高一数学必修5不等式易错题及错解分析

合集下载

(易错题)高中数学必修五第三章《不等式》测试卷(含答案解析)

(易错题)高中数学必修五第三章《不等式》测试卷(含答案解析)

一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .63.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.5.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-6.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>7.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .69.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-10.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-11.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.已知实数x y ,,正实数a b ,满足2x y a b ==,且213x y+=-,则2a b +的最小值为__________.14.若实数x ,y 满足约束条件23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则y x x y +的取值范围是______.15.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.16.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.17.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.19.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________. 20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________.三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.22.某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元?23.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x =23(1)b a b+--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值.24.已知关于x 的一元二次不等式2(3)30x m x m -++<. (Ⅰ)若不等式的解集为(2,3)-,求实数m 的值;(Ⅱ)若不等式的解集中恰有两个整数,求实数m 的取值范围.25.已知不等式2320ax x -+>解集为{}1 xx x b <>∣或. (1)求a ,b 的值并求不等式230bx ax --<的解集;(2)解关于x 的不等式2()0ax ac b x bc -++<.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 114114(5)1(52)123131y x y xx y x y ++=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.4.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 114tan 24tan 42sin cos 2tan tan tan x x x x x x x x x x++===+≥⨯=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.5.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233zy x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A , 所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.C【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()13492743433355555x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b +≥ 4= .当且仅当1a b == 时,等号成立.【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.9.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值;当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.10.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩ ∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.二、填空题13.【分析】由条件化简可得利用均值不等式求最小值即可【详解】正实数满足取对数可得所以所以由均值不等式知当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(解析:2【分析】由条件化简可得218a b =,利用均值不等式求最小值即可.【详解】正实数a b ,满足2x y a b ==, 取对数可得log 2,log 2a b x y ==,所以2222212log log log 3a b a b x y+=+==-,所以218a b =,由均值不等式知,22a b +≥=, 当且仅当2a b =,即a =,4b =时等号成立.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】作出可行域利用表示可行域内点与原点连线的斜率求得它的取值范围再根据函数的单调性可得的范围【详解】作出可行域如图内部(含边界)表示出可行域内点与原点连线斜率由已知得所以记由勾形函数性质知在上递 解析:52,2⎡⎤⎢⎥⎣⎦ 【分析】 作出可行域,利用y x 表示可行域内点与原点连线的斜率求得它的取值范围,再根据函数的单调性可得y x x y +的范围. 【详解】作出可行域,如图ABC 内部(含边界),y x 表示出可行域内点与原点连线斜率,由已知得(1,2),(2,1)A B ,2OA k =,12OB k =, 所以1,22y t x ⎡⎤=∈⎢⎥⎣⎦, 1y x t x y t +=+,记1()f t t t =+,由勾形函数性质知()f t 在1,12⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增,1522f ⎛⎫= ⎪⎝⎭,(1)2f =,5(2)2f =,∴5()2,2f t ⎡⎤∈⎢⎥⎣⎦. 故答案为:52,2⎡⎤⎢⎥⎣⎦.15.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 解析:45 【分析】 画出满足条件的平面区域,结合22(4)z x y =++的几何意义以及点到直线的距离求出z 的最小值即可.【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由844541d -+==+45, 故答案为455. 【点睛】 本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.16.1【分析】根据题意分析两圆的圆心与半径由两圆外切可得变形可得:据此可得结合基本不等式的性质分析可得答案【详解】解:根据题意圆其圆心为半径圆其圆心为半径若两圆外切则有变形可得:当且仅当时等号成立故的最 解析:1【分析】根据题意,分析两圆的圆心与半径,由两圆外切可得12||C C R r =+,变形可得:2249a b +=,据此可得22222211a b a b a b +=+,结合基本不等式的性质分析可得答案. 【详解】解:根据题意,圆221:()4C x a y ++=,其圆心1C 为(,0)a -,半径2r,圆222:(2)1C x y b +-=其圆心2C 为(0,2)b ,半径1R =,若两圆外切,则有2212||(0)(20)3C C a b R r =++-=+=,变形可得:2249a b +=, 222222222222222222111111414(4)()(5)(52)1999a b a b a b a b a b a b a b b a b a +=+=++=+++⨯=,当且仅当222a b =时等号成立,故2222a b a b+的最小值为1; 故答案为:1.【点睛】本题考查圆与圆的位置关系,涉及基本不等式的性质以及应用,属于中档题.17.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划 解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2.故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+ 【分析】 根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可. 【详解】 如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭. 当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩时取等号. 所以,a +3c 的最小值为8+43.故答案为:8+43.【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.19.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围. 【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立,只需()2231m f x x x x <-=-+恒成立, 设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-.故答案为:(),1-∞-.【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.20.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x +-的最值,进而即可得到结论.【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x x x x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4. 故答案为:4.【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤. 【分析】(1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围.【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<,所以 2 3x x ==,是方程20x ax b -+=的解由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>,解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭ (2)当3b a =-时,2()30f x x ax a =-+-≥恒成立,则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤.【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立;(2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【分析】设提价后每本杂志的定价为x 元,根据销售总收入等于销售价格乘以销售量,即可得到销售总收入为 2.58000020000.1x x -⎛⎫-⨯⋅ ⎪⎝⎭,再根据题意列出不等式2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,求解即可. 【详解】设提价后每本杂志的定价为x 元,则销售总收入为2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,即2213200x x -+≤ 解得,2.54x ≤≤所以,每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【点睛】本题主要考查函数在生活中的应用,以及一元二次不等式的解法应用,属于基础题. 23.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a -+∞,根据题意,得到2331,[),[16)b a b a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b +=-有意义, 则满足2430x x -+≥,解得1x ≤或3x ≥,即定义域为{|1x x ≤或3}x ≥,又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b +=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞, 所以233116b a b a+--≥-,即13316a b a b +++≤, 又13(3)()103()b a a b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 当且仅当1338a b a b +=+=时取“=”,即a =32b +=或a =,b = 所以103()64b a a b ++≤,即2218a b b a ab a b+=+≤ 所以22a b ab+的最大值为18. 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.24.(Ⅰ)2m =-;(Ⅱ)[0,1)(5,6]⋃.【分析】(1)根据不等式的解集为(2,3)-,得到关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,代入方程求解即可.(2)将不等式2(3)30x m x m -++<,转化为()(3)0x m x --<,然后分3m <和3m >讨论求解.【详解】(1)由题意可知,关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3, 则2(2)2(3)30m m -+++=,整理得5100m +=,解得2m =-;(2)不等式2(3)30x m x m -++<,即为()(3)0x m x --<. ①当3m <时,原不等式的解集为(,3)m ,则解集中的两个整数分别为1、2,此时01m ≤<;②当3m >时,原不等式的解集为(3,)m ,则解集中的两个整数分别为4、5,此时56m <≤.综上所述,实数m 的取值范围是[0,1)(5,6]⋃.【点睛】本题主要考查一元二次不等式的解法以及应用,还考查了分类讨论求解问题的能力,属于中档题.25.(1)12a b =⎧⎨=⎩;31,2⎛⎫- ⎪⎝⎭;(2)答案见解析. 【分析】(1)由已知结合二次不等式的解集端点与二次方程的根的关系即可求解;(2)结合二次不等式的求解对a 进行分类讨论即可求解.【详解】(1)由题意知,1和b 是方程2320ax x -+=的两根, 则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,解得12a b =⎧⎨=⎩ 不等式230bx ax --<即为2230x x --<,解得312x -<<, ∴31,2x ⎛⎫∈- ⎪⎝⎭(2)不等式2()0ax ac b x bc -++<,即为2(2)20x c x c -++<, 即(2)()0x x c --<.①当2>c 时,2x c <<;②当2c <时,2c x <<;③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2xx c <<∣; 当2c <时,原不等式的解集为{}2xc x <<∣; 当2c =时,原不等式的解集为∅.【点睛】本题主要考查了二次方程与二次不等式的关系的应用及含参不等式的求解,体现了分类讨论思想的应用,属于中档题.26.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =- (2)∵不等式的解集为R∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】 解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式 与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。

(易错题)高中数学必修五第三章《不等式》测试卷(有答案解析)(1)

(易错题)高中数学必修五第三章《不等式》测试卷(有答案解析)(1)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .53.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .7 5.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+6.若,x y 满足条件11x yx y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( ) A .2 B .1CD .8.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .65410.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( )A .11a b< B .a 2>b 2C .a 3>b 3D .a b b a>11.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 12.设变量,x y 、满足约束条件236y xx y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .9二、填空题13.已知x ,y 满足条件1030,1x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则32z x y =-+的最小值为___________.14.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________.15.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知0,0a b >>,且33+122a b =++,则2+a b 的最小值为______________.19.已知11()2x x f x e e a --=++只有一个零点,则a =____________. 20.已知正实数x ,y 满足22462x y xy ++=,则2x y +的最小值是_________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元. (1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数2()31f x ax x =+-;(1)若()0f x <的解集为(1,)b -,求()f x 的零点, (2)若()f x 在(1,1)-内恰有1个零点,求a 的取值范围.23.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.24.近年来,某市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,其景区成功创建国家5A 级旅游景区填补了该片区的空白,某投资人看到该市旅游发展的大好前景后,打算在该市投资甲、乙两个旅游项目,根据市场前期调查, 甲、乙两个旅游项目五年后可能的最大盈利率分别为01000和0080,可能的最大亏损率分别为0040和0020,投资人计划投资金额不超过5000万,要求确保亏损不四超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大?25.已知不等式2320ax x -+>解集为{}1 xx x b <>∣或. (1)求a ,b 的值并求不等式230bx ax --<的解集;(2)解关于x 的不等式2()0ax ac b x bc -++<.26.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 4.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x +)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min , 当x >0时,x 9x +≥29x x⋅=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.6.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫---⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2,∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.8.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.10.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 11.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题12.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题13.【分析】作出不等式组所表示的可行域平移直线根据直线在轴上的截距最小找到使得目标函数取得最小值时的最优解代入计算即可【详解】作出不等式组所表示的可行域如下图所示:平移直线当直线经过可行域的顶点时直线在 解析:2-【分析】作出不等式组所表示的可行域,平移直线32z x y =-+,根据直线32z x y =-+在y 轴上的截距最小,找到使得目标函数32z x y =-+取得最小值时的最优解,代入计算即可. 【详解】作出不等式组10301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域如下图所示:平移直线32z x y =-+,当直线32z x y =-+经过可行域的顶点()2,1A 时,直线32z x y =-+在y 轴上的截距最小,此时z 取得最小值,即min 32122z =-⨯+=-.故答案为:2-. 【点睛】 思路点睛:求线性目标函数的最值问题,一般利用平移直线的方法,根据目标函数所对应的直线在坐标轴上的截距取得最值来判断目标函数在何处取得最优解.14.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】 由题得1x yx y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解.【详解】由110,0,1x y x y >>+=, 得1x yx y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++=()2223636x y xy x xy y xy xy +-++++==()236361111xy xy xy xy xy -+==+-≥=,当且仅当6xy =时等号成立,此时33x y ⎧=+⎪⎨=⎪⎩33x y ⎧=-⎪⎨=+⎪⎩则2236x y y xy++的最小值是11.故答案为:11. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必解析:2 【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y xx y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y xx y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由2y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.18.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先 解析:623【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.由题意,设26(2)2(2)z a b a b =++=+++, 又由()32336(2)[(2)2(2)]()9992222a b a b a b a b +++++⋅+=++≥+=+++++,当且仅当()326(2)=22a b a b ++++时,即22)a b +=+时等号成立,即z 的最小值为9+2+a b 的最小值是3.故答案为3. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.19.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】 由函数11()2x x f x e e a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解. 【详解】由题意,函数11()2x x f x ee a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解, 令()11x x g x e e --=+因为110,0x x ee -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-. 故答案为:1-. 【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.20.【分析】由题易得然后由基本不等式可得最后可求得的最小值【详解】将式子变形为即因为所以(当且仅当时等号成立)所以有即故所以则的最小值是故答案为:【点睛】本题考查利用基本不等式求最值考查逻辑思维能力和运【分析】由题易得()2222x y xy +=-,然后由基本不等式可得()()222224x y x y ++≥-,最后可求得2x y +的最小值. 【详解】将式子22462x y xy ++=变形为()2222x y xy ++=,即()2222x y xy +=-,因为0x >,0y >, 所以()()222222222224x y x y x y xy ++⎛⎫+=-≥-=- ⎪⎝⎭(当且仅当2x y =时,等号成立), 所以有()()222224x y x y ++≥-,即()25224x y +≥,故()2825x y +≥,所以2x y +≥,则2x y +的最小值是5.故答案为:5. 【点睛】本题考查利用基本不等式求最值,考查逻辑思维能力和运算求解能力,属于常考题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈. 【分析】(1)根据题意直接列出不等式可求解; (2)由①可得2125x m ≥+,由②可得100325xm x ≤++,分别利用函数单调性和基本不等式即可求解. 【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元, 则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤,4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125xm ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭, 整理得100325xm x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)函数()f x 的零点为11,4-;(2)9[2,4]4a ⎧⎫∈-⋃-⎨⎬⎩⎭. 【分析】(1)由不等式解集与一元二次方程的根的关系得方程的根,由方程根的定义可求参数值,然后解方程可得零点.(2)可利用一元二次方程根的分布分类求解.注意分类0a =和0a ≠,在0a ≠时,()0f x =在(1,1)-上有一个解,还有1-是一个解,1是一个解分别求出另一解判断,另外0∆=时进行检验.从而可得结论.【详解】(1)依题意得方程2310ax x +-=的两根为-1,b , 将1x =-代入方程得4a =,于是方程2310ax x +-=可化为24310x x +-=,解得1x =-或14x =. 所以函数()f x 的零点为11,4-. (2)因为函数2()31f x ax x =+-在(1,1)-内恰有1个零点,所以该函数图象在(1,1)-内与x 轴只有一个公共点.(i )当0a =时,由()31=0f x x =-,得1=(1,1)3x ∈-,故0a =满足题意; (ii )当0a ≠时,①当函数()f x 的图象在x 轴两侧时,则由(1)(1)(4)(2)0f f a a -=-+<, 解得24a -<<,此时24a -<<且0a ≠,满足题意 当2a =-时,1(1,1)2x =∈-,满足题意; 当4a =时,1(1,1)4x =∈-,满足题意. ②当函数()f x 的图象在x 轴同侧时,则由23-4(1)0a ∆=⨯⨯-=, 解得94a =-. 由29()31=04f x x x =+--即2912+4=0x x -解得()21,13x =∈-,故94a =-,满足题意. 综上所述,a 的取值范围是9[2,4]4⎧⎫-⋃-⎨⎬⎩⎭. 【点睛】易错点睛:本题考查一元二次不等式的解集、一元二次方程的根、二次函数的图象之间的关系,掌握三个“二次”的关系是解题关键.利用二次函数图象可得一元二次方程根的分布的知识.要注意根的分布结论都是在开区间(,)a b 有解,而实际解题时还要分类讨论a 或者b 是方程根的情形,否则可能漏解.23.(1)501010y x=--,(0,5)x ∈;(2)75-【分析】(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==,所以ADP Rt CBP ≌,即DP BP y ==, 所以在Rt CBP 中,222+(10)y x x y =--, 所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x=--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=--- 当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x=--++≤-- 即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题. 24.甲乙两项目投资额分别为1000 万元和4000万元 【解析】试题分析:设投资人对甲,乙两个项目分别投资,x y 万元.根据已知条件可列出可行域为5000{0.40.212000,0x y x y x y +≤+≤≥≥,目标函数为0.8z x y =+,画出可行域,根据图像可知目标函数在点()1000,4000处取得最大值. 试题设投资人对甲,乙两个项目分别投资,x y 万元5000{0.40.212000,0x y x y x y +≤+≤≥≥求0.8z x y =+最大值 如图作出可行域当目标函数结果点()1000,4000A 时,0.8z x y =+取得最大值为4200 万元,此时对甲乙两项目投资额分别为1000 万元和4000 万元盈利最大. 25.(1)12a b =⎧⎨=⎩;31,2⎛⎫- ⎪⎝⎭;(2)答案见解析.【分析】(1)由已知结合二次不等式的解集端点与二次方程的根的关系即可求解; (2)结合二次不等式的求解对a 进行分类讨论即可求解. 【详解】(1)由题意知,1和b 是方程2320ax x -+=的两根,则312b a b a⎧=+⎪⎪⎨⎪=⎪⎩,解得12a b =⎧⎨=⎩不等式230bx ax --<即为2230x x --<, 解得312x -<<, ∴31,2x ⎛⎫∈- ⎪⎝⎭(2)不等式2()0ax ac b x bc -++<,即为2(2)20x c x c -++<,即(2)()0x x c --<. ①当2>c 时,2x c <<; ②当2c <时,2c x <<;③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2xx c <<∣; 当2c <时,原不等式的解集为{}2xc x <<∣; 当2c =时,原不等式的解集为∅.【点睛】本题主要考查了二次方程与二次不等式的关系的应用及含参不等式的求解,体现了分类讨论思想的应用,属于中档题.26.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->, ∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。

(易错题)高中数学必修五第三章《不等式》检测题(含答案解析)(1)

(易错题)高中数学必修五第三章《不等式》检测题(含答案解析)(1)

一、选择题1.设x ,y 满足约束条件5010550x x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,且(0,0)z ax by a b =+>>的最大值为1,则56a b+的最小值为( ) A .64B .81C .100D .1212.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .363.若正实数a ,b 满足lg a +lg b =1,则25a b+的最小值为( ) AB .CD .24.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.5.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D6.当02x π<<时,函数21cos 28sin ()sin 2x xf x x++=的最小值为( )A .2B.C .4D.7.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-8.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .19.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .210.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+- C≥D .3322a b ab +≥11.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .3212.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,3二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.16.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.17.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________18.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 19.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 20.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.三、解答题21.(1)已知x 、y 都是正数,若23x y +=,求11x y+的最小值; (2)当k 取何值时,不等式23208kx kx +-<对一切实数x 都成立? 22.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值.23.(1)若0x >,0y >,1x y +=,求证:114x y +≥.(2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m x y+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围. 24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围.25.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围.26.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出可行域,作出目标函数对应的直线,平移该直线得最优解,从而得,a b 的关系式561a b +=,然后用“1”的代换,配凑出积为定值,用基本不等式得最小值. 【详解】作出约束条件表示的可行域,如图,ABC 内部(含边界),作直线直线0ax by += ,z ax by =+中,由于0,0a b >>,ab是直线的纵截距,直线向上平移时,纵截距增大, 所以当直线z ax by =+经过点()5,6时,z 取得最大值, 则561a b +=,所以()56565661306160121b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当111a b ==时,等号成立,故56a b+的最小值为121. 故选:D .【点睛】关键点点睛:本题考查简单的线性规划,考查用基本不等式求最值.解题思路是利用简单的线性规划求得变量,a b 满足的关系式,然后用“1”的代换凑配出定值,再用基本不等式求得最小值.求最值时注意基本不等式的条件:一正二定三相等,否则易出错.2.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.3.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>, ∴252522a b a b+≥⋅=当且仅当2,5a b ==时等号成立. ∴25a b +的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()22a b a b ab a b a b a b a b+-+==-+≥---当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.6.C解析:C 【解析】0,tan 02xx π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 114tan 4tan 42sin cos 2tan tan tan x x x x x x x x x x++===+≥⨯=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x ++=的最小值为4,选C.7.A解析:A 【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.8.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122zy x =-,作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.9.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++6622262644119(5)(52)444a a a a a a a a =++≥+⋅=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.10.D解析:D【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误.详解:332222()()a b ab a b a ab b +-=-+-, 当512b a b -<<有3322a b ab <+, 故D 项错误,其余恒成立:111222,a a a a a a+≥⋅=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时2220a b a b ab a b a b b a b a b ---+≥---+=⇒-≥-, 当a b <时0a b a b ->>-,选D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力. 11.B解析:B【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.12.C解析:C【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】 作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点,因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈,所以z 的最大值为4,故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义:(1)y b z x a -=-:表示点(),x y 与点(),a b 连线的斜率; (2)()()22z x a y b =-+-(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=22A B +倍. 15.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=,则2019x >,2020y >且4042x y +=,∴1()14042x y +=,∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭ 11112222y x y x x y x y⎛⎫=+++⋅⋅= ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【详解】由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由22 22x y x y -⎧⎨+⎩== ,得A (1,0). 代入目标函数z=x-2y ,得z=1-2×0=1,故答案为1.【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.17.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最 解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案.【详解】根据题意,令()2f x x mx m ++=, 若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭, 实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题. 18.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时 解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10a k b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b a a b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b +=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图.由100y x y -=⎧⎨-=⎩ 可得点(1,1)B . 当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=.所以28282828()()101018b a b a a b a b a b a b a b +=++=++≥+⨯=. 当且仅当2810,0b a a b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号. 所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b a a b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 19.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C , 故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.20.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规 解析:1,22⎡⎤⎢⎥⎣⎦【分析】 作出可行域,y x表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解.【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以y x 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题. 三、解答题21.(1)3223+;(2)30k -<≤. 【分析】(1)将代数式()123x y +与11x y +相乘,展开后利用基本不等式可求得11x y +的最小值; (2)分0k =和0k ≠两种情况讨论,结合题意可得出关于实数k 的不等式,由此可求得实数k 的取值范围.【详解】(1)已知x 、y 都是正数且23x y +=, 所以,()11111121232223323333x y x y x y y y x y y x x x ⎛⎛⎫⎛⎫++=++≥+⋅= ⎪ ⎪ ⎝⎝=+⎝+⎭⎭, 当且仅当2x =时,等号成立, 因此,11x y +322+; (2)由于不等式23208kx kx +-<对一切实数x 都成立. ①当0k =时,可得308-<,合乎题意;②当0k ≠时,可得2030k k k <⎧⎨∆=+<⎩,解得30k -<<. 综上所述,实数k 的取值范围是30k -<≤.【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解:设()()20f x ax bx c a =++≠ ①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩; ②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 22.(1) m =2 (2) ab +bc 的最大值为2【解析】试题分析:(1)根据绝对值内的零点,分类讨论,去掉绝对值符号,求出函数的最大值,即可得到m .(2)利用重要不等式求解ab+bc 的最大值.(1)当x ≤-1时,f (x )=3+x ≤2;当-1<x <1时,f (x )=-1-3x <2;当x ≥1时,f (x )=-x -3≤-4.故当x =-1时,f (x )取得最大值2,即m =2.(2)因为a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ),当且仅当a =b =c =1时取等号,所以ab +bc ≤22222a b c ++ =2,即ab +bc 的最大值为2. 23.(1)见解析;(2)(,4)-∞.【详解】试题分析:(1)第(1)问,利用常量代换和基本不等式证明. (2)第(2)问,利用基本不等式求解.试题(1)证明:∵1,0,0x y x y +=>>∴0,0y x x y >> ∴11224x y x y y x x y x y x y+++=+=++≥+= 当且仅当12x y ==时,等号成立. (2)因为,,,a b x y 为正实数,所以()a b ay bx x y a b a b x y x y ⎛⎫+⋅+=+++≥++≥= ⎪⎝⎭ 4=,当且仅当a b =,ay bx x y=,即a b =,x y =时等号成立,故只要4m <即可,所以实数m 的取值范围是(),4-∞24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)1或3;(2)02a <<.【分析】(1)首先根据分段函数求得(0)1f =,然后根据2a与1的大小关系分类计算(1)f ,由(1)1f =求得a 值; (2)()0f x >恒成立,转化两个二次函数在某个区间上大于0恒成立,即当2x a <时,210x ax -+>恒成立和2x a ≥时,230x ax +->恒成立,两者结合即得. 【详解】解:(1)因为0a >,所以20a >,从而()01f =. 当21>a 即02a <<时,()()()01111f f f a ==-+=,解得1a =,符合; 当21a≤即2a ≥时,()()()01131f f f a ==+-=,解得3a =,符合. 所以a 的值为1或3.(2)因为()f x 的图象在x 轴的上方,所以对任意的x ∈R ,()0f x >恒成立. ①当2x a<时,210x ax -+>恒成立,其中0a >. 1︒ 当22a a <即02a <<时,则()2min 4024a a f x f -⎛⎫==> ⎪⎝⎭,解得02a <<. 2︒ 当22a a ≥即2a ≥时,则224210f a a aa ⎛⎫=-⨯+≥ ⎪⎝⎭,解得02a <≤,所以2a =. 所以02a <≤.②当2x a≥时,230x ax +->恒成立,其中0a >. 则()2min 22230f x f a a a a ⎛⎫⎛⎫⎛⎫==+⨯-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得02a <<. 综上,02a <<.【点睛】本题考查分段函数,考查不等式恒成立问题,解题关键是转化为二次函数大于0在某个区间上恒成立,结合二次函数知识易得.26.(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽.【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x 米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<; (2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.。

(易错题)高中数学必修五第三章《不等式》检测题(包含答案解析)(3)

(易错题)高中数学必修五第三章《不等式》检测题(包含答案解析)(3)

一、选择题1.已知()()22log 1log 24a b -++=,则+a b 的最小值为( ) A .8B .7C .6D .32.若实数x ,y 满足约束条件403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1B .20C .28D .323.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+4.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.5.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-6.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .47.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,118.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .329.下列函数中最小值为4 的是( ) A .4y x x=+B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+10.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .411.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .212.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-二、填空题13.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.14.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.15.若x ,y 满足约束条件210,10,2,x y x y x +-≥⎧-+≥≤⎪⎨⎪⎩则3z x y =-的最小值为______.16.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________.19.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.20.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.22.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.23.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 24.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 25.已知2()(1)1f x ax a x =+-- (1)若()0f x >的解集为11,2⎛⎫-- ⎪⎝⎭,求关于x 的不等式301ax x +≤-的解集; (2)解关于x 的不等式()0f x ≥.26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值. 【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦, 所以,()()1216a b -+=且有10a ->,20b +>, 由基本不等式可得()()()()122128a b a b -++≥-+=,所以,7a b +≥,所以(1)(2)16a b -+=,且10a ->,20b +>, 当且仅当124a b -=+=时等号成立. 因此,+a b 的最小值为7. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】画出可行域,向上平移基准直线320x y +=到可行域边界的位置,由此求得目标函数的最大值. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域,如下图所示的阴影部分:其三角形区域(包含边界),由40340x y x y -+=⎧⎨--=⎩得点(4,8)A ,由图得当目标函数=3+2z x y 经过平面区域的点(4,8)A 时,=3+2z x y 取最大值max 342828z =⨯+⨯=.故选:C.【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133a b --==时等号成立,故12a b +的最小值为843+ 故选:D. 【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()22a b a b ab a b a b a b a b+-+==-+≥---当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b +的最小值. 【详解】由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数,所以,()141141419552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.7.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.9.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .10.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.11.D解析:D 【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值. 【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D. 【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.二、填空题13.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点 解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.14.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令y t x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值. 【详解】由43040x y x y -+=⎧⎨+-=⎩解得:13575x y ⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A ⎛⎫ ⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B ,y x 表示可行域内的点与原点连线的斜率,所以OA OB yk k x ≤≤, 775131305OAk -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦,所以22111222x y xy t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t =时,1713109213791y ⎛⎫=+=⎪⎝⎭, 当75t=时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53,故答案为:53. 【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a az ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)2222Ax By C z Ax By C A B A B++=++=+⋅+表示的是可行域内的点(),x y 到直线0Ax By C ++=的距离的22A B +倍.15.【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:由约束条件作出可行域如图化目标函数为由图可知当直线过时直线在轴上的截距最大有最小 解析:1-【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件210102x y x y x +-⎧⎪-+⎨⎪⎩作出可行域如图,化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z =-过(0,1)A 时, 直线在y 轴上的截距最大,z 有最小值为1-. 故答案为:1-. 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.16.1【分析】根据题意分析两圆的圆心与半径由两圆外切可得变形可得:据此可得结合基本不等式的性质分析可得答案【详解】解:根据题意圆其圆心为半径圆其圆心为半径若两圆外切则有变形可得:当且仅当时等号成立故的最解析:1 【分析】根据题意,分析两圆的圆心与半径,由两圆外切可得12||C C R r =+,变形可得:2249a b +=,据此可得22222211a b a b a b+=+,结合基本不等式的性质分析可得答案.【详解】解:根据题意,圆221:()4C x a y ++=,其圆心1C 为(,0)a -,半径2r ,圆222:(2)1C x y b +-=其圆心2C 为(0,2)b ,半径1R =,若两圆外切,则有12||3C C R r =+=,变形可得:2249a b +=,2222222222222211111141(4)()(5)(521999a b a b a b a b a b a b b a +=+=++=+++=,当且仅当222a b =时等号成立,故2222a b a b+的最小值为1;故答案为:1. 【点睛】本题考查圆与圆的位置关系,涉及基本不等式的性质以及应用,属于中档题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y xx y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b aa b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b aa b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图.由10y x y -=⎧⎨-=⎩ 可得点(1,1)B . 当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=.所以28282828()()101018b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 19.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然解析:16 【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移, 当直线经过A 时,z 最大 由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =.故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.20.1【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案【详解】画出不等式组对应的可行域如图所示由可得数形结合可得当直线过A 时直线在y解析:1 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【详解】画出不等式组对应的可行域,如图所示,由3z x y =-可得3y x z =-, 数形结合可得当直线3y x z =-过A 时,直线在y 轴上的截距最大,z 有最小值,联立1030x y x y -+=⎧⎨+-=⎩,解得A (1,2),此时z 有最小值为3×1﹣2=1. 故答案为:1【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或13t --= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值; (2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可. 【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=- 又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++,所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=-0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=, 由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-. (3) 因为函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根, 因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时,2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根,只有()21682102021t t tx t⎧=+-=⎪⎨=>⎪-⎩对解得:t =,综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或; 当0m =时,不等式的解集为{}3x x -;当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭.点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏.23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x=-在区间[]1,2上的最大值求解即可. 【详解】(1)由题意得()2102af x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤,解得44a -≤≤,∴实数a 的取值范围为[]4,4-. (2)由题意得[]21,2,122ax x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-. 【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.24.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解. 【详解】(1)由2y <得2430x x -+<,即13x <<, 所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<, 由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<, 所以24m <<,所以实数m 的取值范围为()2,4. 【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.25.(1)3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2)当0a =时,解集为(,1]-∞-,当0a >时,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭,当1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦,当1a =-时,解集为{}1-,当10a -<<时,解集为1,1a⎡⎤-⎢⎥⎣⎦.【分析】(1)根据不等式的解与方程的根的关系,利用韦达定理列出方程组,求得a 的值,代入求得不等式的解集.(2)对参数a 分情况讨论,分别求得不等式的解集. 【详解】解:(1)由题意得11121112a a a -⎧--=-⎪⎪⎨-⎛⎫⎪-⨯-=⎪⎪⎝⎭⎩,解得2a =-,故原不等式等价于2301x x -+-,即(23)(1)010x x x --⎧⎨-≠⎩所以不等式的解集为3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭. (2)当0a =时,原不等式可化为10x +≤,解集为(,1]-∞-;当0a >时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭;当0a <时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭, 当11a >-,即1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦; 当11a=-,即1a =-时,解集为{}1-; 当11a <-,即10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查一元二次不等式的解法及分式不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-, 解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =. 所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。

(易错题)高中数学必修五第三章《不等式》检测题(含答案解析)(2)

(易错题)高中数学必修五第三章《不等式》检测题(含答案解析)(2)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .953.若正实数a ,b 满足lg a +lg b =1,则25a b+的最小值为( ) A .2B .22C .102D .24.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( ) A .1[13)2B .1[,13)4C .513) D .1[,13)56.已知x ,y 满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤7.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,39.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b < B .a 2>b 2 C .a 3>b 3 D .a b b a> 10.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .811.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .212.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |二、填空题13.0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.14.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.15.已知对满足4x y xy +=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为___________.16.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.17.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.18.若x,y满足约束条件10,20,220,x yx yx y-+≤⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为______.19.已知x,y是正数,121 x y+=,则21x yxy++的最小值为________.20.若对定义域内任意x,都有()()f x a f x+>(a为正常数),则称函数()f x为“a 距”增函数.若()3144f x x x=-+,x∈R是“a距”增函数,则a的取值范围是________.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A和B.已知1毫升营养液A中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A和营养液B各多少毫升?该病人每天所需的营养液最低费用是多少元?22.已知函数2()31f x ax x=+-;(1)若()0f x<的解集为(1,)b-,求()f x的零点,(2)若()f x在(1,1)-内恰有1个零点,求a的取值范围.23.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x(米),外周长(梯形的上底BC与两腰长的和)为y (米).(1)求y关于x的函数关系式,并指出其定义域;(2)当防洪堤的腰长x为多少米时,断面的外周长y最小?求此时外周长的值.24.已知函数()243f x ax ax=--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.25.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅- ⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).26.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C ,250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>, ∴252522a b a b+≥⋅=当且仅当2,5a b ==时等号成立. ∴25a b +的最小值为2. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.D解析:D 【详解】根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=22001521⨯+-=+, O 与(2,3)C 222313+= ∵可行域不包含(2,3)C∴21135r ≤<,即22x y +的取值范围是1[,13)5 故选:D 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.6.D解析:D 【详解】作出满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩的可行域如图所示:平移直线20x y +=到点1(1,)3A 时,2x y +有最小值为73∵2x y m +≥恒成立 ∴min (2)m x y ≤+,即73m ≤ 故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.9.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 10.C解析:C 【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.11.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.12.C解析:C【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.二、填空题13.【分析】由可得然后利用基本不等式可求出而不等式恒成立等价于小于等于最小值从而可求出的范围【详解】解:因为所以当且仅当即时取等号因为不等式恒成立所以小于等于最小值所以故答案为:【点睛】易错点睛:利用基解析:32m ≤ 【分析】 由21a b +=可得1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭322a b b b a b+=+++,然后利用基本不等式可求出11322b a b +≥+1102m b a b+-≥+恒成立,等价于m 小于等于112b a b ++最小值,从而可求出m 的范围 【详解】解:因为21a b +=,所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭1122a b b b a b +=++++ 322a b b b a b+=+++333222≥+=+=+当且仅当2a b bb a b +=+,即1)a b =时,取等号, 因为不等式1102m b a b+-≥+恒成立, 所以m 小于等于112b a b++最小值,所以32m ≤,故答案为:32m ≤ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5. 【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.15.【分析】利用基本不等式求得的取值范围对不等式分离常数结合函数单调性求得的取值范围【详解】依题意则当且仅当时等号成立由为正实数得令在上递增所以时有最小值所以故答案为:【点睛】利用基本不等式求最值要注意 解析:829a ≤【分析】利用基本不等式求得x y +的取值范围,对不等式22210x xy y ax ay ++--+≥分离常数a ,结合函数单调性求得a 的取值范围.【详解】依题意4x y xy +=,则141y x+=,()144559x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4,26x yx y y x===时等号成立. 由22210x xy y ax ay ++--+≥,,x y 为正实数得()()210x y a x y +-++≥,1a x y x y≤+++, 令9t x y =+≥,1t t +在[)9,+∞上递增,所以9t =时1t t +有最小值182999+=, 所以829a ≤故答案为:829a ≤ 【点睛】利用基本不等式求最值,要注意掌握“1”的代换的方法.16.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.17.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值. 【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示,目标函数3yx +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x y x +-=⎧⎨=⎩,得172x y =⎧⎪⎨=⎪⎩即71,2A ⎛⎫⎪⎝⎭所以此时斜率为 ()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.18.1【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则表示直线在轴的截距当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划问题意在考查学生的解析:1 【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =+,则y x z =-+,z 表示直线在y 轴的截距,当直线过点()0,1时,即0,1x y ==时,z 有最大值为1. 故答案为:1.【点睛】本题考查了线性规划问题,意在考查学生的应用能力,画出图像是解题的关键.19.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果. 【详解】由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++, 由12212x y xy=+≥ 得8xy ≥,当且仅当24x y ==时取等号,所以有1108xy <≤,19118xy <+≤,18191xy ≥+, 所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号,故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.20.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.三、解答题21.(1)不符合,理由见解析;(2)推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元. 【分析】(1)根据题意,由微量元素α的摄入量控制在[]300,330计算营养液B 的服用量必须控制在[]20,22,此时β的摄入量在[]400,440,不符合;(2)根据题意,建立线性规划模型:54z x y =+,其中,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,利用线性规划求最值.解:(1)若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素α的摄入量控制在[]300,330(单位:微克),营养液B 的服用量必须控制在[]20,22(单位:毫升),此时相应微量元素β的摄入量在[]400,440(单位:微克),不符合医学建议. 另解:“若该病人每天只吃单价较便宜的营养液B ,则为了将微量元素β的摄入量控制在[]250,280(单位:微克),营养液B 的服用量必须控制在[]12.5,14(单位:毫升),此时相应微量元素α的摄入量在[]187.5,210(单位:微克),不符合医学建议”(2)设该病人每天需服用x 毫升营养液A ,y 毫升营养液B , 则每天的营养液费用为54z x y =+,由题意,x y 满足300301533025010202800,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩,即20222252280,0x y x y x y ≤+≤⎧⎪≤+≤⎨⎪≥≥⎩可行域如下图所示把54z x y =+变形为4415y x z =-+,得到斜率为54-,在y 轴上截距为14z 的一族平行直线.由图可以看出,当直线4415y x z =-+经过直线220x y +=和直线225x y +=的交点M 时,截距14z 最 小,此时z 最小.解方程组220225x y x y +=⎧⎨+=⎩,得点M 为()5,10, ∴min 545541065z x y =+=⨯+⨯=元,答:推荐病人每天服用5毫升营养液A ,服用10毫升营养液B ,既能符合医学建议又能使每天的营养液费用最少.病人每天服用营养液的最低费用为65元.数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: (1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型; (2)线性规划型应用性问题解题的关键是正确的建立线性规划模型. 22.(1)函数()f x 的零点为11,4-;(2)9[2,4]4a ⎧⎫∈-⋃-⎨⎬⎩⎭.【分析】(1)由不等式解集与一元二次方程的根的关系得方程的根,由方程根的定义可求参数值,然后解方程可得零点.(2)可利用一元二次方程根的分布分类求解.注意分类0a =和0a ≠,在0a ≠时,()0f x =在(1,1)-上有一个解,还有1-是一个解,1是一个解分别求出另一解判断,另外0∆=时进行检验.从而可得结论.【详解】(1)依题意得方程2310ax x +-=的两根为-1,b , 将1x =-代入方程得4a =,于是方程2310ax x +-=可化为24310x x +-=,解得1x =-或14x =. 所以函数()f x 的零点为11,4-. (2)因为函数2()31f x ax x =+-在(1,1)-内恰有1个零点,所以该函数图象在(1,1)-内与x 轴只有一个公共点.(i )当0a =时,由()31=0f x x =-,得1=(1,1)3x ∈-,故0a =满足题意; (ii )当0a ≠时,①当函数()f x 的图象在x 轴两侧时,则由(1)(1)(4)(2)0f f a a -=-+<, 解得24a -<<,此时24a -<<且0a ≠,满足题意 当2a =-时,1(1,1)2x =∈-,满足题意; 当4a =时,1(1,1)4x =∈-,满足题意. ②当函数()f x 的图象在x 轴同侧时,则由23-4(1)0a ∆=⨯⨯-=, 解得94a =-. 由29()31=04f x x x =+--即2912+4=0x x -解得()21,13x =∈-,故94a=-,满足题意.综上所述,a的取值范围是9 [2,4]4⎧⎫-⋃-⎨⎬⎩⎭.【点睛】易错点睛:本题考查一元二次不等式的解集、一元二次方程的根、二次函数的图象之间的关系,掌握三个“二次”的关系是解题关键.利用二次函数图象可得一元二次方程根的分布的知识.要注意根的分布结论都是在开区间(,)a b有解,而实际解题时还要分类讨论a或者b是方程根的情形,否则可能漏解.23.(1)1832,(26)2xy BC x xx=+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x=,182xBCx=-,结合限制条件求出定义域26x≤<,从而得到y关于x的函数关系式()2由()1得1832xyx=+,运用基本不等式求出结果【详解】(1)()12AD BC h=+,其中2,2xAD BC BC x h x=+⋅=+=∴182xBCx=-由,26182h xxxBCx⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得∴1832,(26)2xy BC x xx=+=+≤<.(2)1832xyx=+≥=当且仅当[)1832,62xxx==即时等号成立∴外周长的最小值为.【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件24.(1)()1,3;(2)3,04⎡⎤-⎢⎥⎣⎦.【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3.(2)①当0a =时,()30f x =-≤恒成立;②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<. 综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.25.(1)3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65【分析】(1)根据已知条件列出关系式,即可得出答案;(2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544k x x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004k k x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】(1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204k k x x =---+, 即3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004k k x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+, 令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x m m ++++==+++, 由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.26.(1) 8; (2)[]2,0-.【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0].【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.。

(易错题)高中数学必修五第三章《不等式》检测卷(包含答案解析)(4)

(易错题)高中数学必修五第三章《不等式》检测卷(包含答案解析)(4)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.已知实数,x y 满足条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则2z x y =+的最大值是( )A .0B .3C .4D .54.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D 26.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .17.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,118.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( )A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 10.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .211.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<12.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- C.720+ D.720-二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.15.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.16.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____.19.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.20.已知二次函数2()f x ax bx c =++,满足940a c -<,对任意的x ∈R 都有()0f x >恒成立,则12(2)2(1)(0)⎛⎫ ⎪⎝⎭-+f f f f 的取值范围是_________. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠. (1)若不等式()0f x >的解集为(1,3)-,求,a b 的值; (2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元?23.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围. 24.已知关于x 的一元二次不等式2(3)30x m x m -++<. (Ⅰ)若不等式的解集为(2,3)-,求实数m 的值;(Ⅱ)若不等式的解集中恰有两个整数,求实数m 的取值范围. 25.已知2()2(2)f x x a x a =-++,a R ∈. (1)解关于x 的不等式()0f x >;(2)若方程()1f x x =+有两个正实数根1x ,2x ,求2112x x x x +的最小值. 26.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x ⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.C解析:C 【分析】画出满足条件的目标区域,将目标函数化为斜截式2y x z =-+,由直线方程可知,要使z 最大,则直线2y x z =-+的截距要最大,结合可行域可知当直线2y x z =-+过点A 时截距最大,因此,解出A 点坐标,代入目标函数,即可得到最大值. 【详解】画出满足约束条件202035x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩的目标区域,如图所示:由2z x y =+,得2y x z =-+,要使z 最大,则直线2y x z =-+的截距要最大,由图可知,当直线2y x z =-+过点A 时截距最大,联立20350x y x y -=⎧⎨+-=⎩,解得(1,2)A , 所以2z x y =+的最大值为:1224⨯+=, 故选::C. 【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a ca a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式Ax By C++≥转化为y kx b≤+(或y kx b≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.6.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122zy x=-过点C时,直线122zy x=-的截距最大,此时z最小,420xx y=⎧⎨--=⎩,解得()4,2A.代入目标函数2z x y=-,得4220z=-⨯=,∴目标函数2z x y=-的最小值是0.故选:C.【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.7.D解析:D【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .9.C解析:C 【解析】根据题意,依次分析选项:对于A ,当2a =,2b =-时,11a b>,故A 错误;对于B ,当1a =,2b =-时,22a b <,故B 错误;对于C ,由不等式的性质可得C 正确;对于D ,当1a =,1b =-时, a bb a=,故D 错误;故选C. 10.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.11.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的12.C解析:C 【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值. 【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点, 可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b 156-=,a =720+, 故选:C . 【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++= 则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值.【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b c b c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.15.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78 【分析】 根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示,目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大 联立2801x y x +-=⎧⎨=⎩,得172x y =⎧⎪⎨=⎪⎩即71,2A ⎛⎫⎪⎝⎭所以此时斜率为 ()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.16.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出 解析:8【解析】由题意可得:()2111821211161102111029,a b a b a b a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛≥+ ⎝= 则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题 解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可. 【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤. 故答案为:3,32⎡⎤-⎢⎥⎣⎦ 【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+=⎪⎝⎭, 当且仅当9b a a b=,即3a b =时等号成立. 所以12m ≤故答案为:(],12-∞【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.19.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划 解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2.故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.20.【分析】用abc 把各函数值表示出来再由已知条件得到abc 之间的关系进而得到不等式恒成立即可求范围【详解】∵∴又由二次函数对任意的都有恒成立知:而∴故∴令即∴若有即可而在上无最大值无最小值但∴故答案为 解析:1(,)2+∞ 【分析】用a 、b 、c 把各函数值表示出来,再由已知条件得到a 、b 、c 之间的关系,进而得到不等式恒成立,即可求范围【详解】 ∵1(0),(),(1),(2)42242a b f c f c f a b c f a b c ==++=++=++ ∴1()2412242(2)2(1)(0)422()884a b f c a b c b c f f f a b c a b c c a a+++++===+-+++-+++ 又由二次函数2()f x ax bx c =++对任意的x ∈R 都有()0f x >恒成立知:2400b ac a ⎧∆=-<⎨>⎩,而940a c -< ∴922,4c ac b ac a -<<>,故2c b c a a a -<< ∴12122422c c b c c c a a a a a++>>-32c t a => 即22222422t t b c t t a ++>>- ∴22111211()()228422b c t t a ++>+>-,若221111()(),()()2222f t tg t t =+=-有max min 12()()84b c f t g t a+>+>即可,而在3,2()t ∈+∞上()f t 无最大值,()g t 无最小值但31()()22g t g >=∴1()12(2)2(1)(0)2f f f f >-+ 故答案为:1(,)2+∞【点睛】本题考查了一元二次函数、一元二次不等式以及一元二次方程根与系数关系,首先由各函数值的表达式代入目标式并化简,再由一元二次方程根与系数关系确定系数间的不等关系,进而构造一元二次函数,根据不等式恒成立,求目标式范围 三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16. 【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值.【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-, 1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩. (2)由于()12f =,0a >,0b >,则可知232a b +-+=,得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b a a b=且1a b +=,即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立, 所以19a b+的最小值为16. 【点睛】 易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【分析】设提价后每本杂志的定价为x 元,根据销售总收入等于销售价格乘以销售量,即可得到销售总收入为 2.58000020000.1x x -⎛⎫-⨯⋅ ⎪⎝⎭,再根据题意列出不等式2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,求解即可. 【详解】设提价后每本杂志的定价为x 元,则销售总收入为2.58000020002000000.1x x -⎛⎫-⨯⋅≥ ⎪⎝⎭,即2213200x x -+≤ 解得,2.54x ≤≤所以,每本杂志的定价不低于2.5元且不超过4元时,提价后的销售总收入不低于20万元.【点睛】本题主要考查函数在生活中的应用,以及一元二次不等式的解法应用,属于基础题. 23.(1) 8; (2)[]2,0-.【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0].【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.24.(Ⅰ)2m =-;(Ⅱ)[0,1)(5,6]⋃.【分析】(1)根据不等式的解集为(2,3)-,得到关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,代入方程求解即可.(2)将不等式2(3)30x m x m -++<,转化为()(3)0x m x --<,然后分3m <和3m >讨论求解.【详解】(1)由题意可知,关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3, 则2(2)2(3)30m m -+++=,整理得5100m +=,解得2m =-;(2)不等式2(3)30x m x m -++<,即为()(3)0x m x --<. ①当3m <时,原不等式的解集为(,3)m ,则解集中的两个整数分别为1、2,此时01m ≤<;②当3m >时,原不等式的解集为(3,)m ,则解集中的两个整数分别为4、5,此时56m <≤.综上所述,实数m 的取值范围是[0,1)(5,6]⋃.【点睛】本题主要考查一元二次不等式的解法以及应用,还考查了分类讨论求解问题的能力,属于中档题.25.(1)答案见解析;(2)6.【分析】(1)根据函数2()2(2)f x x a x a =-++的解析式,可将()0f x >化为(2)(1)0x a x -->,分类讨论可得不等式的解集.(2)由方程()1f x x =+有两个正实数根1x ,21x a ⇒>,利用韦达定理可得2222211212121212123()()21422141a x x x x x x x x a x x x x x x a a +++--+===-=+--,再结合均值不等式即可. 【详解】(1)由()0f x >得(2)(1)0x a x -->,当2a >时,原不等式的解集为(-∞,1)(2a ⋃,)+∞, 当2a =时,原不等式的解集为{|1}x x ≠,当2a <时,原不等式的解集为(-∞,)(12a ⋃,)+∞; (2)方程()1f x x =+有两个正实数根1x ,2x ,等价于22(3)10x a x a -++-=有两个正实数根1x ,2x ,∴()()2121238103012102a a a x x a a x x ⎧⎪=+--≥⎪+⎪+=>⇒>⎨⎪-⎪=>⎪⎩, 则2222211212121212123()()211622[(1)]21212a x x x x x x x x a a x x x x x x a +++-+===-=-++--12?62≥+= 当且仅当5a =时取等号,故2112x x x x +的最小值为6. 【点睛】本题考查了二次函数的性质、解含参数一元二次不等式、韦达定理、均值不等式,属于综合题.26.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。

(易错题)高中数学必修五第三章《不等式》检测(包含答案解析)(2)

(易错题)高中数学必修五第三章《不等式》检测(包含答案解析)(2)

一、选择题1.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,22.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .363.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .44.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1- 5.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+6.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( )A.1[2B .1[,13)4C. D .1[,13)57.已知x ,y 满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤8.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-9.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .210.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( ) A .254B .499C .14425D .2254911.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,11 12.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14x =______. 15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.17.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 18.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 19.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.20.已知函数()21f x x x =-+,若在区间[]1,1-上,不等式()2f x x m >+恒成立,则实数m 的取值范围是___________.三、解答题21.已知函数()()212log 1f x x =+,()26g x x ax =-+. (1)若关于x 的不等式()0g x <的解集为{}|23x x <<,当1x >时,求()1g x x -的最小值;(2)若对任意的1[1,)x ∈+∞、2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.22.某地要建造一条防洪堤,其横断面为等腰梯形,腰与底边所成的角为60°,考虑到防洪堤的坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米,记防洪堤横断面的腰长为x (米),外周长(梯形的上底BC 与两腰长的和)为y (米).(1)求y 关于x 的函数关系式,并指出其定义域;(2)当防洪堤的腰长x 为多少米时,断面的外周长y 最小?求此时外周长的值.23.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1. 24.已知函数2()21f x mx nx =++.(1)若不等式()0f x ≤的解集为[]1,2,求m ,n ;(2)设()0{|}A x f x =≥,且1,2A A -∈∉,求3m n +的取值范围. 25.已知2()(1)1f x ax a x =+-- (1)若()0f x >的解集为11,2⎛⎫-- ⎪⎝⎭,求关于x 的不等式301ax x +≤-的解集; (2)解关于x 的不等式()0f x ≥. 26.解关于x 的不等式:()2230x a ax a-++>.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 2.A解析:A 【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解. 【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166zy x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值,又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A ,所以目标函数的最大值为666430z x y =+=+⨯=. 故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距zb的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解; (3)斜率型:形如y bz x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解.3.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z aa ⎛⎫== ⎪++⎝⎭, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.4.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x +)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min ,当x >0时,x 9x +≥=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.6.D解析:D 【详解】根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=22001521⨯+-=+, O 与(2,3)C 222313+= ∵可行域不包含(2,3)C∴21135r ≤<,即22x y +的取值范围是1[,13)5 故选:D 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7.D解析:D 【详解】作出满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩的可行域如图所示:平移直线20x y +=到点1(1,)3A 时,2x y +有最小值为73∵2x y m +≥恒成立 ∴min (2)m x y ≤+,即73m ≤ 故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.8.C解析:C 【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可. 【详解】画出约束条件所表示的平面区域,如图所示, 由23z x y =-得到233z y x =-, 平移直线233zy x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A ,所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.9.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++6622262644119(5)(52)444a a a a a a a a =++≥+⋅=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.10.C解析:C 【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值. 【详解】 由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩.画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭.故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题.11.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.12.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩则()32611f x x x x c =+++所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y xx y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果. 【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立.故答案为:7. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.4【分析】将所给式子变形为然后利用基本不等式求解即可【详解】因为所以当且仅当即时等号成立故答案为:4【点睛】关键点睛:此题的解题关键是将所给式子变形为从而满足基本不等式成立的条件最后计算求解解析:4 【分析】11=+-,然后利用基本不等式求解即可. 【详解】11≥,111615=-≥=-=, 1=4x =时,等号成立. 故答案为:4. 【点睛】11,从而满足基本不等式成立的条件,最后计算求解.15.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦, ∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.16.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 解析:45【分析】画出满足条件的平面区域,结合22(4)z x y =++的几何意义以及点到直线的距离求出z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+45, 故答案为455. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.17.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案. 【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭,实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题.18.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.19.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题 解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围. 【详解】作出可行域,如图所示cos 3OA OP z OA AOP AOP OP⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-. 【点睛】本题考查简单的线性规划和向量的投影,属于中档题.20.【分析】由参变量分离法得出对任意的恒成立利用二次函数的基本性质可求得函数在区间上的最小值进而可求得实数的取值范围【详解】要使在区间上不等式恒成立只需恒成立设只需小于在区间上的最小值因为所以当时所以所 解析:(),1-∞-【分析】由参变量分离法得出231m x x <-+对任意的[]1,1x ∈-恒成立,利用二次函数的基本性质可求得函数()231g x x x =-+在区间[]1,1-上的最小值,进而可求得实数m 的取值范围.【详解】要使在区间[]1,1-上,不等式()2f x x m >+恒成立, 只需()2231m f x x x x <-=-+恒成立,设()231g x x x =-+,只需m 小于()y g x =在区间[]1,1-上的最小值,因为()22353124g x x x x ⎛⎫=-+=-- ⎪⎝⎭,所以当1x =时,()()min 11g x g ==-, 所以1m <-,所以实数m 的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题考查利用二次不等式在区间上恒成立求参数,考查了参变量分离法的应用,考查计算能力,属于中等题.三、解答题21.(1)3(2)112a -≤≤【分析】(1)根据二次不等式的解集得5a =,再根据基本不等式求解即可; (2)根据题意将问题转化为261x ax -+≥-在[]2,4x ∈-恒成立,再令()27F x x ax =-+,(24x -≤≤),分类讨论即可求解.【详解】(1)由关于x 的不等式()0<g x 的解集为{}23x x <<,所以知235a =+=∴()()256213111g x x x x x x x -+==-+----又∵1x >,∴()21331x x -+-≥-,取“=”时1x =∴()31g x x ≥-即()1g x x -的最小值为3-,取“=”时1x = (2)∵1≥x 时,212x +≥,()()212log 11f x x =+≤- ∴根据题意得:261x ax -+≥-在[]2,4x ∈-恒成立 记()27F x x ax =-+,(24x -≤≤)①当4a ≤-时,()()min 2211F x F a =-=+由1121102a a +≥⇒≥-,∴1142a -≤≤-②当48a -<<时,()2min724a a F x F ⎛⎫==-+ ⎪⎝⎭由2704a a -+≥⇒-≤≤∴4a -<≤③当8a ≥时,()()min 4423F x F a ==-+由2342304a a -+≥⇒≤,a ∈∅ 综上所述,a的取值范围是112a -≤≤【点睛】本题的第二问中关键是采用动轴定区间的方法进行求解,即讨论对称轴在定区间的左右两侧以及对称轴在定区间上的变化情况,从而确定该函数的最值. 22.(1)1832,(26)2xy BC x x x =+=+≤<;(2)外周长的最小值为米,此时腰长为.【分析】()1由腰与底边所成的角为60︒,求出h x=,182x BC x =-,结合限制条件求出定义域26x ≤<,从而得到y 关于x 的函数关系式()2由()1得1832x y x=+,运用基本不等式求出结果【详解】 (1)()12AD BC h =+,其中2,2x AD BC BC x h x=+⋅=+= ∴18 2x BC x =-由,261802h x x x BC x ⎧=≥⎪⎪≤<⎨⎪=->⎪⎩得 ∴1832,(26)2xy BC x x x =+=+≤<.(2)1832x y x =+≥=当且仅当[)1832,62x x x ==即时等号成立 ∴外周长的最小值为. 【点睛】本题是一道函数的应用题,解题时需要理清题目中各数量之间的关系,然后根据题意列出函数表达式,在求最值时一般运用基本不等式来求解,注意等号成立的条件23.(1) m34->;(2)见解析【分析】(1)利用△<0列不等式求出实数m的取值范围;(2)讨论0<a<1、a=0和a<0,分别求出对应不等式的解集.【详解】(1)不等式m2x2﹣2mx>﹣x2﹣x﹣1化为(m2+1)x2﹣(2m﹣1)x+1>0,由m2+1>0知,△=(2m﹣1)2﹣4(m2+1)<0,化简得﹣4m﹣3<0,解得m34->,所以实数m的取值范围是m34->;(2)0<a<1时,不等式(x﹣1)(ax﹣1)>0化为(x﹣1)(x1a-)>0,且1a>1,解得x<1或x1a >,所以不等式的解集为{x|x<1或x1a >};a=0时,不等式(x﹣1)(ax﹣1)>0化为﹣(x﹣1)>0,解得x<1,所以不等式的解集为{x|x<1};a<0时,不等式(x﹣1)(ax﹣1)>0化为(x﹣1)(x1a-)<0,且1a<1,解得1a<x<1,所以不等式的解集为{x|1a<x<1}.综上知,0<a<1时,不等式的解集为{x|x<1或x1a >};a=0时,不等式的解集为{x|x<1};a<0时,不等式的解集为{x|1a<x<1}.【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题.24.(1)12m=,34n=-;(2)1,4⎛⎫-∞⎪⎝⎭.【分析】(1)由1x =和2x =是方程2210mx nx ++=的解可得;(2)1,2A A -∈∉,得出,m n 满足的关系,作出点(,)m n 据平面区域,作直线30x y +=,平移该直线得3z x y =+的取值范围,也即3m n +的取值范围.【详解】(1)∵不等式()0f x ≤的解集为[]1,2∴2104410m n m n ++=⎧⎨++=⎩,解得1234m n ⎧=⎪⎪⎨⎪=-⎪⎩; (2)∵()0{|}A x f x =≥,且1,2A A -∈∉,∴2104410m n m n -+≥⎧⎨++<⎩,作出不等式组2104410x y x y -+≥⎧⎨++<⎩表示的平面区域,如图阴影部分(含边界实线,不含虚线部分),由2104410x y x y -+=⎧⎨++=⎩解得1214x y ⎧=-⎪⎪⎨⎪=⎪⎩,即11,24A ⎛⎫- ⎪⎝⎭, 作直线:30l x y +=,平移直线l 知,向下平移直线l ,3z x y =+减小,而直线l 过点11,24A ⎛⎫- ⎪⎝⎭时,134z x y =+=,∴14z <, ∴ 3m n +的取值范围是1,4⎛⎫-∞ ⎪⎝⎭.【点睛】本题考查解一元二次不等式,考查简单的线性规划问题.解题关键是作出可行域,作出目标函数对应的直线,平移该直线可得结论,注意可行域中虚线部分不可取.25.(1)3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2)当0a =时,解集为(,1]-∞-,当0a >时,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭,当1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦,当1a =-时,解集为{}1-,当10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦.【分析】(1)根据不等式的解与方程的根的关系,利用韦达定理列出方程组,求得a 的值,代入求得不等式的解集.(2)对参数a 分情况讨论,分别求得不等式的解集.【详解】 解:(1)由题意得11121112a a a -⎧--=-⎪⎪⎨-⎛⎫⎪-⨯-= ⎪⎪⎝⎭⎩, 解得2a =-, 故原不等式等价于2301x x -+-,即(23)(1)010x x x --⎧⎨-≠⎩所以不等式的解集为3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭.(2)当0a =时,原不等式可化为10x +≤,解集为(,1]-∞-;当0a >时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭; 当0a <时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭, 当11a >-,即1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦; 当11a =-,即1a =-时,解集为{}1-; 当11a <-,即10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查一元二次不等式的解法及分式不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属中档题.26.见解析【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案.【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >;当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。

(易错题)高中数学必修五第三章《不等式》检测题(答案解析)(1)

(易错题)高中数学必修五第三章《不等式》检测题(答案解析)(1)

一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( ) A .2 B .-2 C .1 D .-13.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-4.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知α,β满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,则3αβ+的取值范围是( ) A .[1,7] B .[5,13]- C .[5,7]- D .[1,13] 6.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n +的最小值为( ) A .23 B .43C .2D .4 7.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275 B .245 C .5 D .68.下列函数中最小值为4 的是( )A .4y x x =+B .4sin sin y x x =+ (0πx << )C .343x x y -=+⨯D .lg 4log 10x y x =+9.已知0,0x y >>,且21x y +=,则xy 的最大值是( )A .14B .4C .18D .810.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .211.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36 B .42 C .49 D .6012.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∧ D .()p q ∧⌝二、填空题13.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.14.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.15.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___. 16.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.17.已知正项等比数列{}n a 满足:28516a a a ,35+20a a =,若存在两项,m n a a使得,则14m n+的最小值为______ 18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积为12c ,则ab 的最小值为_______. 19.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sin cos 66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围;(3)若函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点,求实数t 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分.22.(1)已知3x <,求43x x +-的最大值; (2)已知,x y 是正实数,且4x y +=,求13x y+的最小值. (3)若实数,x y 满足2228x y +=,求244y x +-的取值范围.23.解关于x 的不等式2(41)40ax a x -++>.24.已知函数()()20,,f x ax bx c a b R c R =++>∈∈. (1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.25.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (*x ∈N )名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元(0a >),剩下的员工平均每人每年创造的利润可以调高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?26.已知函数2221,()?23,x ax x a f x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01f f =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果.【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫ ⎪⎝⎭ 目标函数2z x y =+,化为2y x z =-+则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值.所以z 的最大值为:2213z =⨯-=故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 2.C解析:C【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解.【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A , 代入求得101=+=z ,所以x y +的最小值是1,故选:C.【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下:(1)根据题中所给的约束条件画出可行域;(2)根据目标函数的意义找到最优解;(3)解方程组求得最优解的坐标;(4)代入求得最小值,得到结果.3.C解析:C【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由23z x y =-得到233z y x =-, 平移直线233z y x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A ,所以23z x y =-的最大值为max523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122z y x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-,由图象可知当直线122z y x =-过点C 时,直线122z y x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C .【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.A解析:A【解析】分析:该问题是已知不等关系求范围的问题,可以用待定系数法来解决.详解:设α+3β=λ(α+β)+v (α+2β)=(λ+v )α+(λ+2v )β.比较α、β的系数,得123v v λλ+=⎧⎨+=⎩, 从而解出λ=﹣1,v=2.分别由①、②得﹣1≤﹣α﹣β≤1,2≤2α+4β≤6,两式相加,得1≤α+3β≤7.故α+3β的取值范围是[1,7].故选A点睛:本题考查待定系数法,考查不等式的基本性质,属于基础题.6.C解析:C【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值.【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=,∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n m m n=,即1,2m n ==时等号成立. 故选:C .本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.7.A解析:A【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()13492743433355555x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y t t (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .4y ≥=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .9.C解析:C【分析】根据基本不等式求解即可得到所求最大值.【详解】 由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C .运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件. 10.D 解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 11.C解析:C【分析】由已知可得2294(3)(8)(4)(9)37b a b a a b a b a b++=++=++,然后结合基本不等式即可求解. 【详解】 解:因为正数a ,b 满足2a b +=,所以22949(3)(8)(4)(9)3737249b a b a a b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C .【点睛】 本题主要考查了利用基本不等式求解最值,属于基础题.12.A解析:A【分析】由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y ⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5. 【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.14.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦, ∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.15.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21 【分析】画出,x y 满足的可行域,当目标函数24z x y =+-经过点()7,9B 时,z 取得最大值,求解即可. 【详解】画出,x y 满足的可行域,由20250x y x y -+=⎧⎨--=⎩解得点()7,9B ,则目标函数24z x y =+-经过点()7,9B 时,z 取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.16.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.17.【分析】由先求出数列的通项公式由找到把乘以1等量代换最后利用均值定理即可求解【详解】解:设正项等比数列的公比为由又所以所以即当且仅当即时取等号则的最小值为故答案为:【点睛】考查等比数列的性质以及用均解析:34【分析】由28516a a a ,35+20a a =找到12m n +=,把14m n +乘以1,等量代换,最后利用均值定理即可求解. 【详解】解:设正项等比数列{}n a 的公比为()0q q >, 由28516a a a ,255516,16a a a ==,又35+20a a =,所以34a =,25316=4,24a q q a === 5515=1622n n n n a a q ---=⨯=,,所以1110222n m m n a a --==,即12m n +=,14145531212123124m n n m m n m n m n +⎛⎫+=+⋅=++≥+= ⎪⎝⎭ 当且仅当123n mm n=,即4,8m n ==时取等号, 则14m n +的最小值为34故答案为:34. 【点睛】考查等比数列的性质以及用均值定理求最小值,基础题.18.【解析】分析:由正弦定理将2ccosB =2a +b 转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab 的最小值详解:2ccosB =2a +b 由解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0BB π<,得1cos 2C =-,0C π<<,得23C π=,则△ABC 的面积为1sin 2S ab C ==,即3c ab =,由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等, ∴2229ab ab a b +≤,即13ab ≥, 故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.19.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q . 故答案为:p q .【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:⎡⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=,由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或t = 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值; (2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可. 【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=- 又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++,所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=-0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=, 由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-. (3) 因为函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根, 因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时,2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根,只有()21682102021t t tx t ⎧=+-=⎪⎨=>⎪-⎩对解得:t =, 综上:实数t 的取值范围为12t >或t =. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)1-;(2)12+;(3)[12,6]-. 【分析】 (1)由于()443333x x x x +=+-+--,再根据基本不等式求解即可; (2)根据题意得()114x y +=,再利用基本不等式“1”的用法求解即可; (3)将2282y x =-代入244y x +-,再配方求解即可得答案.【详解】解:(1)因为3x <,所以30x -<,30x ->, 所以()443333x x x x ⎡⎤+=-+-+⎢⎥--⎣⎦31≤-=-, 当且仅当4323x x=-=-,即1x =时等号成立, 所以43x x +-的最大值为1-. (2)由于,x y 是正实数,且4x y +=,所以()1311313444y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1414⎛≥+=+ ⎝ 当且仅当3y xxy=,即(23y ==时等号成立. 故13x y +的最小值为1. (3)由于实数,x y 满足2228x y +=,故22820,22y x x =-≥∴-≤≤ 所以22448244y x x x +-=-+-()222442166x x x =-++=--+≤,当2x =-时,244y x +-取得最小值为12- 故244y x +-的取值范围为[12,6]-. 【点睛】本题考查利用基本不等式求最值,注意自变量的取值范围,考查化归转化思想,运算能力,是中档题. 23.答案见解析 【分析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->,再对a 进行分类讨论,比较根的大小,即可得答案; 【详解】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x -->(1)当0a =时,不等式化为40x -<,解得4x <, (2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<,(3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >, (4)当14a=时,不等式化为2(4)0x ->,解得4x ≠, (5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >,综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭;14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 【点睛】本题考查含参一元二次不等式的求解,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力,求解时注意讨论的依据是比较根的大小. 24.(1) 8; (2)[]2,0-.【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 25.(1)最多调整500名员工从事第三产业;(2)(]0,5. 【分析】(1)根据题意可列出()()10100010.2%101000x x -+≥⨯,进而解不等式求得x 的范围,确定问题的答案.(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a 的范围. 【详解】(1)由题意,得()()10100010.2%101000x x -+≥⨯, 即25000x x -≤,又0x >,所以0500x <≤, 即最多调整500名员工从事第三产业;(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元,从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫-≤-+ ⎪ ⎪⎝⎭⎝⎭, 所以23500x ax -≤2110002500x x x +--, 所以221000500x ax x ≤++,即210001500x a x ≤++在(]0,500x ∈时恒成立,因为210004500x x+≥=, 当且仅当21000500x x =,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤,所以a 的取值范围为(]0,5.【点睛】本题主要考查了基本不等式在求最值问题中的应用,考查了学生综合运用所学知识,解决实际问题的能力,属于常考题.26.(1)1或3;(2)02a <<.【分析】(1)首先根据分段函数求得(0)1f =,然后根据2a与1的大小关系分类计算(1)f ,由(1)1f =求得a 值; (2)()0f x >恒成立,转化两个二次函数在某个区间上大于0恒成立,即当2x a <时,210x ax -+>恒成立和2x a≥时,230x ax +->恒成立,两者结合即得. 【详解】解:(1)因为0a >,所以20a >,从而()01f =. 当21>a 即02a <<时,()()()01111f f f a ==-+=,解得1a =,符合; 当21a≤即2a ≥时,()()()01131f f f a ==+-=,解得3a =,符合. 所以a 的值为1或3.(2)因为()f x 的图象在x 轴的上方,所以对任意的x ∈R ,()0f x >恒成立. ①当2x a<时,210x ax -+>恒成立,其中0a >. 1︒ 当22a a <即02a <<时,则()2min 4024a a f x f -⎛⎫==> ⎪⎝⎭,解得02a <<.2︒ 当22a a ≥即2a ≥时,则224210f a a aa ⎛⎫=-⨯+≥ ⎪⎝⎭,解得02a <≤,所以2a =. 所以02a <≤.②当2x a≥时,230x ax +->恒成立,其中0a >. 则()2min 22230f x f a a a a ⎛⎫⎛⎫⎛⎫==+⨯-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得02a <<. 综上,02a <<.【点睛】本题考查分段函数,考查不等式恒成立问题,解题关键是转化为二次函数大于0在某个区间上恒成立,结合二次函数知识易得.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5不等式易错题及错解分析一、选择题:1.设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。

3.不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。

正确答案为D 。

4.某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则A 2a b x +=B 2a b x +≤C 2a b x +>D 2a bx +≥ 错解:对概念理解不清,不能灵活运用平均数的关系。

正确答案为B 。

5.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b的范围,扩大了范围。

正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。

6.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21B a <21C -21≤a ≤21D a ≥ 21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。

7.已知函数y =㏒21(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )A a ≤-6B -60<a <-6C -8<a ≤-6 D-8≤a ≤-6正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。

8.已知实数x 、y 、z 满足x+y+z=0,xy z >0记T=x 1+y 1+z1,则( ) A T >0 B T=0 C T <0 D 以上都非正确答案: C 错因:学生对已知条件不能综合考虑,判断T 的符号改为判定xyz(x 1+y 1+z1)的符号。

9.下列四组条件中,甲是乙的充分不必要条件的是( )A . 甲 a >b ,乙a 1 <b1B 甲 ab <0,乙 ∣a+b ∣<∣a -b ∣C 甲 a=b ,乙 a +b=2abD 甲 ⎩⎨⎧<<<<1010b a ,乙 ⎩⎨⎧<-<-<+<2120b a b a正确答案: D 错因:学生对不等式基本性质成立的条件理解不深刻。

10. f(x)=︱2x—1|,当a <b <c 时有f(a)>f(c)>f(b)则( )A a <0,b <0,c <0B a <0,b >0,c >0C 2a-<2c D 22+a c<2正确答案:D 错因:学生不能应用数形结合的思想方法解题。

11. a,b ∈R ,且a>b ,则下列不等式中恒成立的是( )A.a 2>b 2B.(21) a <(21)bC.lg(a -b)>0D.ba>1 正确答案:B 。

错误原因:容易忽视不等式成立的条件。

12. x 为实数,不等式|x -3|-|x -1|>m 恒成立,则m 的取值范围是( )A.m>2B.m<2C.m>-2D.m<-2正确答案:D 。

错误原因:容易忽视绝对值的几何意义,用常规解法又容易出错。

13.已知实数x 、y 满足x 2+y 2=1,则(1-xy)(1+xy)( )A.有最小值21,也有最大值1 B.有最小值43,也有最大值1 C.有最小值43,但无最大值D.有最大值1,但无最小值正确答案:B 。

错误原因:容易忽视x 、y 本身的范围。

14.若a>b>0,且m b m a ++>ba,则m 的取值范围是( ) A. m ∈R B. m>0 C. m<0 D. –b<m<0 正确答案:D 。

错误原因:错用分数的性质。

15.已知R y R x ∈∈,,则1,1<<y x 是2<-++y x y x 的( )条件 A 、充分不必要 B 、必要不充分 C 、既不充分也不必要 D 、充要 正确答案:D错因:不严格证明随便判断。

16.如果2log 3log 2121ππ≥-x 那么x sin 的取值范围是( )A 、⎥⎦⎤⎢⎣⎡-21,21B 、⎥⎦⎤⎢⎣⎡-1,21C 、⎥⎦⎤ ⎝⎛⋃⎪⎭⎫⎢⎣⎡-1,2121,21D 、⎥⎦⎤ ⎝⎛⋃⎪⎪⎭⎫⎢⎣⎡-1,2323,21 正确答案:B错因:利用真数大于零得x 不等于60度,从而正弦值就不等于23,于是就选了D.其实x 等于120度时可取得该值。

故选B 。

17.设,0,0>>b a 则以下不等式中不恒成立....的是 ( ) A .4)11)((≥++ba b a B .2332ab b a ≥+ C .b a b a22222+≥++ D .a b a ≥-||正确答案:B18.如果不等式x a x ≥+(a>0)的解集为{x|m ≤x ≤n},且|m-n|=2a ,则a 的值等于( ) A .1 B .2 C .3 D .4 正确答案:B19.若实数m ,n ,x ,y 满足m 2+n 2=a ,x 2+y 2=b (a ≠b ),则mx+ny 的最大值为( )A 、2b a +B 、abC 、222b a +D 、ba ab +答案:B点评:易误选A ,忽略运用基本不等式“=”成立的条件。

20.数列{a n }的通项式902+=n na n ,则数列{a n }中的最大项是( )A 、第9项B 、第8项和第9项C 、第10项D 、第9项和第10项 答案:D点评:易误选A ,运用基本不等式,求nn a n 901+=,忽略定义域N*。

21.若不等式21--+x x >a 在R x ∈上有解,则a 的取值范围是 ( ) A . ()3,3- B . (]3,3- C . ()3,∞- D .()3,-∞- 错解:D错因:选D 恒成立。

正解:C22.已知21,x x 是方程)(0)53()2(22R k k k x k x ∈=+++--的两个实根,则2221x x +的最大值为( )A 、18B 、19C 、955 D 、不存在 答案:A 错选:B错因:2221x x +化简后是关于k 的二次函数,它的最值依赖于0>∆所得的k 的范围。

23.实数m,n,x,y 满足m 2+n 2=a , x 2+y 2=a , 则mx+ny 的最大值是 。

A 、2b a +B 、abC 、222b a + D 、22b a +答案:B错解:A错因:忽视基本不等式使用的条件,而用2222222ba y n x m ny mx +=+++≤+得出错解。

24.如果方程(x-1)(x 2-2x +m)=0的三个根可以作为一个三角形的三条边长,那么实数m 的取值范围是 ( ) A 、0≤m ≤1 B 、43<m ≤1 C 、43≤m ≤1 D 、m ≥43 正确答案:(B )错误原因:不能充分挖掘题中隐含条件。

二填空题:1.设220,0,12b a b a ≥≥+=,则的最大值为 错解:有消元意识,但没注意到元的范围。

正解:由220,0,12b a b a ≥≥+=得:2212b a =-,且201b ≤≤,原式=为1。

2.若,,x y R +∈≤a 的最小值是错解:不能灵活运用平均数的关系,正解:,2m n +≥≤≤a 。

3.已知两正数x,y 满足x+y=1,则z=11()()x y xy++的最小值为 。

错解一、因为对a>0,恒有12a a+≥,从而z=11()()x y x y ++≥4,所以z 的最小值是4。

错解二、22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1)。

错解分析:解一等号成立的条件是11,11,1x y x y x y x y====+=且即且与相矛盾。

解二等号成立的条件是2,xy xy xy ==即104xy <≤相矛盾。

正解:z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤ ⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254。

4.若对于任意x ∈R ,都有(m -2)x 2-2(m -2)x -4<0恒成立,则实数m 的取值范围是 。

正确答案:(-2,2) 。

错误原因:容易忽视m =2。

5.不等式ax 2+ bx + c >0 ,解集区间(-21,2),对于系数a 、b 、c ,则有如下结论: ① a >0 ②b >0 ③ c >0 ④a + b + c >0 ⑤a – b + c >0,其中正确的结论的序号是________________________________. 正确答案 2 、3、 4错因:一元二次函数的理解6.不等式(x -2)x 2-2x -3 ≥0的解集是 . 正确答案:{}13x x x =-≥或 7.不等式1x a x 22+>+的解集为(-∞,0),则实数a 的取值范围是_____________________。

正确答案:{-1,1}8.若α,β,γ为奇函数f(x)的自变量,又f(x)是在(-∞,0)上的减函数,且有α+β>0,α+γ>0,β+γ>0,则f(α)+f(β)与f(-γ)的大小关系是:f(α)+f(β) ______________f(-γ)。

正确答案:<9.不等式|x+1|(2x -1)≥0的解集为____________答案:}1{),21[-⋃+∞点评:误填),21[+∞而忽略x=-1。

10.设x>1,则y=x+12-x 的最小值为___________ 答案:122+点评:误填:4,错因:12-+=x x y ≥122-x x ,当且仅当12-=x x 即x=2时等号成立,忽略了运用基本不等式求最值时的“一正、二定、三相等”的条件。

相关文档
最新文档