勾股定理全章知识点典型例习题

合集下载

勾股定理知识点、经典例题及练习题带答案

勾股定理知识点、经典例题及练习题带答案

八年级勾股定理练习题【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢?【知识梳理】1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方A BC a b c弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2、勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5;6,8,10;9,12,15;5,12,133、判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4、注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

勾股定理资料知识点+典型例题+变式训练

勾股定理资料知识点+典型例题+变式训练

一、勾股定理一. 勾股定理一.即:直角三角形两直角边的平方和等于斜边的平方,如果用a,b,c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2(满足此等式的三个数称为勾股数)称为勾股数)二、勾股定理的证明证法一:做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形,证明:a2+b2=c2证法二:以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积形的面积 等于ab /2 . 2 . 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上证明:a 2+b 2=c 2证法三:以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab /2 . 2 . 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. 勾股定理的逆定理(毕达哥拉斯定理):如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。

最长边所对的角为直角。

三、勾股定理及其逆定理的应用勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅判定三角形是否为直角三角形,而且可以判定直角三角形中哪一个角为直角。

请同学务必熟练掌握其应用。

练掌握其应用。

类型一:勾股定理的直接用法1、在Rt △ABC 中,∠C=90°(1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a. 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

c=10,b=7152425207152024251572524257202415AE类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因,的两个锐角互余)∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半). 根据勾股定理,在中,中,. 根据勾股定理,在中,中,. ∴. 求证: 举一反三【变式1】如图,已知:,,于P. 求证:BP 22=AP 22+BC 22练习巩固1、等腰三角形的一腰长为13,13,底边长为底边长为10,10,则它的面积为(则它的面积为(则它的面积为( )) A.65 B.60 C.120 D.1302、如图、如图::已知AD 是△是△ABC ABC 的高的高,AB=10,AD=8,BC=12,,AB=10,AD=8,BC=12,,AB=10,AD=8,BC=12,则△则△则△ABC ABC 为(为( )) A.A.等腰三角形等腰三角形等腰三角形 B. B. B.等腰直角三角形等腰直角三角形等腰直角三角形 C. C. C.直角三角形直角三角形直角三角形 D. D. D.不不能确定能确定3、.等边三角形的边长是10,它的高的平方等于()它的高的平方等于()A.50 B.75 C.125 D.200 4、如图,有一块田地的形状和尺寸如图所示,则它的面积为、如图,有一块田地的形状和尺寸如图所示,则它的面积为_______________..5、 一根棍子放在一个长方体无盖盒子里,盒子的长宽高分别为4cm 4cm、、3cm 3cm、和、和12cm 12cm,若要,若要保证棍子全部放在盒子里,则这个盒子最长能放保证棍子全部放在盒子里,则这个盒子最长能放_____cm _____cm 的棍子.的棍子.6、在三角形ABC 中, ∠C=90C=90°°,BC=6,AC=8,,BC=6,AC=8,则三角形则三角形ABC 中最长边上的高为(中最长边上的高为( ))7、 在三角形ABC 中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm,试说明三角形ABC 是等腰三角形.8、在某一平地上,有一棵高8米的大树,一棵高3米的小树,两树之间相距12米。

第十八章《勾股定理》分知识点期末专题练习

第十八章《勾股定理》分知识点期末专题练习

4图145°勾股定理直接运用勾股定理:例一 如图1,图中有一个正方形,此正方形的面积是( )A.16B.8C.4D.2练 习 1、 一架4.1m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m .那么梯子的顶端与地面的距离是( )A.3.2mB.4.0mC.4.1mD.5.0m 2、一根大树被台风刮断,若树离地面3米处折断,树顶端落在离树底部4米处,则树折断之前有 ( )A .5米B .7米C .8米D .10米 3、一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( ) A.18cm B.20cm C.24cm D.25cm4、在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.则AB 的长为 。

⑵已知17AB =,15AC =,则BC 的长为 。

应用勾股定理建立方程1、在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =2、已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为3、已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为4、如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长5、如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积勾股定理的逆定理勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13判断直角三角形(勾股定理逆定理应用):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:1有一个角为90°的三角形是直角三角形。

八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版

第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。

勾股定理知识点梳理及典型题

勾股定理知识点梳理及典型题

勾股定理一、知识归纳 1、勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2、勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形3、勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系 4、勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。

勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;二、题型题型一:直接考查勾股定理例1. 在ABC ∆中,90C ∠=︒⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 (分析:直接应用勾股定理222a b c +=)题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =勾股典型题:一、填空题1.已知一个Rt△的两边长分别为3和4,则第三边长是2.如图,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的母线L是________3.直角三角形两直角边长分别为5 和12,则斜边上的高为________.4. 已知等腰三角形的腰长是6cm,底边长是8cm,那么这个等腰三角形的面积是 .5.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是10,B的面积是11,C的面积是13,则D的面积之为_______.6.如图,C 、D 分别是一个湖的南、北两端A 和B 正东方向的两个村庄,CD = 6 km ,且D 位于C 的北偏东30°方向上,则AB =______km .7. 如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行___________米.8.如图,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 和 2 , 则正方形的ABCD 的面积是 .9. 如图是一个长方体长4、宽3、高12,则图中阴影部分的三角形的周长为__________。

勾股定理知识点及典型例题

勾股定理知识点及典型例题

八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法7、错误的描述方法:“当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形勾股定理:(一)结合三角形:1.已知∆ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则∆ABC 为 三角形2.在∆ABC 中,若2a =(b +c )(b -c ),则∆ABC 是 三角形,且∠ ︒90 3.在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长为 4、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。

勾股定理典型例题【含答案】

勾股定理温习一、知识要点:一、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也确实是说:若是直角三角形的两直角边为a、b,斜边为c ,那么a2 + b2= c2。

公式的变形:a2 = c2- b2,b2= c2-a2 。

勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。

它是直角三角形的一条重要性质,揭露的是三边之间的数量关系。

它的要紧作用是已知直角三角形的两边求第三边。

勾股定理是一个大体的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。

二、勾股定理的逆定理若是三角形ABC的三边长别离是a,b,c,且知足a2 + b2= c2,那么三角形ABC 是直角三角形。

那个定理叫做勾股定理的逆定理.该定理在应历时,同窗们要注意处置好如下几个要点:①已知的条件:某三角形的三条边的长度.②知足的条件:最大边的平方=最小边的平方+中间边的平方.③取得的结论:那个三角形是直角三角形,而且最大边的对角是直角.④若是不知足条件,就说明那个三角形不是直角三角形。

3、勾股数知足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必需是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

4、最短距离问题:要紧运用的依据是两点之间线段最短。

二、知识结构:三、考点剖析考点一:利用勾股定理求面积求:(1) 阴影部份是正方形; (2) 阴影部份是长方形; (3) 阴影部份是半圆.2. 如图,以Rt △ABC 的三边为直径别离向外作三个半圆,试探讨三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例如图2,已知△ABC 中,AB =17,AC =10,BC 边上的高,AD =8,则边BC 的长为( )A .21B .15C .6D .以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长别离为1cm ,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长别离为5和12, 求斜边上的高.(结论:直角三角形的两条直角边直角三角形 勾股定理应用判定直角三角形的一种方法的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:应用勾股定明白得决楼梯上铺地毯问题例、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。

跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。

/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。

A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。

勾股定理知识点、经典例题

勾股定理知识点及例题一、基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab(4)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c,b,a)C2:勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

3:勾股数(1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数(又称为商高数或毕达哥拉斯数)(2)记住常见的勾股数可以提高解题速度,①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.等(3)用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)如果(a,b,c)是勾股数,当m> 0时,以am, bm, cm 为三角形的三边长,此三角形必为直角三角形 规律方法指导 (1).勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。

3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。

5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。

E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。

7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 贵阳梦想成真教育辅导中心内部资料 北师大版八年级数学上 第1章《勾股定理》试卷(D)

【全章知识点分析及典型例习题】 一、基础知识点: 1..勾股定理 直角三角形两直角边的平方和等于斜边的平方。 如果直角三角形的两直角边分别为a,b,斜边为c,那么222abc 2..勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,

对于锐角三角形和钝角三角形的三边就不具有这一特征。 4.勾股定理的应用 解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题 ①已知直角三角形的任意两边长,求第三边。②可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222abc中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25; 8,15,17等 ③用含字母的代数式表示n组勾股数:

221,2,1nnn(2,nn为正整数);

2221,22,221nnnnn(n为正整数)2222,2,mnmnmn(,mnm,n为正整数)

二、经典例题精讲

题型一:直接考查勾股定理 例题1在ABC中,90C. ⑴已知6AC,8BC.求AB的长 ⑵已知17AB,15AC,求BC的长分析:直接应用勾股定理222abc 已知等腰三角形的周长是20cm,底边上的高是6cm,则底边长为___________.

题型二:利用勾股定理测量长度

例题2 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题3 如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5

米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC. 题型三:勾股定理和逆定理并用 例题4 如图3,正方形ABCD中,E是BC边上的中点,F是AB上一点,且ABFB41那么△DEF是直角三角形吗?为什么? 2

例题5变式 题型四:利用勾股定理求线段长度 例题5 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC

边上的点F,求CE的长.(本题接下来还可以求折痕的长度和重叠部分的面积。) 如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积 (2)判断△ABC是什么形状? 并说明理由.

题型五:利用勾股定理逆定理判断垂直

例题6如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得AD=80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去验证AD边与CD边是否垂直? 例题7 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开? 题型六:旋转问题:

例8图 变式1 变式2 例题8、如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,求PP′的长。

变式1:如图,P是等边三角形ABC内一点,PA=2,PB=23,PC=4,求△ABC的边长. 分析:利用旋转变换,将△BPA绕点B逆时针选择60°,将三条线段集中到同一个三角形中, 根据它们的数量关系,由勾股定理可知这是一个直角三角形. 变式2、如图,△ABC为等腰直角三角形,∠BAC=90°,E、F是BC上的点,且∠EAF=45°,

试探究222BECFEF、、间的关系,并说明理由.

题型七:关于翻折问题 例题9、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点 B恰好落在CD边上的点G处,求BE的长. 变式:如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点C落在点C’的位置,BC=4,求BC’的长.

例题9图 例题9变式 例题10 3

题型八:关于勾股定理在实际中的应用: 例题10、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

题型九:关于最短性问题 例题11、如图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算) 变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?

例题11变式 三、课后训练: (一)、填空题 1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.

图(1) 图(2) 2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。 3.已知:如图,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于 cm 4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处, 距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高____________________米。 5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、 2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_____________. (二)、选择题 1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( ) A、25 B、14 C、7 D、7或25 2.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为( ) A、121 B、120 C、132 D、不能确定 3.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A、60∶13 B、5∶12 C、12∶13 D、60∶169 4.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )

C O A B

D E

F 第3题图

D B

C A 第4题图

2032

A

B 4

A、24cm2 B、36cm2 C、48cm2 D、60cm2 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A、56 B、48 C、40 D、32 6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A、450a元 B、225a 元 C、150a元 D、300a元

7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A、6cm2 B、8cm2 C、10cm2 D、12cm2 8.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为 A.42 B.32 C.42或32 D.37或33 9. 如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( ) (A)直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对 (三)、计算 1、如图,A、B是笔直公路l同侧的两个村庄,且两个村庄到直路的距离分别是300m和500m,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?

2、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P: ①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由. ②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.

勾股定理习题 1.如图RtABC,90C3,4ACBC,分别以各边为直径作半圆,求阴影部分面积

BA

CABCDE

150° 20m 30m 第6题图

A

B E

F D

C 第7题图

ABC

ABl

相关文档
最新文档