初二数学经典讲义 勾股定理(基础)知识讲解

初二数学经典讲义 勾股定理(基础)知识讲解
初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础)

【学习目标】

1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条

边长求出第三条边长.

2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.

3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.

【要点梳理】

【高清课堂 勾股定理 知识要点】

要点一、勾股定理

直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为

a b ,,斜边长为c ,那么222a b c +=.

要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.

(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线

段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解

决问题的目的.

(3)理解勾股定理的一些变式:

222a c b =-,222b c a =-, ()2

22c a b ab =+-.

要点二、勾股定理的证明

方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.

图(1)中,所以.

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.

图(2)中,所以.

方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用

1. 已知直角三角形的任意两条边长,求第三边;

2. 用于解决带有平方关系的证明问题;

3. 利用勾股定理,作出长为

的线段. 【典型例题】

类型一、勾股定理的直接应用

1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .

(1)若a =5,b =12,求c ;

(2)若c =26,b =24,求a .

【思路点拨】利用勾股定理222a b c +=来求未知边长.

【答案与解析】

解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,

所以2222251225144169c a b =+=+=+=.所以c =13.

(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,

所以222222624676576100a c b =-=-=-=.所以a =10.

【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.

举一反三:

【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .

(1)已知b =2,c =3,求a ;

(2)已知:3:5a c =,b =32,求a 、c .

【答案】

解:(1)∵ ∠C =90°,b =2,c =3,

∴ 2222325a c b =-=-;

(2)设3a k =,5c k =.

∵ ∠C =90°,b =32,

∴ 222a b c +=.

即222(3)32(5)k k +=.

解得k =8.

∴ 33824a k ==?=,55840c k ==?=.

类型二、勾股定理的证明

2、如图所示,在Rt △ABC 中,∠C =90°,AM 是中线,MN ⊥AB ,垂足为N ,

试说明222

AN BN AC -=.

【答案与解析】

解:因为MN ⊥AB ,所以222AN MN AM +=,222BN MN MB +=,

所以2222AN BN AM BM -=-. 因为AM 是中线,所以MC =MB .

又因为∠C =90°,所以在Rt △AMC 中,222AM MC AC -=,

所以222AN BN AC -=.

【总结升华】证明带有平方的问题,主要思想是找到直角三角形,利用勾股定理进行转化.若没有直角三角形,常常通过作垂线构造直角三角形,再用勾股定理证明.

类型三、利用勾股定理作长度为n 的线段

3、作长为、、的线段.

【思路点拨】由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于

,直角边为和1的直角三角形斜边长就是

,类似地可作.

【答案与解析】

作法:如图所示

(1)作直角边为1(单位长度)的等腰直角△ACB ,使AB 为斜边;

(2)作以AB 为一条直角边,另一直角边为1的Rt

,斜边为; (3)顺次这样做下去,最后做到直角三角形

,这样斜边、、、

的长度就是、、、. 【总结升华】(1)以上作法根据勾股定理均可证明是正确的;(2)取单位长度时可自定,一

般习惯用国际标准的单位,如1cm 、1m 等,我们作图时只要取定一个长为单位即可. 类型四、利用勾股定理解决实际问题

4、一圆形饭盒,底面半径为8cm ,高为12cm ,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?

【答案与解析】

解:如图所示,因为饭盒底面半径为8cm ,所以底面直径DC 长为16cm .

则在Rt △BCD 中,222BD DC BC =+,

所以2222161220BD DC BC =+=+=(cm ).

答:筷子最长不超过20cm ,可正好盖上盒盖.

【总结升华】本题实质是求饭盒中任意两点间的最大距离,其最大距离是以饭盒两底面的一对平行直径和相应的两条高组成的长方形的对角线长.

举一反三:

【变式】如图所示,一旗杆在离地面5m 处断裂,旗杆顶部落在离底部12m 处,则旗杆折断前有多高?

【答案】

解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5m ,AC =12m ,

∴ 22222

512169AB BC AC =+=+=.

∴ 16913AB ==(m ).

∴ BC +AB =5+13=18(m ).

∴ 旗杆折断前的高度为18m .

【高清课堂 勾股定理 例3】

5、如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )

A .3

B .4

C .5

D .6

【答案】D ;

【解析】

解:设AB =x ,则AF =x ,

∵ △ABE 折叠后的图形为△AFE ,

∴ △ABE ≌△AFE .BE =EF ,

EC =BC -BE =8-3=5,

在Rt △EFC 中,

由勾股定理解得FC =4,

在Rt △ABC 中,()2

2284x x +=+,解得6x =. 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解.

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

勾股定理复习讲义

勾股定理复习讲义 【中考命题趋势】 本章内容在中考中多以填空题与选择题的形式出现,应结合直角三角形的有关性质、三角函数知识进行线段的计算或证明,近几年来,以实际问题为背景的探究题、材料分割题、实际应用题、网格试题不断涌出,题目多以中档题为主,这也是今后中考试题发展的重要趋势。 【知识点归纳】 123456?? ?? ?? ??? ???? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ??? 1、已知直角三角形的两边,求第三边勾股定理 2、求直角三角形周长、面积等问题 3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理相关概念性质 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证 a b c a b c a b c a b c a b a b a b b a 例题:

例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2 -,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2 + (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242 c m B 、36 2 c m C 、482 c m D 、602 c m 考点二:勾股定理的逆定理 (1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 (2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数) (3)直角三角形的判定方法: ①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 ②有一个角是直角的三角形是直角三角形。 ③两内角互余的三角形是直角三角形。 ④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。 例题: 例1:勾股数的应用 (1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,17 (2)若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理(讲义)

勾股定理 一、知识归纳 1.勾股定理 容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 += a b c 2.勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 3.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ∠=?,则c,b=,a= ?中,90 C ②知道直角三角形一边,可得另外两边之间的数量关系 二、题型 题型一:直接考查勾股定理 例1. 在ABC C ∠=? ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AB=,15 AC=,求BC的长 解: 题型二:应用勾股定理建立方程

2 1 E D C B A 例2.⑴在AB C ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,C D AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 例3.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长

A B C D E 例4.如图Rt ABC ?,90C ∠=?3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积 题型三:实际问题中应用勾股定理 例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m

17.1勾股定理练习题(经典题型)

17.1勾股定理练习题 一、选择题 1、直角三角形的斜边比一直角边长2cm ,另一直角边长为6cm ,则它的斜边长( ) A 、4 cm B 、8 cm C 、10 cm D 、12 cm 2、如图①小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.5 3、△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、50a 元 B 、600a 元 C 、1200a 元 D 、1500a 元 4、如图②是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、 5、2、3,则最大正方形E 、94 5、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 6、等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、64 7、已知x 、y 为正数,且│x 2-4│+(y 2-3)2 =0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 8、△ABC 中,若AB=15,AC=13,高AD=12,则△ABC 的周长是( ) A.42 B.32 C.42或32 D.37或33 9、如图③,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,上只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A 、、25 C 、、35 10、如图④,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). A 、12 B 、7 C 、5 D 、13 二、填空题 1、在Rt ?ABC 中,∠C=900 ,∠A,∠B,∠C 所对应的边分别是a,b,c. (1)若a=3cm,b=4cm,则c= ;(2)若a=8cm,c=17cm,则b= ; (3)若b=24cm,c=25cm,则a= ;(4)若a:b=3:4,c=10cm,则a= ,b= . 2、在Rt ?ABC 中,∠A=900 ,a=13cm,b=5cm,则第三边c= . 3、已知直角三角形的两边长为5,12,则第三边的长为 . 4、在RtABC 中,斜边AB=2,则AB 2+AC 2+BC 2 =______. 5、直角三角形的三边长为连续偶数,则其周长为 . 6、直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为 cm. 7、如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑的高度是 m. 8、在Rt △ABC 中,∠C=90°,BC ∶AC=3∶4,AB=10,则AC=_______,BC=________. 9、在Rt ?ABC 中,∠C=90°,周长为60,斜边与一条直角边的比为13:5,则这个三角形的斜边长是 . 10、已知?ABC 中,AB=AC=10,BD 是AC 边上的高,DC=2,则BD= . 11、在?ABC 中,AB=17,AC=10,BC 边上的高AD=8,则边BC 的长为 . C C 图① 图② 图③

初二上勾股定理(经典题型)

初二上勾股定理(经典 题型) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

- 2 - 第十九章 几何证明 ——勾股定理及两点之间的距离公式 【知识回顾】 1、勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+(直角三角形两直角边的平方和等于斜边的平方。) 3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 4、常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)….. 5、勾股定理的证明图 6、两点之间的距离公式:2 122 12)()(y y x x AB -+-= 【例题讲解】 例题1、细心观察下图,认真分析各式,然后解答问题 (1)请用含n (n 是整数数)的等式表示上述变化规律;

(2)求出的值。 例题3、已知等腰三角形的周长是16cm,底边上的高是4cm,根据这些条件是否能求出这个等腰三角形的腰长和腰上高的长?若能,请把它们求出来,若不能,要说明理由。 例题2、如图所示,已知△ABC的三边 15= = =AC BC AB求△ABC , 20 25 , , 最长边上的高? 例题4、已知如图△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且 ∠EAF=45°,求证:EF2=BE2+FC2. - 3 -

- 4 - 例题5、如图,已知0090,60=∠=∠=∠D B A ,AB=2,CD=1,求BC 、AD 的长。 例题6、一只2.5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯脚移动的距离是多少?

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

勾股定理复习讲义

2 1E D C B A 勾股定理复习 班级______姓名_________ 一.知识归纳 1.勾股定理:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么____________, 2.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足________,那么这个三角形是_______,其中_____为斜边 如何判定一个三角形是否是直角三角形 (1)首先确定最大边(如c ).(2)验证2 c 与2 a +2 b 是否具有相等关系. 若2c =2a +2b ,则△ABC 是 ;若2c ≠2a +2 b ,则△ABC 不是 . 3.勾股数 ①能够构成直角三角形的三边长的三个_________称为勾股数,即222a b c +=中,a ,b ,c 为_____整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如_______;_______;________;7,24,25等 题型一:直接考查勾股定理 例1.(1)在ABC ?中,90C ∠=?,17AB =,15AC =,BC = (2)在ABC ?中,90ACB ∠=?,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = (3)已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 (4)已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为 2cm 练习1:求下列阴影部分的面积: (1) 正方形S = ; (2)长方形S = ; (3)半圆S = ; 2:如图2,已知△ABC 中,AB =17,AC =10, BC 边上的高AD =8,则边BC 的长为 例2.如图ABC ?中,90C ∠=?,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 D C B A

勾股定理知识讲解

勾股定理知识点 学习要求: 学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来 判断一个三角 形是否是直角三角形。难点是各种拼图的理解和勾股定理的应用。 中考执占: I <7 八、、八\、? 主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合 考查。 一、探索勾股定理: 1?勾股定理(重点) 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么a 2 b 2 c 2 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方 注:勾股定理揭示的是直角三角形三边关系的定理, 只使用与直角三角形。 使用勾股定理时 首先确定最长边即斜边。 2 ?勾股定理的证明(难点) 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法二:见右图 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2 _ 2 2 2 大正方形面积为 S (a b ) a 2ab b 所以a 2 b 2 c 2 1 11 方法三:S 梯形 (a b ) (a b ) , S 梯形2S ADE S ABE 2 2 2 得证 方法一:4S S 正方形EFGH St 方形 ABCD , 1 4 ab 2 (b a)2 c 2,化简可证. b a

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

初二数学勾股定理讲义经典

第一章 勾股定理 【知识点归纳】 123456?? ?? ?? ??? ?? ?? ?? ??? ? ?? ?? ??? ?????????? ?? ?? ?? ????? ?? ?? ?? ???1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状 3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题 勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理 (1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)结论: ①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证

a b c a b c a b c a b c a b a b a b b a 例题: 例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、1n 2+ (3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( ) A.222a b c += B. 222a c b += C. 222c b a += D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 (2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c m B 、36 2c m C 、482c m D 、602c m (3)已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 例3:探索勾股定理的证明

勾股定理经典例题详解

勾股定理经典例题详解 Last revised by LE LE in 2021

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

八年级下册勾股定理典型例题

D 人教版数学第十七章《勾股定理》必刷题 如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米? (2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗? 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号) 细心观察图形,认真分析各式,然后解答问题. OA 22= 2 1+1=2,1S 1 ; OA 32=12+(2 2=3,2S 2 ; OA 42=12+(2 3=4,3S 3… (1)请用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = . (2)求出OA 10的长. (35,计算说明他是第几个三角形? (4)求出S 12+S 22+S 32+…+S 102的值.

如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了 1003km到达B点,然 后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离. 如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度. 60° 30° D B A C

小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一直线上)问: (1)楼高多少米? (2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由. 1.73 ≈1.41 ≈2.24) B A C 如图,某城市接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度移动,已知城市A 到BC 的距离AD=100km . (1)台风中心经过多长时间从B 移动到D 点? (2)已知在距台风中心30km 的圆形区域内都会受到不同程度的影响,若在点D 的工作人员早上6: 00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作? B A

勾股定理实际应用(讲义及答案)

勾股定理实际应用(讲义) 课前预习 1. 常用的6组勾股数:___________;__________;___________;___________;__________;___________.2. 请你画出圆柱的侧面展开图. 3.读一读,做一做 小聪郊游时发现了一个有趣的问题:有一只蚂蚁从易拉罐底部爬向易拉罐顶部的罐口处喝饮料,在侧面留下了其爬行的轨迹.小聪观察后发现,蚂蚁爬行的路径是一条曲线,小聪想知道蚂蚁具体爬行了多长,于是邀请小明一起来研究这个问题.经过一番讨论,小聪和小明分别准备尝试用两种方法来进行测量. 方案一:小聪准备用一根绳子沿着蚂蚁爬过的轨迹来进行测量,然后再借助绳子的长度来估计爬行的路程,如图1.方案二:小明准备将易拉罐侧面剪开,然后用尺子直接测量蚂蚁爬行的路程.小明剪开易拉罐侧面,将其展开后发现,蚂蚁爬行的路径竟然是一条笔直的线段,如图2. 请你选一张长方形纸片,画出他的对角线,然后卷成一个圆柱,并参照小聪和小明的方法,动手测量一下这条线的长度.图1 图2

知识点睛 蚂蚁爬最短路问题处理思路: (1)________________________; (2)找点,连线; (3)构造__________,利用__________进行计算. 精讲精练 1.有这样一个有趣的问题:如图所示,圆柱的高等于8cm,底 面半径等于2cm.在圆柱的下底面的A点处有一只蚂蚁,它想吃到上底面上与A相对的B点处的食物,则蚂蚁沿圆柱的侧面爬行的最短路程是__________.(π取整数3) 2.如图,一根藤蔓一晚上生长的长度是沿树干爬一圈后由点A 上升到点B,已知AB=5cm,树干的直径为4cm.你能计算出藤蔓一晚上生长的最短长度吗?(π取整数3)

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

相关文档
最新文档