命题. 证明:如图,连接OD , ∵AB =BC , ∴∠A =∠C . ∵OA =OD , ∴∠A =∠ODA , ∴∠C =∠ODA , ∴//OD BC . ∵∠DEC =90°,∴∠ODE =∠DEC =90°,即OD DE ⊥, ∴DE 是⊙O 的切线.故答案为:①和②,③;(答案不唯一) 【小问2详解】 解:如图,连接BD , ∵AB 为直径,∴90ADB ∠=°,即DB AC ⊥. ∵AB =BC , ∴AD =CD =5.在ABD △和CDE 中90ADB DEC A C ∠=∠=° ∠=∠,∴ ABD CDE , ∴AB AD CD CE=,即554AB =, ∴254AB =. 故圆O 的直径为254.【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,圆周角定理以及三角形相似的判定和性质.解题的关键是连接常用的辅助线.五、解答题(三)(本大题共2小题,每小题12分,共24分)22. 在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”,例如(3,3)−−、(1,1)、(2023,2023)都是“不动点”,已知双曲线9y x=. (1)求双曲线9y x=上的“不动点”; (2)若抛物线23y ax x c =−+(a 、c 为常数)上有且只有一个“不动点”. ①当1a >时,求c 的取值范围; ②如果1a =,过双曲线9y x=图象上第一象限的“不动点”作平行于x 轴的直线l ,若抛物线上有四个点到l 的距离为m ,直接写出m 的取值范围.【答案】(1)双曲线9y x=上的“不动点”为()3,3和()3,3−−; (2)①04c <<;②504m <<【解析】【分析】(1)根据定义设“不动点”为(),x x ,即可求解;(2)①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x ,根据抛物线上有且只有一个“不动点”,列不等式求解;②根据题意先求出抛物线解析式和直线l ,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C ,可得AB 即可求出答案. 【小问1详解】 解:设双曲线9y x=上的“不动点”为(),x x ,则9x x=,解得:13x =,23x =-, ∴双曲线9y x=上的“不动点”为()3,3和()3,3−−; 【小问2详解】解:①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x , 则23x ax x c =−+,∵抛物线上有且只有一个“不动点”,∴关于x 的一元二次方程240ax x c −+=有两个相等的实数根, ∴()224440b ac ac −−−==, 解得:4a c=, ∵1a >, ∴4>1c, ∴04c <<; ②当1a =时,则41c=, 解得:4c =,∴抛物线为234y x x =−+, 由(1)得:双曲线9y x=在第一象限上的“不动点”为()3,3, ∴直线l 即直线3y =,∵223734+24y x x x =−+=−, ∴抛物线顶点坐标为37,24,对称轴为直线32x =,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C , ∴AC m =,3,32A, ∴75344AB =−=, 设直线t 与直线r 关于直线l 对称,∵当点C 在点B 上方时,抛物线上四个点到l 的距离为m , ∴504m <<; 【点睛】本题考查反比例函数图像与性质、二次函数的图像与性质、新定义问题的求解等,综合性强、难度大.23. 如图1,在矩形ABCD 中,5AB =,3AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 为折痕与AD 或AB 的交点,点F 为折痕与BC 或CD 的交点),再将纸片还原.(1)①当0x =时,折痕EF 的长为__________; ②当x =__________时,点E 与点A 重合.(2)当点P 与点B 重合时,在图2中画出四边形DEPF ,求证:四边形DEPF 为菱形,并求出菱形DEPF 的周长;(3)如图3,若点E 在边AD 上,点F 在边CD 上,线段DP 与EF 相交于点M ;连接EP ,FP ,用含x 的代数式表示四边形DEPF 的面积. 【答案】(1)①5;②3 (2)证明见解析,周长为685(3)33271224x x x++【解析】【分析】(1)①当0x =时,折痕EF 的长正好等于矩形的长为5;②当点E 与点A 重合时,画出符合要求的图形,根据折叠的性质即可得到答案;(2)由由折叠的性质可得:DE PE DF PF DEF PEF ==∠=∠,,,由矩形的性质可得AB CD ,从而得到PEF DFE ∠=∠,则DFE DEF ∠=∠,从而得到DE PD DF PF ===,即可得证,设DF x =,则DF PF x ==,5CF x =−,在Rt CFP △中,222CF PC PF +=,解方程即可得到答案; (3)作FGAB ⊥,交AB 于G ,在Rt AEP △中,222AE AP EP +=,由勾股定理可得,296xAE −=,则296x DE PE +==,通过证明AEP GPF ∽,可得AP EP FG PF =,即2963x x PF+=,可得29+2x PF x=,最后由APE DEPFAPFD S S S =− 四边形梯形即可得到答案. 【小问1详解】解:① 折叠纸片,使点D 与点P 重合,得折痕EF ,∴当0AP x ==时,点D 与点P 重合,即为A D 、重合,B C 、重合,5EF AB CD ∴===,故答案为:5;②当点E 与点A 重合时,如图所示:由折叠的性质可得:3AD AP ==,∴当3x =时,点E 与点A 重合,故答案为:3; 【小问2详解】,由折叠性质可得:DE PE DF PF DEF PEF ==∠=∠,,, 四边形ABCD 为矩形,AB CD ∴∥,PEF DFE ∴∠=∠,DFE DEF ∴∠=∠,DE PD DF PF ∴===,∴四边形DEPF 为菱形,设DF x =,则DF PF x ==,5CF x =−,的在Rt CFP △中,222CF PC PF +=,()22253x x ∴−+=, 解得:751x =, ∴菱形DEPF 的周长为1768455×=; 【小问3详解】 解:如图所示,作FGAB ⊥,交AB 于G ,,则四边形ADFG 为矩形,3FG AD ∴==,由折叠的性质可得:90DE PE DF PF EPF EDF ==∠=∠=°,,, 设AE a =,则3DE PE a ==−, 在Rt AEP △中,222AE AP EP +=, 即()2223a x a +=−,解得:296x a −=,296x AE −∴=,296x DE PE +==, 9090EPA FPG EPA AEP ∠+∠=°∠+∠=° ,, AEP FPG ∴∠=∠,90EAP FGP ∠=∠=° , AEP GPF ∴ ∽,AP EP FG PF∴=,即2963x x PF+=,29+2x PF x∴=,第21页/共22页22319+19327322261224APE DEPF APFD x x x x S S S x x x x−=−=+×−⋅=++ 四边形梯形. 【点睛】本题主要考查了折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质、勾股定理,熟练在掌握折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质,添加适当的辅助线,是解题的关键.第22页/共22页。

五年级上册数学试题-期中数学试卷1 北师大版(2019秋)(含答案)

五年级上册数学试题-期中数学试卷1 北师大版(2019秋)(含答案)

2019-2020学年小学北师大版五年级(上)期中数学试卷一.填空题(共11小题,满分24分)1.(2分)24÷3=8,3和8都是24的,24是3的;24有个因数,最大的是,最小的是.2.(3分)一个三位数,百位上是最小的合数,十位上是10以内最大的奇数,这个三位数是2和5的倍数,这个三位数是.3.(2分)在15,36,42,51,60,120中,2的倍数有,3的倍数有,5的倍数有,2、3和5的倍数有.4.(3分)4.299保留两位小数约是,保留整数约是.5.(2分)三个连续奇数的和是111,这三个奇数分别是、和.6.(2分)一个两位小数保留一位小数是38.9,这个两位小数最大是,最小是.7.(2分)等腰三角形有条对称轴,若它的一个底角是35°,则它的顶角是度.8.(4分)元=角时=分吨=千克9.(2分)两个偶数的和是10,这两个偶数的积最大是.10.(1分)正方形的边长是5分米,它的周长是,面积是平方厘米.11.(1分)5□中最大填时这个数能被3整除,这个数的因数有.二.判断题(共5小题,满分5分,每小题1分)12.(1分)5.6÷8=0.7,5.6是8和0.7的倍数,8和0.7是5.6的因数.(判断对错)13.(1分)0.33333与0.都是循环小数.(判断对错)14.(1分)两个相邻的非零自然数一定是互质数..(判断对错)15.(1分)一个除法算式的被除数、除数都除以3以后,商是20,那么原来的商是60.(判断对错)16.(1分)甲数除以乙数,商是5,没有余数,那么甲数一定是乙数的5倍.(判断对错)三.选择题(共5小题,满分10分,每小题2分)17.(2分)合数中至少有()因数.A.1个B.2个C.3个D.3 个以上18.(2分)一个数有因数3,又是4的倍数,这个数可能是()A.36B.68C.1819.(2分)884÷88=10…4,如果被除数和除数同时扩大10倍,余数是()A.100B.4C.4020.(2分)正方形的边长是素数,它的周长和面积一定是()A.奇数B.合数C.素数D.无法确定21.(2分)甲数×3=乙数,(甲乙都是非0自然数),则乙数是甲数的()A.倍数B.因数C.自然数D.质数四.解答题(共4小题,满分37分)22.(8分)在○里填上“>”“<”或“=”2.97÷0.9○2.970.8÷0.5○0.8×0.56×2○62.23.(10分)用竖式计算,带◎的题要验算4.83÷23309÷1.5◎0.14÷0.0824.(10分)简便方法计算我很快.①101×0.36②5.8×7.3+4.2×7.3③25×0.77×0.4④4.75×99+4.7525.(9分)解方程.x﹣x﹣()=x﹣五.操作题(共2小题,满分4分,每小题2分)26.(2分)以虚线为对称轴,画出下面图形的对称图形.27.(2分)将长方形绕A点顺时针旋转90°.六.应用题(共5小题,满分20分,每小题4分)28.(4分)一部滑板车470元,淘气平均每个月节省125元,算一算,淘气几个月节省的钱能买到一部滑板车?29.(4分)某校开展节约用电活动,前4个月共节约用电424度.照这样计算,一年(12月)能节约用电多少度?30.(4分)妈妈想买3.8千克香蕉,每千克5.9元,妈妈带了25元钱,应找回多少元?31.(4分)MP手机厂生产一批手机,原计划每天生产800部,25天完成任务.实际每天多生产手机200部,实际用几天完成任务?32.(4分)用一根铁丝可以折成一个长13.2cm、宽9.6cm的长方形,如果把这根铁丝拉直,再折成一个等边三角形,这个三角形的边长是多少厘米?参考答案与试题解析一.填空题(共11小题,满分24分)1.解:24÷3=8,3和8都是24的因数,24是3的倍数;24有1,2,3,4,6,8,12,24,一共8个因数,最大的是24,最小的是1.故答案为:因数,倍数,8,24,1.2.解:由分析可知:这个三位数的个位是0,十位是9,百位是4,所以这个三位数是490,故答案为:490.3.解:(1)2的倍数有:36,42,60,120(2)3的倍数有:15,36,42,51,60,120(3)5的倍数有:15,60,120(4)既是2、5又是3的倍数有:60、120.故答案为:36,42,60,120;15,36,42,51,60,120;15,60,120;60,120.4.解:4.299保留两位小数约是4.30,保留整数约是4.故答案为:4.30,4.5.解:111÷3=37;37+2=39;37﹣2=35;答:这三个奇数分别是35、37、39.故答案为:35、37、39.6.解:“四舍”得到的38.9最大是38.94,“五入”得到的38.9最小是38.85;故答案为:38.94,38.85.7.解:由分析可知,等腰三角形有1条对称轴;顶角的度数为:180°﹣35°﹣35°=145°﹣35°=110°;答:等腰三角形有一条对称轴,若它的一个底角是35°,则它的顶角是110度.故答案为:1,110.8.解:元=4角时=40分吨=500千克故答案为:4,40,50.9.解:10=4+6,即两个偶数的和是10,这两个最接近的偶数是4和6,所以,这两个偶数的积最大是:4×6=24.答:这两个偶数的积最大是24.故答案为:24.10.解:5×4=20(分米);5×5=25(平方分米);25平方分米=2500平方厘米;答:它的周长是20分米,面积是2500平方厘米.故答案为:20分米、2500平方厘米.11.解:5□中最大填7时这个数能被3整除,因为57=1×57=3×19,所以57的因数有:1、3、19、57.故答案为:7;1、3、19、57.二.判断题(共5小题,满分5分,每小题1分)12.解:因为0.8×7=5.6,所以0.8和7是5.6的因数,说法错误,因为0.8和5.6是小数;故答案为:×.13.解:0.33333是有限小数,0.是循环小数;所以原题说法错误.故答案为:×.14.解:在非0自然数中,相邻的两个自然数相差1,也就是相邻的两个自然数的公因数只有1.所以在非0自然数中,相邻的两个自然数一定是互质数.故答案为:√.15.解:根据商不变的性质可知,一个除法算式的被除数、除数都除以3以后,商是20,那么原来的商也是20.所以原题说法错误.故答案为:×.16.解:因为甲数÷乙数=5,所以甲数一定是乙数的5倍,原题说法正确.故答案为:√.三.选择题(共5小题,满分10分,每小题2分)17.解:由合数的意义可知:合数中至少有3个因数;故选:C.18.解:根据能被3、4整除的数的特征:A、36能被4、3整除.符合题意.B、68能被4整除,不能被3整除.不符合题意.C、18不能被4整除.能被3整除,不符合题意.故选:A.19.解:884÷88=10…4,如果被除数和除数同时扩大10倍,则商不变,仍是10,但余数也随之扩大10倍,是40;故选:C.20.解:正方形的周长=边长×4;正方形的面积=边长×边长;它的周长和面积都至少有三个约数,所以说一定是合数.答:它的周长和面积一定是合数.故选:B.21.解:甲数×3=乙数,所以乙数÷甲数=3,(甲和乙都是非0自然数)即甲数是乙数的因数,乙数是甲数的倍数;故选:A.四.解答题(共4小题,满分37分)22.解:2.97÷0.9>2.970.8÷0.5>0.8×0.56×2<62故答案为:>,>,<.23.解:4.83÷23=0.21309÷1.5=206◎0.14÷0.08=1.7524.解:①101×0.36=(100+1)×0.36=100×0.36+1×0.36=36+0.36=36.36;②5.8×7.3+4.2×7.3=(5.8+4.2)×7.3=10×7.3=73;③25×0.77×0.4=25×0.4×0.77=10×0.77=7.7;④4.75×99+4.75=4.75×(99+1)=4.75×100=475.25.解:(1)x﹣x﹣+=+x=(2)x﹣()=x﹣=x﹣+=+x=(3)﹣x=﹣x+x=+x+x=+x﹣=﹣x=(4)x﹣﹣=x﹣﹣++=++x=五.操作题(共2小题,满分4分,每小题2分)26.解:以虚线为对称轴,画出下面图形的对称图形.27.解:将长方形绕A点顺时针旋转90°(图中红色部分):六.应用题(共5小题,满分20分,每小题4分)28.解:470÷125=3(个月)…95(元)95元还需要积攒1个月,3+1=4(个月)答:淘气4个月节省的钱能买到一部滑板车.29.解:12÷4×424=3×424=1272(度)答:一年能节约用电1272度.30.解:3.8×5.9=22.42(元)25﹣22.42=2.58(元)答:应找回2.58元.31.解:800×25=20000(部)20000÷(800+200)=20000÷1000=20(天)答:实际用了20天.32.解:(13.2+9.6)×2÷3=22.8×2÷3=15.2(厘米)答:这个三角形的边长是15.2厘米.。

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。

A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。

二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。

10.若一个正数的两个平方根是x-5和x+1,则x= 。

北师大版2019-2020学年六年级数学第一学期期末试题 (含答案)

北师大版2019-2020学年六年级数学第一学期期末试题 (含答案)

2019-2020学年六年级数学上册期末试卷一、填空题(共20分,每空1分)1.(4分)9÷=6:=== %2.(2分)一个圆形水池的半径是10米.绕水池一周是米,水池占地是平方米.3.(2分)比5吨重是吨,比36米短.4.(1分)水结成冰后,体积增加,冰化成水后体积减少.5.(2分)走一段小路,小刚用了30分,小红用了25分.小刚和小红用的时间比是,速度比是.6.(1分)制造一万双一次性筷子需要砍伐2棵树,如果我国一天大约消耗一次性筷子160万双,每天需要砍伐树木棵.7.(2分)晚上走向路灯时,影子逐渐变;远离路灯时,影子影子逐渐变.8.六年级8个班进行篮球循环赛,共需要比赛场;如果进行淘汰赛,要比赛场才能决出冠军.9.(2分)刘老师的身份证号为110108************,刘老师的出生日期是,性别是.10.(4分)一个立体图形,从左面看到的形状是,从正面看到的形状是,这样一个立体图形是最少需要个小正方体,最多需要个.二.判断题(对的画“√”,错的画“×;”)(共10分,每小题2分)11.(2分)4米:12千米的比值是1:3000..(判断对错)12.(2分)把周长是10米的圆平均分成2个半圆,每个半圆的周长都是5米..(判断对错)13.(2分)甲,已,丙三个学校的体育达标率分别为92%,93%,94%.那么这三所学校中达标人数最多的丙校.(判断对错)14.(2分)甲数的是24,乙数是24的,那么甲数与乙数一样大..(判断对错)15.(2分)甲数比乙数多20%,甲数与乙数的比是6:5..(判断对错)三.选择题.(共5分,每小题1分)16.(1分)一件商品,先提价5%,后来又降价5%,现在的价格与原来相比,()A.提高了 B.降低了 C.不变D.无法比较17.(1分)()有2条对称轴.A.三角形 B.长方形 C.正方形18.(1分)一根绳子长6米,用去2.4米,剩下()A.60% B.40 C.(6﹣2.4)/2.4×100%19.(1分)如果要反应小明每年的身高变化情况,选用()统计图比较合适.A.条形 B.折线 C.扇形20.(1分)一种盐水的含盐率是10%,盐与水的比是()A.1:10 B.1:11 C.1:9四.计算(共24分)21.(5分)直接写得数﹣= +=÷6= ××22.(15分)脱式计算.(能简算的要简算)500×3.25%×2 63× 14﹣﹣5(+﹣)×24 ÷(+)23.(4分)30% x=90 x+20% x=40.五.求下图中的周长和面积(图2求阴影部分的周长和面积).24.(3分)求图中的周长和面积(阴影部分的周长和面积)六.解决问题(共36分,每小题6分)25.(6分)一个圆形养鱼池,周长是188.4米,现在在它周围加宽1米,加宽后的面积比原来增加了多少平方米?26.(6分)王师傅用5000元奖金的60%购买了五年期的国库券,年利率为6.34%,五年后他一共可取回多少元?27.(6分)黄明和张亮都积攒了一些零用钱,他们所积攒的钱数的比是9:5,在献爱心活动中,黄明捐了48元钱,张亮捐了20元钱,这时他们的剩余钱数相等,黄明原来有多少钱?28.(6分)有一块合金,铜和锌的质量比是16:5,现在再加入8克锌,共得到新的合金176克,求新合金中铜和锌的质量比.29.(6分)小明家离学校有1400米,他每天骑自行车回家,自行车的轮胎直径是70厘米,如果自行车每分钟转80圈,小明多长时间可以到家?30.(6分)阳光超市和欣欣超市都以50元的价格出售同样的篮球,一星期后,阳光超市把售价降低了15%,再过一星期又提升了30%;欣欣超市在阳光超市调价两星期后把价格提升了15%,小刚现在正想买这种篮球,他应到哪家超市购买比较合算?参考答案及解析一、填空题(共20分,每空1分)1.(4分)9÷15 =6:10 === 60 %2.(2分)一个圆形水池的半径是10米.绕水池一周是62.8 米,水池占地是314 平方米.3.(2分)比5吨重是7 吨,27米比36米短.4.(1分)水结成冰后,体积增加,冰化成水后体积减少.5.(2分)走一段小路,小刚用了30分,小红用了25分.小刚和小红用的时间比是6:5,速度比是5:6 .6.(1分)制造一万双一次性筷子需要砍伐2棵树,如果我国一天大约消耗一次性筷子160万双,每天需要砍伐树木320 棵7.(2分)晚上走向路灯时,影子逐渐变短;远离路灯时,影子影子逐渐变长.8.六年级8个班进行篮球循环赛,共需要比赛28 场;如果进行淘汰赛,要比赛7 场才能决出冠军.9.刘老师的身份证号为110108************,刘老师的出生日期是1975年5月30日,性别是男.10.(4分)一个立体图形,从左面看到的形状是,从正面看到的形状是,这样一个立体图形是最少需要8 个小正方体,最多需要15 个.二.判断题(对的画“√”,错的画“&#215;”)(共10分,每小题2分)11.(2分)4米:12千米的比值是1:3000.×.(判断对错)12.(2分)把周长是10米的圆平均分成2个半圆,每个半圆的周长都是5米.×.(判断对错)13.(2分)甲,已,丙三个学校的体育达标率分别为92%,93%,94%.那么这三所学校中达标人数最多的丙校×.(判断对错)14.(2分)甲数的是24,乙数是24的,那么甲数与乙数一样大.×.(判断对错)15.(2分)甲数比乙数多20%,甲数与乙数的比是6:5.√.(判断对错)三.选择题.(共5分,每小题1分)16.(1分)(2014•中山模拟)一件商品,先提价5%,后来又降价5%,现在的价格与原来相比,()A.提高了B.降低了C.不变 D.无法比较【解析】设原价是1,则提价后的价格是:1×(1+5%),=1.05;现价是:1.05×(1﹣5%)=0.9975;0.9975<1,即现价低于原价.故选:B.17.(1分)()有2条对称轴.A.三角形 B.长方形 C.正方形【解析】A、三角形不是轴对称图形,没有对称轴;,B、长方形有2条对称轴,C、正方形有4条对称轴,故选:B.18.(1分)一根绳子长6米,用去2.4米,剩下()A.60% B.40 C.(6﹣2.4)/2.4×100%【解析】(6﹣2.4)÷6×100%=60%,故选:A.19.(1分)如果要反应小明每年的身高变化情况,选用()统计图比较合适.A.条形 B.折线 C.扇形【解析】根据统计图的特点可知:如果要反应小明每年的身高变化情况,选用折线统计图比较合适;故选:B.20.一种盐水的含盐率是10%,盐与水的比是()A.1:10 B.1:11 C.1:9【解析】10:(100﹣10)=1:9;故选C.四.计算(共24分)21.(5分)直接写得数【解析】﹣=+=1÷6===122.(15分)脱式计算.(能简算的要简算)【解答】解:(1)500×3.25%×2=500×0.0325×2=500×2×0.0325 =1000×0.0325 =32.5(2)63×=(62+1)×=62×+1×=12+=12(3)14﹣﹣5=14﹣()=14﹣5=14﹣6=7(4)(+﹣)×24=×24+×24﹣×24 =16+4﹣3=17(5)÷(+)=÷(+)==×=23.【解析】(1)30%x=90,x=90÷30%,x=300,(2)x+20%x=40,1.2x=40,x=40÷1.2,x=33.五.求下图中的周长和面积(图2求阴影部分的周长和面积).24.(3分)求图中的周长和面积(阴影部分的周长和面积)【解析】(1)半圆的半径为:4÷2=2(厘米)图形的周长是:10×2+2×3.14×2=32.56(厘米)图形的面积是:4×10+3.14×2×2=52.56(平方厘米)(2)由图形可知长方形的长是8厘米,宽是8÷2=4(厘米),所以阴影部分的周长是:4×2+3.14×8÷4=14.28(厘米)阴影部分的面积是:4×4﹣3.14×42÷4=3.44(平方厘米)六.解决问题(共36分,每小题6分)25.(6分)一个圆形养鱼池,周长是188.4米,现在在它周围加宽1米,加宽后的面积比原来增加了多少平方米?【解析】188.4÷3.14÷2=30(米) 3.14×(30+1)2﹣3.14×302=191.54(平方米)26.(6分)王师傅用5000元奖金的60%购买了五年期的国库券,年利率为6.34%,五年后他一共可取回多少元?【解析】5000×60%=3000(元)3000+3000×6.34%×5=3951(元)27.(6分)黄明和张亮都积攒了一些零用钱,他们所积攒的钱数的比是9:5,在献爱心活动中,黄明捐了48元钱,张亮捐了20元钱,这时他们的剩余钱数相等,黄明原来有多少钱?【解析】设每一份为x元,由题意得,9x﹣48=5x﹣20,x=7;黄明原来的钱数:9×7=63(元).28.(6分)有一块合金,铜和锌的质量比是16:5,现在再加入8克锌,共得到新的合金176克,求新合金中铜和锌的质量比.【解析】176﹣8═168(克) 168×=128(克) 168×=40(克) 128:(40+8)=8:329.(6分)小明家离学校有1400米,他每天骑自行车回家,自行车的轮胎直径是70厘米,如果自行车每分钟转80圈,小明多长时间可以到家?【解析】自行车轮胎的周长:3.14×70=219.8(厘米);219.8厘米=2.198米;2.198×80=175.84(米);1400÷175.84≈8(分钟);答;小明大约8分钟可到家.30.(6分)阳光超市和欣欣超市都以50元的价格出售同样的篮球,一星期后,阳光超市把售价降低了15%,再过一星期又提升了30%;欣欣超市在阳光超市调价两星期后把价格提升了15%,小刚现在正想买这种篮球,他应【解析】阳光超市现在的卖价:50×(1﹣15%)×(1+30%),=55.25(元);欣欣超市的现在价格:50×(1+15%),=57.5(元);欣欣超市的价格>阳光超市的价格,因此到阳光超市买较合算.答:他应到阳光超市购买比较合算.。

广东省佛山市禅城区2020-2021学年七年级上学期期末数学试题(解析版)

广东省佛山市禅城区2020-2021学年七年级上学期期末数学试题(解析版)

2020-2021学年广东省佛山市禅城区七年级第一学期期末数学试卷一、选择题(共10小题,共30分).1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.“全民行动,共同节约”,我国14亿人口如果都响应国家号召每人每年节约1度电,一年可节的中1 400 000 000度,这个数用科学记数法表示,正确的是()A.1.40×108 B.1.4×109 C.0.14×1010D.1.4×10103.如图是由四个相同的小正方体搭成的一个几何体,从左面看到的几何体的形状图是()A.B.C.D.4.下列各式计算正确的是()A.﹣m﹣m=0B.﹣a+a=0C.﹣(a+1)=﹣a+1D.﹣22=(﹣2)25.在完成“创文”黑板报的时候,101班的宣传小组先在黑板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.过一点,有无数条直线C.两点确定一条直线D.两点之间线段的长度叫做两点之间的距离6.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是37.下列调查中,最适合采用普查方式的是()A.调查某种灯泡的使用寿命B.调查全国中学生的节水情况C.调查七年级(3)班对篮球的爱好情况D.调查我国七年级学生的视力情况8.数a和数b在数轴上的位置如图,化简|a﹣b|的结果是()A.a﹣b B.b﹣a C.﹣a﹣b D.a+b9.“喜茶”店中的A种奶茶比B种奶茶每杯贵5元,小颖买了3杯A种奶茶、5杯B种奶茶,一共花了135元,问A种奶茶、B种奶茶每杯分别的多少元?若设A种奶茶x元,则下列方程中正确的是()A.5x+3(x﹣5)=135B.5(x﹣5)+3x=135C.5x+3(x+5)=135D.5(x+5)+3x=13510.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a+b的值为()A.32B.33C.34D.35二、填空题(共7小题,每小题4分,共28分)11.如果零上2℃记作+2℃,那么零下3℃记作.12.角度单位换算:1.4°=′.13.“垃圾分类”知识竞赛规定:答对的得10分,答错扣5分,如果初一(2)班答对了a 道题,答错了b道题,那么初一(2)班的得分可以表示为:分.14.如果x=1是关于x的方程5x+2m=7的解,那么m的值是.15.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为.16.已知如图,∠AOB和∠COD都是直角,∠AOD=25°.下列结论正确的是(只填序号).①∠AOC=75°;②∠AOC=∠BOD;③∠BOC=90°+∠BOD;④∠BOC=155°.17.点C在直线AB上,AB=5,BC=2,点C为BD中点,则AD的长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:﹣12+|﹣2|+()×12.19.解方程:.20.根据下列要求画图(1)连接线段OB;(2)画射线AO,射线AB;(3)用圆规在射线AB上截取AC=OB,过点O,点C画出直线OC.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?22.出租车司机小张某天在季华路(近似地看成一条直线)上行驶,如果规定向东为“正”,向西为“负”,他这天上午的行程可以表示为:+5,﹣3,+3,﹣1,+2,﹣2,+4,﹣5,+6,﹣8(单位:千米).(1)小张将最后一名乘客送达目的地后需要返回出发地换班,请问小张该如何行驶才能回到出发地?(2)若汽车耗油量为0.6升/千米,发车前油箱有72.2升汽油,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.23.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC是∠AOB的平分线,这时有数量关系:∠AOB=.(2)如图2:∠AOB被射线OP分成了两部分,这时有数量关系:∠AOB =.(3)如图3:直线AB上有一点M,射线MN从射线MA开始绕着点M顺时针旋转,直到与射线MB重合才停止.①请直接回答∠AMN与∠BMN是如何变化的?②∠AMN与∠BMN之间有什么关系?请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.有一个整数x,它同时满足以下的条件:①小于π;②大于﹣4;③在数轴上,与表示﹣1的点的距离不大于3.(1)将满足的整数x代入代数式﹣2(x+1)2+7,求出相应的值;(2)观察上题的计算结果,你有什么发现?将你的发现写出来.25.已知:∠AOB=∠COD=80°.(1)如图1,∠AOC=∠BOD吗?请说明理由.(2)如图2,直线MN平分∠AOD,直线MN平分∠BOC吗?请说明理由.(3)若∠BOD=150°,∠BOE=20°,求∠COE的大小.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,答案选项填涂在答题卷上)1.﹣2的相反数是()A.2B.﹣2C.D.﹣解:根据相反数的定义,﹣2的相反数是2.故选:A.2.“全民行动,共同节约”,我国14亿人口如果都响应国家号召每人每年节约1度电,一年可节的中1 400 000 000度,这个数用科学记数法表示,正确的是()A.1.40×108 B.1.4×109 C.0.14×1010D.1.4×1010解:1400000000=1.4×109,故选:B.3.如图是由四个相同的小正方体搭成的一个几何体,从左面看到的几何体的形状图是()A.B.C.D.解:从左面看到的几何体的形状图是,故选:D.4.下列各式计算正确的是()A.﹣m﹣m=0B.﹣a+a=0C.﹣(a+1)=﹣a+1D.﹣22=(﹣2)2解:﹣m﹣m=﹣2m,故选项A错误;﹣a+a=0,故选项B正确;﹣(a+1)=﹣a﹣1,故选项C错误;﹣22=﹣(﹣2)2,故选项D错误;故选:B.5.在完成“创文”黑板报的时候,101班的宣传小组先在黑板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.过一点,有无数条直线C.两点确定一条直线D.两点之间线段的长度叫做两点之间的距离解:在完成“创文”黑板报的时候,101班的宣传小组先在黑板上画出两个点,然后过这两点弹出一条墨线,这种做法用几何知识解释应是:两点确定一条直线.故选:C.6.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3解:单项式的系数是,次数是3.故选:D.7.下列调查中,最适合采用普查方式的是()A.调查某种灯泡的使用寿命B.调查全国中学生的节水情况C.调查七年级(3)班对篮球的爱好情况D.调查我国七年级学生的视力情况解:A.调查某种灯泡的使用寿命,适合采用抽样调查的方式,故本选项不合题意;B.调查全国中学生的节水情况,适合采用抽样调查的方式,故本选项不合题意;C.调查七年级(3)班对篮球的爱好情况,适合采用普查的方式,故本选项符合题意;D.调查我国七年级学生的视力情况,适合采用抽样调查的方式,故本选项不合题意.故选:C.8.数a和数b在数轴上的位置如图,化简|a﹣b|的结果是()A.a﹣b B.b﹣a C.﹣a﹣b D.a+b解:由图可知a<0<b,∴a﹣b<0,∴|a﹣b|=﹣(a﹣b)=﹣a+b=b﹣a.故选:B.9.“喜茶”店中的A种奶茶比B种奶茶每杯贵5元,小颖买了3杯A种奶茶、5杯B种奶茶,一共花了135元,问A种奶茶、B种奶茶每杯分别的多少元?若设A种奶茶x元,则下列方程中正确的是()A.5x+3(x﹣5)=135B.5(x﹣5)+3x=135C.5x+3(x+5)=135D.5(x+5)+3x=135解:若设A种奶茶x元,则B种奶茶(x﹣5)元,根据题意,得5(x﹣5)+3x=135.故选:B.10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a+b的值为()A.32B.33C.34D.35解:∵左边的数为连续的奇数1,3,5,7,9,11,上边的数为2,4,6,…,∴b=2×6﹣1=11,∵上边的数与左边的数的和正好等于右边的数,∴a=11+12=23,∴a+b=23+11=34,故选:C.二、填空题(本大题共7小题,每小题4分,共28分)11.如果零上2℃记作+2℃,那么零下3℃记作﹣3℃.解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故答案为:﹣3℃.12.角度单位换算:1.4°=84′.解:1.4°=1.4×60′=84′.故答案为:84.13.“垃圾分类”知识竞赛规定:答对的得10分,答错扣5分,如果初一(2)班答对了a 道题,答错了b道题,那么初一(2)班的得分可以表示为:(10a﹣5b)分.解:∵答对的得10分,答错扣5分,初一(2)班答对了a道题,答错了b道题,∴初一(2)班的得分可以表示为:(10a﹣5b)分.故答案为:(10a﹣5b).14.如果x=1是关于x的方程5x+2m=7的解,那么m的值是1.解:∵x=1是关于x的方程5x+2m=7的解,∴5×1+2m=7,解得:m=1.故答案为:1.15.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为2.解:由题意得当x=﹣2时,x2=(﹣2)2=4;将x=4输入,则﹣2×4+10=2,故答案为2.16.已知如图,∠AOB和∠COD都是直角,∠AOD=25°.下列结论正确的是②③④(只填序号).①∠AOC=75°;②∠AOC=∠BOD;③∠BOC=90°+∠BOD;④∠BOC=155°.解:①∵∠COD=90°,∠AOD=25°,∴∠AOC=∠COD﹣∠AOD=65°,故结论①错误,不符合题意;②∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠AOD,∠BOD=90°﹣∠AOD,∴∠AOC=∠BOD,故结论②正确,符合题意;③∵∠COD=90°,∠BOC=∠COD+∠BOD,∴∠BOC=90°+∠BOD,故结论③正确,符合题意;④由①知∠AOC=65°,∵∠AOB=90°,∴∠BOC=∠AOB+∠AOC=90°+65°=155°,故结论④正确,符合题意.故答案为:②③④.17.点C在直线AB上,AB=5,BC=2,点C为BD中点,则AD的长为1或9.解:如图1,∵BC=2,点C为BD中点,∴BD=4,∴AD=5﹣4=1;如图2,∵BC=2,点C为BD中点,∴BD=4,∴AD=5+4=9;故答案为:1或9.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:﹣12+|﹣2|+()×12.解:﹣12+|﹣2|+()×12=﹣1+2+×12﹣×12=﹣1+2+4﹣9=﹣4.19.解方程:.解:,方程两边同时乘以12得4(2x+1)=3(x﹣1)+12,∴8x+4=3x﹣3+12,∴5x=5,解得:x=1.20.根据下列要求画图(1)连接线段OB;(2)画射线AO,射线AB;(3)用圆规在射线AB上截取AC=OB,过点O,点C画出直线OC.解:(1)连接线段OB,如图所示;(2)画射线AO,射线AB,如图所示;(3)用圆规在射线AB上截取AC=OB,过点O、点C画直线OC,如图所示.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?解:(1)24÷30%=80(名),答:这次调查一共抽取了80名学生;(2)80×20%=16(名),补全条形统计图,如图所示;(3)根据题意得:360°×=117°,答:在扇形统计图中,“公交车”部分所对应的圆心角为117°;(4)根据题意得:1600×=200(名),答:估计该校乘坐私家车上学的学生约有200名.22.出租车司机小张某天在季华路(近似地看成一条直线)上行驶,如果规定向东为“正”,向西为“负”,他这天上午的行程可以表示为:+5,﹣3,+3,﹣1,+2,﹣2,+4,﹣5,+6,﹣8(单位:千米).(1)小张将最后一名乘客送达目的地后需要返回出发地换班,请问小张该如何行驶才能回到出发地?(2)若汽车耗油量为0.6升/千米,发车前油箱有72.2升汽油,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.解:(1)+5+(﹣3)+3+(﹣1)+2+(﹣2)+4+(﹣5)+6+(﹣8)=1(千米),在出发点的东1千米处,答:小张向西行驶1千米才能回到出发地;(2)不用加油,理由如下:0.6×(+5+|﹣3|+3+|﹣1|+2+|﹣2|+4+|﹣5|+6+|﹣8|+1)=0.6×40=24(升),72.2>24,故不用加油.23.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC是∠AOB的平分线,这时有数量关系:∠AOB=2∠AOC=2∠COC.(2)如图2:∠AOB被射线OP分成了两部分,这时有数量关系:∠AOB=∠AOP+∠BOP.(3)如图3:直线AB上有一点M,射线MN从射线MA开始绕着点M顺时针旋转,直到与射线MB重合才停止.①请直接回答∠AMN与∠BMN是如何变化的?②∠AMN与∠BMN之间有什么关系?请说明理由.解:(1)∵射线OC是∠AOB的平分线,∴∠AOB=2∠AOC=2∠COC;故答案为:2∠AOC=2∠COC;(2)∵∠AOB被射线OP分成了两部分,∴∠AOB=∠AOP+∠BOP,故答案为:∠AOP+∠BOP;(3)①当射线MN从射线MA开始绕着点M顺时针旋转,直到与射线MB重合过程中,∠AMN由小变大,∠BMN由大变小;②∠AMN+∠BMN=∠AOB=180°,即∠AMN与∠BMN互补.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.有一个整数x,它同时满足以下的条件:①小于π;②大于﹣4;③在数轴上,与表示﹣1的点的距离不大于3.(1)将满足的整数x代入代数式﹣2(x+1)2+7,求出相应的值;(2)观察上题的计算结果,你有什么发现?将你的发现写出来.【解答】(1)由题意得,满足的整数x为:﹣4,﹣3,﹣2,﹣1,0,1,2当x=﹣4时,原式=﹣11.当x=﹣3时,原式=﹣1.当x=﹣2时,原式=5.当x=﹣1时,原式=7.当x=0时,原式=5.当x=1时,原式=﹣1.当x=2时,原式=﹣11.(2)发现:当x=﹣1时,代数式有最大值,x距离﹣1越远,代数式的值越小.25.已知:∠AOB=∠COD=80°.(1)如图1,∠AOC=∠BOD吗?请说明理由.(2)如图2,直线MN平分∠AOD,直线MN平分∠BOC吗?请说明理由.(3)若∠BOD=150°,∠BOE=20°,求∠COE的大小.解:(1)∠AOC=∠BOD,理由如下:∵∠AOB=∠COD,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD;(2)直线MN平分∠BOC,理由如下:∵MN平分∠AOD,∴∠AOM=∠DOM,∵∠AOB=∠COD,∴∠AOB+∠AOM=∠COD+∠DOM,即∠BOM=∠COM,∴180°﹣∠BOM=180°﹣∠COM,即∠BON=∠CON,∴MN平分∠BOC;(3)当OE在∠AOB内部时,如图,∵∠BOD=150°,∠COD=80°,∴∠BOC=360°﹣∠BOD﹣∠COD=130°,∴∠COE=∠BOC+∠BOE=130°+20°=150°;当OE在∠BOC内部时,如图,∵∠BOD=150°,∠COD=80°,∴∠BOC=360°﹣∠BOD﹣∠COD=130°,∴∠COE=∠BOC﹣∠BOE=130°﹣20°=110°;综上所述,∠COE=150°或110°.。

2025学年高一数学上学期第三次月考卷(北师大版2019,测试范围:必修第一册第一章~第五章)全解析

2024-2025学年高一数学上学期第三次月考卷(北师大版2019)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版必修第一册第一章(10分)+第二章(5分)+第三章(25分)+第四章+第五章(110分)。

5.难度系数:0.65。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

2,4A.{}【答案】A【解析】由图知阴影部分为1m \=,2n =-,()g x =\因此不经过第四象限,故选D .4.已知1334a -æö=ç÷èø,lg 4b =当1x £时,由1log 2a x +-由于114a £<,故22x -£=-易知函数()y f x =与直线y 则函数()y f x =与直线y =故43a £或2y x =+与(y =二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.所以log (31)1log (51)1a a +<ìí+>î,解得4<a 当01a <<时,若()()f x g x =在则大致图象如下图所示,所以3151a a <ìí>î,解得1153a <<.综上所述,实数a 的取值范围为1(5第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分。

高二上学期数学北师大版(2019)期末模拟测试卷A卷(含解析)

高二上学期数学北师大版(2019)期末模拟测试卷A 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线与相离,则点与圆O 的位置关系为( )A.点P 在圆O 内 B.点P 在圆O 上C.点P 在圆O 外D.无法确定2.若空间向量,,则向量在向量上的投影向量的坐标是( )A. B. C. D.3.设a 为实数,若直线与平行,则它们之间的距离为( )4.第33届夏季奥运会预计2024年7月26日至8月11日在法国巴黎举办,这届奥运会将新增2个竞赛项目和3个表演项目.现有三个场地A ,B ,C 分别承担这5个新增项目的比赛,且每个场地至少承办其中一个项目,则不同的安排方法有( )A.150种B.300种C.720种D.1008种5.已知椭圆(是C 上一点,,分別是两个焦点,则的面积为( )A.6.的展开式中只有第四项的二项式系数最大,则展开式中的常数项为( )A. B. C.20D.1607.一条光线从点射出,经直线反射后,与圆相切于点M ,则光线从P 到M 经过的路程为( )A.4B.5C.1ax by +=22:1O x y +=(),P a b (2,1,1)a =- (1,0,1)b = ab ⎛ ⎝11,0,22⎛⎫-- ⎪⎝⎭11,0,22⎛⎫⎪⎝⎭430ax y -+=210x y -+=2222:1x y C a b+=a b >>(1F 2F 12MF F △()*2nx n x ⎛⎫-∈ ⎪⎝⎭N 160-20-()0,4P 30x y +-=()22:51C x y -+=8.在正四棱柱中,,E 为棱的中点,F 为线段上的一点,且,则直线与直线所成角的余弦值为( )二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.已知直线,则下列结论正确的是( )A.直线l 的倾斜角是B.过C.点到直线l 的距离是2D.若直线,则10.现有3位歌手和4名粉丝站成一排,要求任意两位歌手都不相邻,则不同的排法种数可以表示为( )A. B.C. D.11.同时投掷甲、乙两枚质地均匀的硬币,记“甲正面向上”为事件A ,“乙正面向上”为事件B ,“甲、乙至少一枚正面向上”为事件C ,则下列判断正确的是( )A.A 与B相互对立 B.A 与B 相互独立C.D.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从正态分布,若,则________.13.已知点在抛物线上,则A 到C 的准线的距离为________.14.已知,分别是平面,的法向量,若,则________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.1111ABCD A B C D -12AA AB =AB 1CC 1A C EF ⊥BF 1A C 10l y -+=60︒20y --=):10m x +=l m⊥731424735454A A A A A A --4343A A 7314222473543254A A A A C A A A --4345A A 1()2P C =2(|)3P B C =()23,N σ(8)02P X >=.()23P X -≤≤=(A 2:2C y px =)1,2n x =(2n =--αβ//αβx =15.(13分)如图,四棱锥中,底面为正方形,平面,E为的中点.(1)证明:平面;(2)若,,求平面与平面夹角的余弦值.16.(15分)已知圆心为的圆经过点,直线.(1)求圆M的方程;(2)写出直线l恒过定点Q的坐标,并求直线l被圆M所截得的弦长最短时m的值及最短弦长.17.(15分)某自助餐厅为了鼓励消费,设置了一个抽奖箱,箱中放有8折、8.5折、9折的奖券各2张,每张奖券的形状都相同,每位顾客可以从中任取2张奖券,最终餐厅将在结账时按照2张奖券中最优惠的折扣进行结算.(1)求一位顾客抽到的2张奖券的折扣均不相同的概率;(2)若自助餐的原价为100元/位,记一位顾客最终结算时的价格为X,求X的分布列及数学期望.18.(17分)已知直线与关于抛物线的准线对称.(1)求C的方程;,求l的斜率.19.(17分)已知的二项展开式中,前三项的二项式系数的和为46.(1)求展开式中所有项的系数的和:(2)求展开式中的常数项.P ABCD-ABCD PA⊥ABCD PD //PB AEC2AB AD==4AP=ADE ACE()2,1M--()1,3:0l x my m++=()E X1y=-5y=-2:2C x py=242nx⎛⎝答案以及解析1.答案:A解析:由题设与直线的距离,即,所以点在圆O 内.故选:A.2.答案:C解析:由于空间向量,,则向量在向量上的投影向量为:,故选:.3.答案:A,解得,所以直线,即与直线4.答案:A种安排,若三个场地分别承种安排,综上,不同的安排方法有种.故选:A 5.答案:A解析:由题意可得,解得,(1,0,1)b = (0,0)O 1ax by +=1d =>221a b +<(),P a b (2,1,1)a =- ab ()111||cos ,(1,0,1),0,222||||||b a b b a a b b b b ⎛⎫<>==-=-- ⎪⎝⎭ C 4321-=≠-2a =2430x y -+=3202x y -+=210x y -+=33A 60=33A 90=6090150+=22222239151c e a a b c a b⎧==⎪⎪⎪+=⎨⎪=-⎪⎪⎩224a b c ⎧=⎪=⎨⎪=⎩28F =12112MF F S F ==△故选:A.6.答案:A解析:因为的展开式中只有第四项的二项式系数最大,则由二项式系数性质知:展开式共有7项,则,则展开式的通项为,展开式中常数项,必有,即,所以展开式中常数项为.故选:A.7.答案:C解析:设P 关于直线的对称点为,则光线反射后经过的路径所在的直线即为直线.根据Q 的定义,有P ,Q 到直线的距离相等,且其连线与其垂直,,,即或.但P ,Q 不重合,故,所以,从而,即.而,.根据对称性,光线经过的路程即为8.答案:B解析:如图,以点D 为原点建立空间直角坐标系,不妨设,则,,设,则,因为,所以,解得,则,所()*2nx n x ⎛⎫-∈ ⎪⎝⎭N 6n =62x x ⎛⎫- ⎪⎝⎭6621662C (2)C rr r r r rr T x xx --+⎛⎫=⋅-=- ⎪⎝⎭620r -=3r =3346(2)C 820160T =-=-⨯=-30x y +-=(),Q m n QM ()1-=-31n +-=m n =-71-=3n =4n =4n ≠3n =1m =-()1,3Q -()5,0C CM =QM ==QM =2AB =()()12,0,4,2,2,0A B ()()0,2,0,2,1,0C E ()[]0,2,,0,4F a a ∈()()12,2,4,2,1,A C EF a =--=-1A C EF ⊥14240AC EF a ⋅=+-= a =30,2,2⎛⎫ ⎪⎝⎭32,0,2BF ⎛⎫=- ⎪⎝⎭与直线故选:B9.答案:ABC解析:A选项:直线B选项:过与直线l平行的直线方程为,故B 正确;C选项:点(到直线l的距离,故C正确;D选项:直线的斜率为,故l与m不垂直,故D不正确故选:ABC.10.答案:CD解析:第一种排法:分2步进行:①将4名粉丝站成一排,有种排法;②4人排好后,有5个空位可选,在其中任选3个,安排三名歌手,有种情况,则有种排法.第二种排法:先计算3位歌手站一起,此时3位歌手看作一个整体,有种排法,再计算恰好有2位歌手站一起,此时2位歌手看作一个整体,与另外一个歌手不相邻,有种排法,则歌手不相邻有种排法.故选:CD.11.答案:BD解析:对于A,由题意可知,事件A与事件B有可能同时发生,例如“甲正面向上且乙正面111,AC BFAC BFAC BF⋅===1A C1l y-+=)1y x-=-20y--=2d:10m x-+=k=11=≠-44A35A4345A A314354A A A22243254C A A A3142224354773254A A A C A AA A--向上”,故事件A 与事件B 不是互斥事件,当然也不是对立事件,故A 错误;对于B ,依题意,所以事件A 与事件B 相互独立,故B 正确;对于C 、D ,12.答案:0.3解析:解法一:,.解法二:,故答案为:0.3.14.答案:解析:因为,分别是平面,的法向量,且,所以.15.答案:(1)证明见解析;解析:(1)证明:如图所示,连接,设,连接,因为四边形为正方形,则O 为的中点,因为E 是的中点,所以.()P A =()B =()()()11224AB P A P B ===⨯()1P C =)()P B ==()1()2|3()4P BC P B C P C ==()80.2(2)P X P X >==<-()123(2)0.32P X P X -≤≤=-<-=()()()3838P X P X P X ≤≤=≥->()0.323P X ==-≤≤2y x =1-1,2)n x = 2(n =--αβ//αβ12//n n ==1x =-BD AC BD O = OE ABCD BD PD //EO PB又因为平面,平面,所以平面.(2)因为平面,四边形为正方形,以A 为坐标原点,分别以、、所在直线为x 、y 、z 轴建立如图所示空间直角坐标系,因为,,则、、、、、,设平面的法向量为,,,则,取,可得,又为平面的一个法向量,则所以,平面与平面.16.答案:(1)(2)最小值为.解析:(1)圆M 的半径,圆M 的方程为.(2)直线l 的方程为,,令解得:,定点Q 的坐标为.,点Q 在圆M 的内部,故直线l 恒与圆M 相交.又圆心M 到直线l 的距离,l 被圆M 截得的弦长为∴EO ⊂AEC PB ⊄AEC //PB AEC PA ⊥ABCD ABCDAB AD AP 2AB AD==4AP =()0,0,0A ()2,0,0B ()0,0,4P ()0,2,0D ()0,1,2E ()2,2,0C AEC (),,m x y z =()0,1,2AE = ()2,2,0AC = 20220m AE y z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1z =()2,2,1m =- ()1,0,0n = ADE 2cos ,31m n m n m n ⋅===⋅⨯ADE ACE ()()222125x y +++=0= 5r ==∴()()222125x y +++= 0x my m ++=(1)0x m y ∴++=010x y =⎧⎨+=⎩01x y =⎧⎨=-⎩∴()0,1-()()220211425++-+=< ∴2d ≤.(2)答案见答案解析:(1)从6张奖券中,任取2张奖券共有种选法,抽到的两张奖券相同的有3种选法,所以一位顾客抽到的2张奖券的折扣均不相同的概率为.(2)的所有可能取值为80,85,90,,的分布列为:18.答案:(1)(2)..(2)易得l的斜率存在,C的焦点为.设,,,联立得,得=0=26C15=1534155P-==X()1122261C C280CP X+⋅⨯===()1122261C C85CX+⋅===()261190C15P X===X∴()3118085905315E X∴=⨯+⨯+⨯=212x y=1±1532--=-212y=()0,3:3l y kx=+()11,A x y()22,B x y212,3,x yy kx⎧=⎨=+⎩212360x kx--=212Δ1441440,12,kx x k⎧=+>⎨+=⎩,得,即l 的斜率为.19.答案:(1)-1 (2)2304解析:(1)因为的二项展开式中前三项的二项式系数的和为46,所以,即,,解得或(舍).令,则,所以展开式中所有项的系数的和为-1.(2)由(1)知二项式为,所以二项展开式的通项为,,令,得,所以展开式中的常数项为.()21212123333612121224y y kx kx k x x k +++=++++=++=+=1k =±1±2nx⎛⎝012C C C 46n n n ++=()11462n n n -++=2900n n +-=9n =10n =-1x =()99211x ⎛-=-=- ⎝92x ⎛⎝()()918924199C C 2rr rr rrr T xx --+⎛=⋅=- ⎝0,1,2,,9r = 91804r -=8r =()8899C 22304T =⋅-=。

2019-2020学年广东省深圳市龙岗区北师大版四年级上册期末质量监测数学试卷(含答案解析)

2019-2020学年广东省深圳市龙岗区北师大版四年级上册期末质量监测数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面各数中,只读一个零的是()。

A.6030025B.80100C.50066094D.2009780 2.计算器上的关机键是()。

A.OFF B.ON C.CE D.M+3.23019148四舍五入到万位是()。

A.23万B.230万C.2301万D.2302万4.下面是深圳市四个学校运动会方阵人数,人数最少的是()。

A.104×35B.103×37C.105×33D.107×30 5.如果小明向西走50米记作﹣50米,那么他向东走80米记作()。

A.﹢50米B.﹣50米C.﹢80米D.﹣80米6.下图中有()条线段。

A.3B.4C.5D.67.关于下图的平行四边形,下面说法中错误的是()。

A.a和b平行B.b和d平行C.a和d相交D.b和c相交8.下列图形中有直角的是()。

A.B.C.D.9.算式789×25×4=789×(25×4)运用了()。

A.乘法结合律B.乘法分配律C.乘法交换律D.加法结合律10.在﹣123米,11.5米,32℃,﹣8℃,73千克,﹣500元,﹣25千米中,用负数表示的量有()个。

11.如图所示,A的位置是(1,2),则B的位置是()。

A.(1,1)B.(1,3)C.(3,1)D.(2,1)12.一个小正方体,一个面上写着“1”,两个面上写着“2”,三个面上写着“3”。

把小正方体抛30次,下面说法正确的是()。

A.一定是“3”朝上B.“2”朝上的可能性最小C.“3”朝上的可能性最大D.“1”“2”“3”朝上的可能性一样大13.480÷80=6,480和80同时扩大10倍,商()。

(常考题)北师大版高中数学必修三第一章《统计》检测卷(含答案解析)(2)

一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .3.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和674.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④5.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A.15.5 B.15.6 C.15.7 D.166.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.157.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是()A.31号B.32号C.33号D.34号8.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.1609.已知x,y的取值如表:x2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.10.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A .40B .45C .48D .5011.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .712.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.14.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.15.已知x ,y 的取值如下表: x 2 3 4 5 y2.23.85.56.5从散点图分析,y 与x 线性相关,且回归方程为y =1.46x +a ,则实数a 的值为________.16.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.17.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x3 4 5 6y23.5 55.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 18.已知某人连续5次射击的环数分别是8,9,10,x ,8,若这组数据的平均数是9,则这组数据的方差为 .19.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.某食品厂为了检测某批袋装食品的质量,从该批食品中抽取了一个容量为100的样本,测量它们的质量(单位:克).根据数据分为[)92,94,[)94,96,[)96,98,[)99,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,估计这批袋装食品质量的中位数.(保留一位小数) (2)记产品质量在[)98,102内为优等品,每袋可获利5元;产品质量在[)92,94内为不合格品,每袋亏损2元;其余的为合格品,每袋可获利3元.若该批食品共有10000袋,以样本的频率代替总体在各组的频率,求该批袋装食品的总利润.22.学校食堂统计了最近5天到餐厅就餐的人数x (百人)与食堂向食材公司购买所需食材(原材料)的数量y (袋),得到如下统计表:第一天 第二天 第三天 第四天 第五天 就餐人数x (百人) 13 9 8 10 12 原材料y (袋)3223182428(1)根据所给的5组数据,求出关于的线性回归方程ˆˆˆy bx a =+;(2)已知购买食材的费用C (元)与数量y (袋)的关系为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩,投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-参考数据:511343i ii x y==∑,521558i i x ==∑,5213237i i y ==∑23.为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.24.某校2011年到2019年参加“北约”“华约”考试而获得加分的学生人数(每位学生只能参加“北约”“华约”中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推) 年份x 1 2 3 4 5 6 7 8 9 人数y23545781010(1)求这九年来,该校参加“北约”“华约”考试而获得加分的学生人数的平均数和方差; (2)根据最近五年的数据,利用最小二乘法求出y 与x 的线性回归方程,并依此预测该校2020年参加“北约”“华约”考试而获得加分的学生人数.(最终结果精确至个位) 参考数据:回归直线的方程是y bx a =+,其中()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-.95293i ii x y==∑,925255i i x ==∑.25.新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量y(万辆)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程y bt a=+,并预测2018年5月份当地该品牌新能源汽车的销量;(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为ξ,求ξ的分布列及数学期望()Eξ.参考公式及数据:①回归方程y bx a=+,其中()()()1122211ˆn ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑,a y bx=-,②5118.8i iit y ==∑.26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x与销售单价y之间的关系,经统计得到如下数据:等级代码数值x 38 48 58 68 78 88 销售单价y (元/kg )16.818.820.822.82425.8(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】因为,所以,代入回归直线方程可求得,所以,故选D.【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.3.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a1,a2,…,a50,则a1+a2+…+a50=50×70,即60+90+a3+…+a50=50×70,(a1﹣70)2+(a2﹣70)2+…+(a50﹣70)2=50×75,即102+202+(a3﹣70)2+…+(a50﹣70)2=50×75.更正后平均分为x=150×(80+70+a3+…+a50)=70;方差为s2=150×[(80﹣70)2+(70﹣70)2+(a3﹣70)2+…+(a50﹣70)2]=150×[100+(a3﹣70)2+…+(a50﹣70)2]=150×[100+50×75﹣102﹣202]=67.故选B.【点睛】本题考查平均数与方差的概念与应用问题,是基础题.4.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FPOP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FPOP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.5.B解析:B【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05频数为:367.57.54.51.5,,,,,则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B 【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错6.C解析:C【详解】抽取比例为1501 30000200=,1400020200∴⨯=,抽取数量为20,故选C.7.C解析:C【解析】【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号.【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷,已知03号,18号被抽取,所以应该抽取181533+=号,故选C.【点睛】本题主要考查了抽样,系统抽样,属于中档题.8.D解析:D【解析】【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B . 【点睛】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.10.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.11.B解析:B 【解析】分析:首先写出所有学生的乘积,然后结合系统抽样的方法整理计算即可求得最终结果. 详解:由题意可知,学生的成绩如下:111,111,112,113,113; 116,117,117,118,118; 120,120,121,122,122; 123,124,124,126127; 128,128,129,129,129; 131,131,131,132,132; 132,133,134,134,135; 137,138,138,138,139;140,142,142,143,144.用系统抽样方法从中抽取9人,则每5人中抽取一人,即上述分组中每组抽取一人, 则所抽取的学生的成绩在区间[]120,135上的学生人数为5. 本题选择B 选项.点睛:本题主要考查系统抽样的概念及其应用,茎叶图的识别等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3 【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案. 【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2, 所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人, 在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.14.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.15.—061【分析】根据所给条件求出把样本中心点代入回归直线方程可以得到关于的方程解出即可得到答案【详解】根据题意可得则这组数据的样本中心点是代入到回归直线方程故答案为【点睛】本题考查了线性回归方程解题解析:—0.61 【分析】根据所给条件求出x ,y ,把样本中心点()x y ,代入回归直线方程 1.4ˆ6ˆyx a +=,可以得到关于ˆa的方程,解出即可得到答案 【详解】 根据题意可得23453.54x +++== 2.2 3.8 5.5 6.54.54y +++==则这组数据的样本中心点是()3.54.5,代入到回归直线方程 1.4ˆ6ˆyx a += 4.5 1.46 3.ˆ5a ∴⨯+= ˆ0.61a=- 故答案为0.61- 【点睛】本题考查了线性回归方程,解题的关键是线性回归方程一定过样本中心点,这是求解线性回归方程的步骤之一,是线性回归方程考查的常见题型,体现了回归直线方程与样本中心点的关联.16.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1 【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果. 详解:7245%74(145%)72.1⨯+⨯-=. 点睛:本题考查平均数,考查基本求解能力.17.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【解析】分析:先根据平均数求x 的值再求数据的方差详解:由题得所以数据的方差为故答案为点睛:(1)本题主要考查平均数和方差的计算意在考查学生对这些基础知识的掌握水平(2)方差公式为解析:45【解析】分析:先根据平均数求x 的值,再求数据的方差. 详解:由题得8+9+8109,10.5x x ++=∴=所以数据的方差为22222214[(89)(99)(109)(109)(89)]55S =-+-+-+-+-=.故答案为45. 点睛:(1)本题主要考查平均数和方差的计算,意在考查学生对这些基础知识的掌握水平.(2) 方差公式为222121[()()()]n S x x x x x x n=-+-+⋅⋅⋅+-. 19.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人20.630【解析】每层的抽样比为女生抽了95人所以男生抽取105人因此共有男生人故填630解析:630 【解析】 每层的抽样比为200112006=,女生抽了95人,所以男生抽取105人,因此共有男生1056630⨯=人,故填630.三、解答题21.(1)99.6;(2)35600元. 【分析】(1)根据频率分布直方图中的中位数在长方形面积为0.5的地方取得得解. (2)求出批食品中优等品、不合格品、合格品的袋数得总利润. 【详解】(1)因为(0.020.040.12)20.360.5,0.360.0920.540.5++⨯=<+⨯=>, 所以样本质量的中位数在[98,100)内.设样本质量的中位数为m ,则980.0920.360.52m -⨯⨯+=, 解得99.6m ≈,故这批袋装食品质量的中位数为99.6.(2)由题意可得,这批食品中优等品有10000(0.090.10)23800⨯+⨯=袋, 这批食品中不合格品有100000.022400⨯⨯=袋, 这批食品中合格品有1000038004005800--=袋.故该批袋装食品的总利润为3800558003400235600⨯+⨯-⨯=元. 【点睛】频率分布直方图中的中位数求法在长方形面积为0.5的地方取得是解题关键,属于基础题. 22.(1) 2.51y x =-;(2)食堂购买36袋食,能获得最大利润,最大利润为11520元. 【分析】(1)本题首先可根据题中所给数据求出x 、y ,然后根据51522155i ii ii x y x yb xx==-⋅=-∑∑求出b ,最后根据a y bx =-求出a ,即可得出结果;(2)本题首先可根据 2.51y x =-得出预计需要购买食材36.5袋,然后分为36y <、36y ≥两种情况进行讨论,分别求出最大值后进行比较,即可得出结果.【详解】(1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==,515222151343510.4252.5558510.45i ii i i x y x yb x x==-⋅-⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-,故y 关于x 的线性回归方程为 2.51y x =-.(2)因为 2.51y x =-,所以当15x =时36.5y =,即预计需要购买食材36.5袋,因为()()40020,036380,36y y x N C y y y N ⎧-<<∈⎪=⎨≥∈⎪⎩, 所以当36y <时,利润()7004002030020L y y y =--=+, 此时当35y =时,max 300352010520L =⨯+=, 当36y ≥时,由题意可知,剩余的食材只能无偿退还, 此时当36y时,700363803611520L =⨯-⨯=,当37y =时,利润70036.53803711490L =⨯-⨯=,综上所述,食堂应购买36袋食,才能获得最大利润,最大利润为11520元. 【点睛】本题考查线性回归直线方程,考查回归方程的应用,考查学生的数据处理能力以及运算求解能力.考查分类讨论思想,属于中档题.23.(1)0.08,150;(2)88%;(3)第四小组,理由见解析 【解析】试题分析:(1)由频率分布直方图中各小矩形面积之和为1结合面积之比得到第二小组的频率,从而求得样本容量;(2)由频率分布直方图中各小矩形的面积和为1与面积之比可求出达标的频率即达标率;(3)求出前四组的频数即可得到中位数所在的区间. 试题(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为: 又因为频率=所以(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 考点:频率分布直方图 24.(1)6;689;(2) 1.3 1.1y x =-,12人. 【分析】(1)由表格中的数据,利用平均数和方差的公式,即可求解;(2)由表中近五年的数据,利用公式,求得ˆˆ,b a ,求得回归直线方程,代入10x =,即可作出结论. 【详解】(1)由表格中的数据,利用平均数的计算公式,可得2354578101069++++++++=.由方差的公式,可得()()()2222168263610699s ⎡⎤=-+-++-=⎣⎦.(2)由表中近五年的数据知,7x =,8y =,95293i ii x y ==∑,925255i i x ==∑,9592255293578ˆ 1.32555495i ii i i x y xybx x==--⨯⨯===-⨯-∑∑,又a y bx =-,所以8 1.37 1.1a =-⨯=-, 故y 与x 的线性回归方程为 1.3 1.1y x =-, 当10x =时, 1.310 1.111.912y =⨯-=≈,故估计该校2020年参加“北约”“华约”考试而获得加分的学生有12人. 【点睛】本题主要考查了平均数与方差的计算,以及回归直线方程的求解及应用,其中解答中认真审题,根据公式准确计算是解答的关键,着重考查运算与求解能力. 25.(1)约为2万辆;(2)见解析 【分析】(1)利用最小二乘法求y 得关于t 的线性回归方程为0.3208ˆ.0yt =+,再令6t =得到2018年5月份当地该品牌新能源汽车的销量.(2)先分析得到ξ~33,5B ⎛⎫ ⎪⎝⎭,再根据二项分布求ξ的分布列及数学期望()E ξ. 【详解】 (1)易知1234535t ++++==,0.50.61 1.4 1.71.045y ++++==,522222211234555ii t ==++++=∑,218.853 1.040.32555ˆ3b -⨯⨯==-⨯,1.040.320ˆ3.08a=-⨯= 则y 关于t 的线性回归方程为0.3208ˆ.0yt =+, 当6t =时,ˆ 2.00y=,即2018年5月份当地该品牌新能源汽车的销量约为2万辆. (2)根据给定的频数表可知,任意抽取1名拟购买新能源汽车的消费者,对补贴金额的心理预期值不低于3万元的概率为12032005=,由题意可知ξ~33,5B ⎛⎫⎪⎝⎭,ξ的所有可能取值为0,1,2,3ξ的分布列为:()0303328055125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12133236155125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()21233254255125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()30333227355125P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭所以()5E ξ= 【点睛】(1)本题主要考查回归方程的求法,考查二项分布,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是()(1)kkn kn n P k C p p ξ-==-,(0,1,2,3,...k n =).正好是二项式[(1)]n p p -+的展开式的第1k +项.所以记作ξ~(,)B n p ,读作ξ服从二项分布,其中,n p 为参数.26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元. 【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高三(上)调研数学试卷(理科) 一、选择题 1.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=( ) A.[1,2) B.[﹣1,1] C.[﹣1,2) D.[﹣2,﹣1] 2.复数的共轭复数是( ) A. B. C.﹣i D.i 3.方程的根所在的一个区间是( ) A. B. C.(1,2) D. 4.设首项为1,公比为的等比数列{an}的前n项和为Sn,则( ) A.Sn=2an﹣1 B.Sn=3an﹣2 C.Sn=4﹣3an D.Sn=3﹣2an 5.下列函数既是奇函数,又在[﹣1,1]上单调递增的是( ) A.f(x)=|sinx| B.f(x)=ln C.f(x)=(ex﹣e﹣x) D.f(x)=ln(﹣x) 6.已知sin2α=,则cos2(α+)=( ) A. B. C. D. 7.已知平面向量满足,且,则向量的夹角θ为( ) A. B. C. D. 8.已知数列{an}是等差数列,a1=2,其中公差 d≠0,若 a5 是 a3和 a8的等比中项,则S18

=( )

A.398 B.388 C.199 D.189 9.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是( ) A. B. C. D. 10.若函数y=f(x)(x∈R)满足f(x+1)=f(x﹣1),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为( ) A.6 B.7 C.8 D.9 11.北京市为了缓解交通压力实行机动车辆限行政策,每辆机动车周一到周五都要限行一天,周末不限行.某公司有A、B、C、D、E五辆车,保证每天至少有四辆车可以上路行驶.已知:E车周四限行,B车昨天限行,从今天算起,A、C两车连续四天都能上路行驶,E车明天可以上路.由此可知,下列推测一定正确的是( ) A.今天是周六 B.今天是周四 C.A车周三限行 D.C车周五限行 12.已知函数f(x)=ln+,g(x)=ex﹣2,若g(m)=f(n)成立,则n﹣m的最小值为( ) A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设0<θ<,=(sin2θ,cosθ),=(cosθ,1),若∥,则tanθ= . 14.在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC= . 15.已知命题p:∃x∈R,mx2+1≤0,命题q:∀x∈R,x2+mx+1>0,若p∨q为真命题,则实数m的取值范围为 . 16.如图放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:①函数y=f(x)是偶函数;②对任意的x∈R,都有f(x+2)=f(x﹣2)③函数y=f(x)在区间[2,3]上单调递减;④函数y=f(x)的值域是[0,1];⑤f(x)dx=.其中判断正确的序号是 .

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.锐角△ABC的内角A、B,C的对边分别为a,b,c,. (1)求角C的大小; (2)若,△ABC的面积为,求△ABC的周长. 18.在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1

的极坐标方程为ρ=4cosθ,直线l的极坐标方程为ρcos(θ+)=2.

(1)求曲线C1和直线l的交点的极坐标; (2)已知P为曲线C2:(φ为参数)上的一动点,设直线l与曲线C1的交点为A,B,求△PAB面积的最小值. 19.已知函数f(x)=x3+ax2+bx在x=﹣2与x=处都取得极值. (1)求函数f(x)的解析式及单调区间; (2)求函数f(x)在区间[﹣3,2]的最大值与最小值. 20.已知数列{an}的前n项和为Sn,且2Sn=nan+2an﹣1. (1)求数列{an}的通项公式;

(2)若数列的前n项和为Tn,证明:Tn<4. 21.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了80个进行测量,根据所测量的数据画出频率分布直方图如下:

注:尺寸数据在[63.0,64.5)内的零件为合格品,频率作为概率. (Ⅰ)从产品中随机抽取4件,合格品的个数为ξ,求ξ的分布列与期望; (Ⅱ)从产品中随机抽取N件,全是合格品的概率不小于30%,求N的最大值; (Ⅲ)为了提高产品合格率,现提出A,B两种不同的改进方案进行试验.若按A方案进行试验后,随机抽取15件产品,不合格个数的期望是2;若按B方案试验后,抽取25件产品,不合格个数的期望是4,你会选择哪个改进方案? 22.已知函数f(x)=axlnx+b(a,b为实数)的图象在点(1,f(1))处的切线方程为y=x﹣1.

(1)求实数a,b的值及函数(x)的单调区间; (2)设函数g(x)=,证明g(x1)=g(x2)(x1<x2)时,x1+x2>2. 参考答案 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=( ) A.[1,2) B.[﹣1,1] C.[﹣1,2) D.[﹣2,﹣1] 解:由A中不等式变形得:(x﹣3)(x+1)≥0, 解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞), ∵B=[﹣2,2), ∴A∩B=[﹣2,﹣1]. 故选:D. 2.复数的共轭复数是( ) A. B. C.﹣i D.i 解:复数===i,它的共轭复数为:﹣i. 故选:C. 3.方程的根所在的一个区间是( ) A. B. C.(1,2) D. 解:方程方程的根就是f(x)=的零点, 函数是连续函数,是增函数, 可得f()=﹣2+1=﹣1<0,f(1)=l﹣1+2=1>0, 所以f(1)f()<0, 方程根在(,1). 故选:B. 4.设首项为1,公比为的等比数列{an}的前n项和为Sn,则( ) A.Sn=2an﹣1 B.Sn=3an﹣2 C.Sn=4﹣3an D.Sn=3﹣2an 解:由题意可得an=1×=, ∴Sn==3﹣=3﹣2=3﹣2an, 故选:D. 5.下列函数既是奇函数,又在[﹣1,1]上单调递增的是( ) A.f(x)=|sinx| B.f(x)=ln C.f(x)=(ex﹣e﹣x) D.f(x)=ln(﹣x) 解:根据题意,依次分析选项: 对于A,f(x)=|sinx|,为偶函数,不符合题意; 对于B,f(x)=ln,其定义域为(﹣e,e),有f(﹣x)=ln=﹣ln=﹣f(x),为奇函数, 设t==﹣1+,在(﹣e,e)上为减函数,而y=lnt为增函数, 则f(x)=ln在(﹣e,e)上为减函数,不符合题意; 对于C,f(x)=(ex﹣e﹣x),有f(﹣x)=(e﹣x﹣ex)=﹣(ex﹣e﹣x)=﹣f(x),为奇函数, 且f′(x)=(ex+e﹣x)>0,在R上为增函数,符合题意; 对于D,f(x)=ln(﹣x),其定义域为R, f(﹣x)=ln(+x)=﹣ln(﹣x)=﹣f(x),为奇函数,

设t=﹣x=,y=lnt,t在R上为减函数,而y=lnt为增函数, 则f(x)=ln(﹣x)在R上为减函数,不符合题意; 故选:C. 6.已知sin2α=,则cos2(α+)=( ) A. B. C. D. 解:∵sin2α=, ∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=. 故选:A. 7.已知平面向量满足,且,则向量的夹角θ为( ) A. B. C. D. 解:∵; ∴;

∴; 又0≤θ≤π; ∴. 故选:D. 8.已知数列{an}是等差数列,a1=2,其中公差 d≠0,若 a5 是 a3和 a8的等比中项,则S18

=( )

A.398 B.388 C.199 D.189 解:数列{an}是等差数列,a1=2,其中公差 d≠0,∵a5 是 a3和 a8的等比中项, ∴(2+4d)2=(2+2d)(2+7d), 化为d(d﹣1)=0,d≠0. 联立解得:d=1, 则S18=18×2+×1=189. 故选:D. 9.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是( ) A. B. C. D. 解:函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ). ∵图象关于原点对称, ∴φ﹣=kπ,k∈Z 可得:φ=. 当k=0时,可得φ=. 故选:B. 10.若函数y=f(x)(x∈R)满足f(x+1)=f(x﹣1),且x∈[﹣1,1]时,f(x)=1

﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为( ) A.6 B.7 C.8 D.9 解:由题意f(1+x)=f(x﹣1)⇒f(x+2)=f(x),故f(x)是周期函数,T=2, 令h(x)=f(x)﹣g(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g(x)图象,如图所示:

故在区间[﹣5,5]内,函数y=f(x)和y=g(x)图象的交点有8个, 则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为8. 故选:C. 11.北京市为了缓解交通压力实行机动车辆限行政策,每辆机动车周一到周五都要限行一天,周末不限行.某公司有A、B、C、D、E五辆车,保证每天至少有四辆车可以上路行驶.已知:E车周四限行,B车昨天限行,从今天算起,A、C两车连续四天都能上路行驶,E车明天可以上路.由此可知,下列推测一定正确的是( ) A.今天是周六 B.今天是周四 C.A车周三限行 D.C车周五限行

相关文档
最新文档