专题18 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

合集下载

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。

带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。

带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。

2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。

一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。

二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。

数学圆法巧解磁场中的临界问题-2024年高考物理答题技巧(解析版)

数学圆法巧解磁场中的临界问题-2024年高考物理答题技巧(解析版)

数学圆法巧解磁场中的临界问题一、应用技巧1.“放缩圆”法适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上界定方法以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法1如图所示,一束电子以大小不同的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场区域,下列判断正确的是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线不一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同【答案】 BC【解析】 由t=θ2πT知,电子在磁场中运动时间与轨迹对应的圆心角成正比,所以电子在磁场中运动的时间越长,其轨迹线所对应的圆心角θ越大,电子飞入匀强磁场中做匀速圆周运动,轨迹线弧长s=rθ,运动时间越长,θ越大,但半径r不一定大,s也不一定大,故A错误,B正确.由周期公式T=2πmqB知,电子做圆周运动的周期与电子的速率无关,所以电子在磁场中的运动周期相同,若它们在磁场中运动时间相同,但轨迹不一定重合,比如:轨迹4与5,它们的运动时间相同,但它们的轨迹对应的半径不同,由r= mvqB可知它们的速率不同,故C正确,D错误.2.“旋转圆”法适用条件速度大小一粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射定,方向不同入初速度为v0,则圆周运动半径为R=mv0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=mvqB的圆上界定方法将一半径为R=mv0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法2如图所示为圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里,边界跟y轴相切于坐标原点O。

物理模型:磁场模型集合

物理模型:磁场模型集合

模型/题型:磁场常见模型·集合一、缩放圆和旋转圆模型 1. 缩放圆模型特征:带电粒子从某一点以速度方向不变而大小在改变(或磁感应强度变化)射入匀强磁场,在匀强磁场中做半径不断变化的匀速圆周运动。

把其轨迹连续起来观察,好比一个与入射点相切并在放大或缩小的“动态圆”,如图。

解题时借助圆规多画出几个半径不同的圆,可方便发现粒子轨迹特点,达到快速解题的目的。

2. 环形磁场临界问题临界圆临界半径 221R R r +=2-12R R r =勾股定理(R 2-R 1)2=R 12+r2解得:)R R (R r 1222-=3. 旋转圆模型特征:带电粒子从某一点以大小不变而方向不限定(如0—180°范围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图。

解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。

同时还要注意,粒子在做圆周运动时的绕行方向不随旋转而改变(即同旋性)。

4. 旋转圆五大特征 ①半径相等 R=mv/qB②都过发射点③圆心分布在一圆周上④旋转方向相同(同旋性)⑤同时发射,同时刻在同一圆周上,最大范围π(2R )25. 旋转圆中粒子运动的空间范围问题最近点:A (OA =2Rsinθ) 最远点:B (OB 为直径) 圆中最大的弦长是直径 左边界:相切点A ; 右边界:OB 为直径边界点:相切点B 、C× × × ×× × × × ×× × × ×v 0R 1 R 2× × × ×× × × × ×× × ××v 0 R 1R 2× × × ×× × × × ×× × ××v 0R 1R 2× × × × × × × × × ×× × × × ×v 0A B O ●● θ( ABC6.圆形有界磁场中的旋转圆问题r<R r>R r=R在磁场中运动的最远距离为OA=2r在磁场中运动的最长时间为t max=αrv0=αmqB(sinα2=Rr)离开磁场速度方向垂直于入射点与磁场圆心的连线二、磁聚焦/磁发散模型⭐规律1:磁聚焦:如果磁场圆半径等于粒子的轨迹圆半径,带电粒子从圆形有界磁场边界上的某点射入磁场,则粒子的出射方向与磁场圆上入射点处的切线方向平行。

第三章专题 放缩圆 旋转圆 平移圆 等大圆 课件-高二上学期物理人教版选修3-1

第三章专题 放缩圆 旋转圆 平移圆 等大圆 课件-高二上学期物理人教版选修3-1
周运动从对面边界飞出。界飞出;④速度更大时粒子做部分
圆周运动从下侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
有界磁场之临界问题: 速度大小不确定引起的临界问题
例、如图,在PMN区域内分布有磁感应强度为B的匀
强磁场,磁场方向垂直于纸面向里,有一束正离子流(不计
重力),沿纸面垂直于磁场边界MN方向从A点垂直边界射
Q
P
P
Q
Q
P
B
v
S
v
v
圆心在磁场原边界上
①速度较小时,作半圆
运动后从原边界飞出;
②速度增加为某临界值
时,粒子作部分圆周运
动其轨迹与另一边界相
切;③速度较大时粒子
作部分圆周运动后从另
一边界飞出
S
圆心在过入射点跟
S
边界垂直的直线上
圆心在过入射点跟跟速
度方向垂直的直线上
①速度较小时,作圆
周运动通过射入点;
思考:
1.假设磁场是无界的,各电
子的运动轨迹怎样?
半径相等的圆
所有运动轨迹的圆心在
一条直线上
2. 磁场较小时,轨迹半径较大。
哪个电子最有可能从右侧飞出?
最上面的电子
v0
有界磁场之临界问题: 入射点不确定引起的临界问题
思考:
3.当磁场很大,运动半径较小,
哪个电子最有可能从左侧飞出?
依然是最上面的电子
例:如下图所示,两块长度均为5d的金属板相
距d,平行放置,下板接地,两极间有垂直只面向里
的匀强磁场,一束宽为d的电子束从两板左侧垂直磁
场方向射入两极间,设电子的质量为m,电量为e,入
射速度为v0,要使电子不会从两极间射出,求匀强磁

专题59 带电粒子在磁场中的平移圆、放缩圆、旋转圆、磁聚焦模型(解析版)

专题59 带电粒子在磁场中的平移圆、放缩圆、旋转圆、磁聚焦模型(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题59 带电粒子在磁场中平移圆、放缩圆、旋转圆、磁聚焦模型特训目标特训内容目标1 带电粒子在磁场中平移圆模型(1T—4T)目标2 带电粒子在磁场中放缩圆模型(5T—8T)目标3 带电粒子在磁场中旋转圆模型(9T—12T)目标4 带电粒子在磁场中磁聚焦模型(13T—16T)【特训典例】一、带电粒子在磁场中平移圆模型1.如图所示,在顶角为23π的等腰三角形BAC内充满着磁感应强度大小为B且垂直纸面向外的匀强磁场(图中未画出)。

一群质量为m、电荷量为+q、速度为v的带电粒子垂直AB 边射入磁场,已知从AC边射出且在磁场中运动时间最长的粒子,离开磁场时速度垂直于AC边。

不计粒子重力和粒子间相互作用力。

下列判断中正确的是()A.等腰三角形BAC中AB边的长为2mv qBB.粒子在磁场中运动的最长时间为43m qB πC.从A点射入的粒子离开磁场时的位置与A点的距离为mv qBD.若仅将磁场反向,则从A点射入的粒子在磁场中运动的时间将比改变前缩短【答案】AC【详解】A.由题意可确定运动时间最长的粒子若垂直AC离开,其轨迹圆心必为A点,其轨道必与BC边相切,则由几何关系可知AB边长为半径的两倍,由2mvBqvr=可得mvrqB=则22BA r qB mv==故A 正确; B .粒子运动时间最长时,圆心角为23πθ=则运动时间为122233m m t T Bq Bq θπππ==⨯=故B 错误; CD .由几何关系可知,从A 点射入的粒子不论磁场向外还是改为向里,粒子速度的偏转角都是60°,轨迹均为六分之一圆周,则运动时间相同,离开磁场时的位置与A 点的距离为等于半径mvqB,故C 正确,D 错误。

故选AC 。

2.如图所示,在直角三角形ABC 内充满垂直纸面向外的匀强磁场(图中未画出),AB 边长度为d ,∠B=6π.现垂直AB 边射入一群质量均为m 、电荷量均为q 、速度大小均为v 的带正电粒子,已知垂直AC 边射出的粒子在磁场中运动的时间为t ,而运动时间最长的粒子在磁场中的运动时间为43t (不计重力)。

带电粒子在磁场中运动放缩圆和旋转圆ppt课件

带电粒子在磁场中运动放缩圆和旋转圆ppt课件

B r R α O
α
b
拓展:若改粒子射入磁场的速度为v0′=3.0×105m/s, 其它条件不变。用斜线画出该批粒子在磁场中可能 出现的区域。若要使粒子飞离磁场时有最大的偏转 角,其入射时粒子的方向应如何(以v0与oa的夹角表 示)?最大偏转角多大?
解析: R′ = mv0′/Bq=1.5×10-2m r/因此,在 2 ab上方的粒子可能
YOU
SUCCESS
2019/5/8
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析: R =mv/Bq=5×10-2m > r
v0 a
说明:半径确定时,通过的弧越
长,偏转角度越大。而弧小于半 个圆周时,弦越长则弧越长。 sin = r/R = 37º, 最大偏转角为 2 = 74º。
A.
2R
B.
2R
M
2R
O
O
R N M 2R R 2R N
B
C.
M 2R
D.
M 2R
O
2R
N
O
R 2R N
M
O
N
……以速率 v 沿纸面各个方向由小孔O射入磁场
2R 2R
2R
2R
O
O
R R 2R
2R
O
2R
2R
O
R 2R
A.
B.
C.
D.
THANK
YOU
SUCCESS
2019/5/8
例2、如图,磁感应强度为B的匀强磁场垂直于 纸面向里, PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型特训目标特训内容目标1旋转圆模型(1T-4T)目标2放缩圆模型(5T-8T)目标3平移圆模型(9T-12T)目标4磁聚焦模型(13T-16T)【特训典例】一、旋转圆模型1如图所示,在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中有一粒子源,粒子源从O点在纸面内同时向各个方向均匀地发射带正电的粒子,其速率为v、质量为m、电荷量为q。

PQ是在纸面内垂直磁场放置的厚度不计的挡板,挡板的P端与O点的连线与挡板垂直,距离为8mv5qB。

设打在挡板上的粒子全部被吸收,磁场区域足够大,不计带电粒子间的相互作用及重力,sin37°=0.6,cos37°=0.8。

则()A.若挡板长度为4mv5qB,则打在板上的粒子数最多B.若挡板足够长,则打在板上的粒子在磁场中运动的最短时间为127πm180qBC.若挡板足够长,则打在板上的粒子在磁场中运动的最长时间为πmqBD.若挡板足够长,则打在挡板上的粒子占所有粒子的14【答案】D【详解】A.设带电粒子的质量为m,带电量为q,粒子在磁场中受到的洛伦兹力提供做圆周运动的向心力。

设粒子做圆周运动的半径为r。

则有qvB=m v2r解得r=mvqB能打到挡板上的最远的粒子如图;由几何关系可知,挡板长度L=(2r)2-d2=6mv5qB选项A错误;BC.由以上分析知,当粒子恰好从左侧打在P点时,时间最短,如图轨迹1所示,由几何关系得粒子转过的圆心角为θ1=106°;对应的时间为t min=θ12πT=106°360°2πmqB=53πm90qB当粒子从右侧恰好打在P点时,时间最长,如图轨迹2所示,由几何关系得粒子转过的圆心角为θ2=254°对应的时间为t max=θ22πT=254°360°⋅2πmqB=127πm90qB选项BC 错误;D .如图所示,能打到屏上的粒子,在发射角在与x 轴成37°到127°范围内90°角的范围内的粒子,则打在挡板上的粒子占所有粒子的14,选项D 正确。

专题20 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

专题20  磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题20 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型一、旋转圆模型1.如图所示,空间存在垂直纸面向外的匀强磁场(图中未画出),一放射源P 位于足够大的绝缘板AB 上方,放射性物质为23892U ,发生α衰变后,放出α射线,23490Th 留在放射源中,P到AB 的距离为d ,在纸面内向各个方向发射速率均为v 的α粒子,不考虑粒子间的相互作用和α粒子的重力。

已知α粒子做圆周运动的半径也为d ,则( )A .核反应方程为23892U→23490Th +42HeB .板上能被α粒子打到的区域长度是2dC .α粒子到达板上的最长时间为32dv π D .α粒子到达板上的最短时间为2dvπ【答案】AC【详解】A .根据质量数守恒和电荷数守恒可知,核反应方程为238234492902U Th He →+,A 正确;B .打在极板上粒子轨迹的临界状态如上图所示根据几何关系知,带电粒子能到达板上的长度1)l d d ==,B 错误;CD .由题意如画出所示由几何关系知最长时间为1轨迹经过的时间,即竖直向上射出的α粒子到达板上的时间最长,其轨迹对应的圆心角为270°,故最长时间为3323442d dt T v v ==⨯=长ππ而最短时间为轨迹2,其轨迹对应的弦长为d ,故对应的圆心角为60°,最短时间为112663d dt T v v==⨯=短ππ,D错误C 正确。

故选AC 。

2.如图所示,在边长为L 的等边三角形区域ABC 内存在着垂直纸面的匀强磁场(未画出),磁感应强度大小为03B qL=,大量质量为m 、带电荷量为q 的粒子从BC 边中点O 沿不同的方向垂直于磁场以速率v 0射入该磁场区域,不计粒子重力,则下列说法正确的是( )ABC .对于从AB 和ACD .对于从AB 和AC边射出的粒子,在磁场中运动的最短时间为012Lv 【答案】BC【详解】A.所有粒子的初速度大小相等,它们在磁场中做匀速圆周运动的轨迹半径为0mv r qB ==故A 错误;B.粒子做圆周运动的周期为002r LT v v π==故B 正确; C .当粒子运动轨迹对应的弦最长时,圆心角最大,粒子运动时间最长,当粒子运动轨迹对应的弦长最短时,对应的圆心角最小,粒子运动时间最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022届高三物理二轮常见模型与方法综合特训专练专题18 磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型专练目标专练内容目标1旋转圆模型(1T—5T)目标2放缩圆模型(6T—10T)目标3平移圆模型(11T—15T)目标4磁聚焦模型(16T—20T)一、旋转圆模型1.如图甲所示的平面直角坐标系中,x轴上方有磁感应强度大小为B、垂直纸面向外的匀强磁场,在O点处有一粒子源,沿纸面不断地放出同种粒子,粒子的速率均为v,粒子射入磁场的速度方向与x轴正方向的夹角范围为60°—120°。

粒子的重力及粒子间的相互作用均不计。

图乙中的阴影部分表示粒子能经过的区域,其内边界与x轴的交点为E,外边界与x轴的交点为F,与y轴的交点为D(a,0)。

下列判断正确的是()A.粒子所带电荷为正电B.OF3C.粒子源放出的粒子的荷质比为v aBD.从点E离开磁场的粒子在磁场中运动的时间可能为23a v π【答案】CD【详解】A.由左手定则可知,粒子所带电荷为负电,选项A错误;B.则OD a R==则OF=2R=2a选项B错误;C.根据2vqvB mR=解得q v vm BR Ba==选项C正确;D.从点E离开磁场的粒子在磁场中转过的角度可能为120°,也可能是240°,则在磁场中运动的时间可能为233vT atπ==也可能是2433T atvπ=='选项D正确。

故选CD。

2.如图,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。

已知粒子做圆周运动的半径大小恰好为d,则()A.磁感应强度的大小为d kvB.磁感应强度的大小为v kdC .同一时刻发射出的带电粒子打到板上的最大时间差为76dvπ D .同一时刻发射出的带电粒子打到板上的最大时间差为6kdvπ【答案】BC【详解】AB .根据牛顿第二定律2v qvB m d =根据题意q k m =解得v B kd =,A 错误,B 正确;CD .同一时刻发射出的带电粒子打到板上的最长时间和最短时间如图所示min 16t T =;max 34t T =粒子运动的周期为2dT v π=最大时间差为max min t t t ∆=-解得76d t vπ∆=,C 正确,D 错误。

故选BC 。

3.如图所示,竖直平面内有一半径为R 的圆形磁场区域,磁场方向垂直纸面向外,磁感应强度的大小为B 。

位于磁场边界最低点P 处有一粒子源,可以释放质量为m 、电荷量为q 的带负电粒子,粒子沿位于纸面内的各个方向以相同的速率射入磁场区域。

不计粒子的重力和空气阻力,忽略粒子间的相互影响,粒子在磁场内做圆周运动的轨道半径r =2R ,A 、C 为圆形区域水平直径的两个端点。

下列说法中正确的是( )A .粒子射入磁场的速率为2qBRv m=B .粒子在磁场中运动的最长时间为3mt qBπ=C .可能有粒子从A 点水平射出D .不可能有粒子从C 点射出磁场【答案】AB【详解】A .根据2v Bqv m r= ,2r R =解得2qBR v m =所以A 正确;B .粒子在圆形磁场中的做圆周运动时,当弦长最大时,粒子的运动时间最长,如图所示由几何关系可得1sin 22R AOD R ∠==解得30AOD ∠=粒子在磁场中运动的最长时间为60360t T =;22R T v π⋅=联立解得3m t Bq π=所以B 正确; C .当粒子从A 点水平射出时,如图所示由几何关系可知r R =所以当轨道半径为2R 时,不可能有粒子从A 点水平射出,则C 错误; D .粒子从C 点射出磁场,轨迹如图所示所以D错误;故选AB。

4.边长为a的正三角形区域存在匀强磁场,磁场方向垂直三角形平面,磁感应强度大小为B,在三角形中心有一个粒子源,在三角形平面内同时向各个方向均匀发射速率大小相等的同种粒子,粒子的电量为+q,质量为m,速率大小为3qaBv=,与边AB平行向左射出的粒子,经过t时间刚好从AB边离开磁场边界,下列说法正确的是()A.磁场方向垂直直面向里B.粒子在磁场中的运动周期为2tC.t时刻没射出磁场的粒子数与粒子源发射出粒子的总数之比1 4D.所有粒子在磁场中运动的最短时间为2 3 t【答案】ACD【详解】A.由2vqvB mR=,又3qaBv=3aR角形中点O到三边的距离3ad=与边AB平行向左射出的粒子,经过t时间刚好从AB边离开磁场边界,所以粒子向下偏转根据左手定则可知,磁场方向垂直直面向里,故A 正确;B .与边AB 平行向左射出的粒子,经过t 时间刚好从AB 边离开磁场边界,正好偏转14周期,所以粒子在磁场中的运动周期为4t ,故B 错误;C .在三角形中心的粒子源,同时向各个方向均匀发射速率大小相等的同种粒子,3a为半径,O 为圆心的圆上,当速度方向在阴影部分出射时,到时间t 时刻还在磁场内,故比例为14,故C 正确; D .与正三角形的边垂直射出时,粒子在磁场中运动的时间最短,粒子偏转的圆心角60θ=︒最短时间'1263t T t ==故D 正确。

故选ACD 。

5.如图所示,区域AOC 内有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S 。

某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有部分粒子从边界OC 射出磁场。

已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于2T(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间不可能为( )A .12TB .8T C .4T D .3T 【答案】AB【详解】粒子在磁场做匀速圆周运动,粒子在磁场中出射点和入射点的连线即为轨迹的弦,初速度大小相同,根据2v qvB m R=则mv R qB =轨迹半径相同,如图所示设OS d=当出射点D与S点的连线垂直于OA时,DS弦最长,轨迹所对的圆心角最大,周期一定,则由粒子在磁场中运动的时间最长,由此得到,轨迹半径为3R=当出射点E与S点的连线垂直于OC时,弦ES最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短,则3SE=由几何知识,得60θ=︒最短时间16mint T=所以,粒子在磁场中运动时间范围为1162T t T≤≤,CD不符合题意,AB符合题意。

故选AB。

二、放缩圆模型6.如图所示,在一等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B,一质量为m、电荷量为q的带正电的粒子(重力不计)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形的两直角边长均为L,则下列关于粒子运动的说法中正确的是()A .当该粒子以不同的速度入射时,在磁场中的运动时间均不同B .当该粒子以不同的速度入射时,在磁场中运动的最长时间为mqBπ C .若要使粒子从CD 边射出,则该粒子从O 点入射的最大速度应为2qBLv =D .若该粒子的入射速度为2qBL v m =,则粒子一定从CD 边出磁场,且距点C 的为2L【答案】BD【详解】A .依题意,根据几何知识可判断知若粒子从OC 段垂直飞出磁场时,粒子在磁场中的运动时间均相同,且为半个周期,故A 错误;B .根据几何关系判断知,粒子在磁场中运动轨迹所对应的最大圆心角为180,所以该粒子以不同的速度入射时,在磁场中运动的最长时间为max 1222T m mt qB qBππ==⨯=故B 正确; C .若要使粒子从CD 边射出,由几何知识判断知,当粒子轨迹与AD 边相切时,从CD 边射出所对应轨迹半径最大,由几何知识求得max (21)Lr +根据2v mv qvB m r r qB =⇒=可求得该粒子从O 点入射的最大速度应为max (21)qBLv +=C 错误;D .若该粒子的入射速度为max 2qBL v v m =<则粒子一定从CD 边出磁场,且22v LqvB m r r =⇒=所以,此时粒子飞出点距点C 的为2L,故D 正确。

故选BD 。

7.如图所示,在Rt ∠OCA 区域内存在着垂直平面向里的匀强磁场,磁感应强度大小为B 。

已知∠OCA =30°,OA 边的长度为L 。

一群质量为m 、电荷量为q 的带负电粒子以不同的初速度从OC 边的中点垂直OC 边射入磁场中,不计粒子的重力和粒子间的相互作用力,则能从OA 边射出的粒子的初速度可能为( )A 3qBLB3qBL C3qBL D23pBL【答案】BC【详解】根据牛顿第二定律2vqvB mr=根据几何知识tan60OC L=⋅︒根据题意42OC OCr≤≤33qBL qBLv≤≤BC正确,AD错误。

故选BC。

8.如图所示,边长为2a的等边三角形ABC区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,一束质量为m电荷量为-q(q>0)的同种带电粒子(不计重力),从AB边的中点,以不同速率沿不同方向射入磁场区域(均垂直于磁场方向射入),下列说法正确的是()A.若粒子均平行于BC边射入,则从BC3BqaB.若粒子均平行于BC边射入,则从BC3BqaC.若粒子均垂直于AB边射入,则粒子可能从BC边上距B 23-a处射出D3Bqa BC边射出的最短时间为3m Bqπ【答案】ABD【详解】A .从BC 边射出的粒子速度最大时,半径最大,则如图由几何关系11sin 30cos30R R a =-解得13R a =根据2v qvB m R =解得max 3Bqav =A 正确;B .当从BC 边射出的粒子速率最小时,半径最小,此时轨迹与BC 边相切,则213cos3024R a == 根据2v qvB m R =解得min 3Bqa v =选项B 正确;C .若粒子均垂直于AB 边射入,则当轨迹与BC 相切时cos30r r a += 解得tan 30(23)BD r a == 则粒子不可能从BC 边上距B 23-处射出,选项C 错误;D .3Bqa则轨道半径'3r =粒子从BC 边射出的时间最短时,轨迹对应的弦最短,最短弦为射入点到BC 的距离,3,则由几何关系可知,轨迹对应的圆心角为3π,时间为 223m mt qB Bqθπππ==选项D 正确。

故选ABD 。

9.如图所示,边长为L 的等边三角形区域内存在垂直纸面的匀强磁场,磁感应强度大小为B ,无限大的荧光屏PQ 过C 点且与AB 边平行,O 为AB 边中点,质量为m ,电荷量为q 的粒子以不同速率自O 点垂直于AB 边方向射入磁场中,速度方向平行于三角形平面,不考虑粒子之间相互作用和粒子重力。

相关文档
最新文档