2018届福建省漳州市诏安县初中毕业班第二次中考模拟数学试题及答案 精品 精品

合集下载

中考第二次模拟检测《数学试卷》含答案解析

中考第二次模拟检测《数学试卷》含答案解析

第I 卷(选择题)一、选择题(每题3分,共30分)1.计算()3.6 5.4--的结果是( )A .1.8B .9C .-9D .-1.82.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )A .B .C .D .3.如图,四个图形中的∠1和∠2,不是同位角的是( )A .B .C .D .4.下列计算中,正确的是( )A .235a a a +=B .326a a a ⋅=C .321a a ÷=D .()33a a -= 5.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 6.如图,在ABC ∆中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54,48A B ∠=∠=,则CDE ∠的大小为()A .44B .40C .39D .387.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为( )A .x>-1B .x<-1C .x>3D .x<38.如图,已知AB =3,BC =4,将矩形ABCD 沿对角线BD 折叠点C 落在点E 的位置,则AE 的长度为( )A .85B .125C .3D .759.如图,AB 是O 的直径,CD 是弦,CD AB ,30BCD ∠=︒,6AB =,则AC 的长为( )A .πB .4πC .2πD .15π10.如图,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠交于A,B 两点,且点A 的横坐标是2-,点B 的横坐标是3,则以下结论:①抛物线2(0)y ax a =≠的图象的顶点一定是原点;②0x >时,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当32x -<<时,2ax kx b +<.其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④第II 卷(非选择题)二、填空题(每题3分,共12分)11______.12.如图,是某个正多边形的一部分,则这个正多边形是_______边形.13.已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=2x的图象上运动,当线段PA 与线段PB 之差的绝对值最大时,点P 的坐标为_____. 14.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,AM 长为半径作弧,交OC 于点M ';③以点M '圆心,MN 长为半径作弧,在COB ∠内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若8AB =,则线段OE 的长为__________.三、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算:()()-20201921-2 3.14---12π⎛⎫++ ⎪⎝⎭ 16.解方程: 22142x x x +=-- 17.如图,点C,D 分别在射线OA 、OB 上,求作⊙P,使它与OA 、OB 、CD 都相切.(使用直尺、圆规、直角板作图并保留作图痕迹)18.如图,菱形ABCD 中,点E 是边AD 上一点,延长AB 至点F ,使BF =AE ,连结BE ,CF .求证:BE =CF .19.大雁塔南广场玄奘铜像是为纪念唐代高僧玄奘而设计.在一次课外活动中,甲、乙两位同学测量玄奘铜像的高度他们分别在A ,B 两处用高度为1.8m 的测角仪测得铜像顶部C 的仰角分别为30°,60°,两人间的水平距离AB 为10m ,求玄奘铜像的高度CF .(结果保留根号)20.某商场用两个月时间试销某种新型商品,经市场调查,该商品的第x 天的进价y (元/件)与x (天)之间的相关信息如下表:该商品在销售过程中,销售量m (件)与x (天)之间的函数关系如图所示:在销售过程中,商场每天销售的该产品以每件80元的价格全部售出.(1)求该商品的销售量m(件)与x(天)之间的函数关系;(2)设第x天该商场销售该商品获得的利润为w元,求出w与x之间的函数关系式,并求出第几天销售利润最大,最大利润是多少元?(3)在销售过程中,当天的销售利润不低于2400元的共有多少天?21.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P(一次拿到7元本)23 =.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法...求嘉嘉两次都拿到7元本的概率.22.某跳高集训队,对集训队员进行了一次跳高测试,经过统计,将集训队员的测试成绩(单位:m),绘制成尚不完整的扇形统计图(图①)与条形统计图(图②).(1)a=________,请将条形统计图补充完整;(2)求集训队员测试成绩的众数;(3)教练发现,测试成绩不包括两名请假的队员,补测后,把这两名队员的成绩(均是0.05的整数倍)与原测试成绩并成一组新数据,求新数据的中位数.23.如图,AE是△ABC外接圆O的直径,连结BE,作AD⊥BC于D.(1)求证:△ABE∽△ADC;(2)若AB=8,AC=6,AE=10,求AD的长.24.如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC中,AF、BE是中线,AF⊥BE于P.若BP=2,∠F AB=30°,则EP=,FP=;(2)如图1,在△ABC中,BC=a,AC=b,AB=c,AF、BE是中线,AF⊥BE于P.猜想a2、b2、c2三者之间的关系并证明;(3)如图2,在▱ABCD中,点E、F、G分别是AD、BC、CD的中点,BE⊥BG,AB=3,AD求AF的长.答案与解析第I 卷(选择题)二、选择题(每题3分,共30分)1.计算()3.6 5.4--的结果是( )A .1.8B .9C .-9D .-1.8【答案】B【解析】()3.6 5.4 3.6 5.49--=+=;故选择:B.2.将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )A .B .C .D .【答案】B【解析】按照图中顺序进行操作,展开后心形图案应该靠近正方形上下两边,且关于中间折线对称,故只有B 选项符合.故选B.3.如图,四个图形中的∠1和∠2,不是同位角的是( )A .B .C .D .【答案】D【解析】A 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;C 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;D 、∠1、∠2有一条边在一条直线上,另一条边在被截线的同一方,是同位角;D 、∠1、∠2的两条边都不在一条直线上,不是同位角;故选:D4.下列计算中,正确的是( )A .235a a a +=B .326a a a ⋅=C .321a a ÷=D .()33a a -= 【答案】A【解析】A 、235a a a +=,故原题计算正确,符合题意;B 、325a a a ⋅=,故原题计算错误,不合题意;C 、32a a a ÷=,故原题计算错误,不合题意;D 、()33a a -=-,故原题计算错误,不合题意.故选:A.5.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A .6.如图,在ABC ∆中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54,48A B ∠=∠=,则CDE ∠的大小为()A .44B .40C .39D .38【答案】C 【解析】∵∠A=54°,∠B=48°,∴∠ACB=180°-∠A -∠B =78°.∵CD 平分∠ACB,∴∠DCB=∠ACD=39°.∵DE ∥BC,∴∠CDE=∠DCB=39°.故选C.7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x> k1x+b的解集为( )A.x>-1B.x<-1C.x>3D.x<3【答案】B【解析】由图可知两直线交点的横坐标为-1,则k2x>k1x+b的解集为x<-1,故选B.8.如图,已知AB=3,BC=4,将矩形ABCD沿对角线BD折叠点C落在点E的位置,则AE的长度为()A.85B.125C.3D.75【答案】D【解析】设FD=x,则AF=4﹣x,∵将矩形ABCD沿对角线BD折叠点C落在点E的位置,∴∠FBD=∠DBC,BE=BC,∵矩形ABCD,∴AD∥BC,AD=BC,∴∠ADB=∠DBC,BE=AD,∴∠ADB=∠FBD,∴FB=FD=x,在直角△AFB 中,x 2=(4﹣x )2+32,解之得,x =258,AF =4﹣x =78,∵BE=AD,FB=FD,∴AF=EF, ∴AFEF=FD FB ,∵∠AFE=∠DFB,∴△AFE ∽△DFB , ∴AFAE=FD DB ,∴78258解得AE =75.故选:D .9.如图,AB 是O 的直径,CD 是弦,CD AB ,30BCD ∠=︒,6AB =,则AC 的长为()A .πB .4πC .2πD .15π【答案】A【解析】如图,连接OC,则132OC AB ==//CD AB ,30BCD ∠=︒30BCD ABC ∴=∠=∠︒260AOC ABC ∴∠=∠=︒则AC 的长为603180ππ⨯=故选:A .10.如图,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠交于A,B 两点,且点A 的横坐标是2-,点B 的横坐标是3,则以下结论:①抛物线2(0)y ax a =≠的图象的顶点一定是原点;②0x >时,一次函数(0)y kx b k =+≠与抛物线2(0)y ax a =≠的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当32x -<<时,2ax kx b +<.其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】①抛物线2y ax =,利用顶点坐标公式得顶点坐标为()0,0,正确.②由题图可知,在y 轴右侧,即当0x >时,一次函数与抛物线的函数值都随x 的增大而增大,正确.③如解图,过点A 作x 轴的平行线,过点B 作y 轴的平行线,两线相交于点D.在Rt ABD ∆中,由A 、B 横坐标分别为2-,3,可知5AD =,故5AB >,错误.④直线y kx b =-+与y kx b =+关于y 轴对称,如解图所示,可得出直线y kx b =-+与抛物线交点E 、F 横坐标分别为3-,2,由解图可知当32x -<<时,2ax kx b <-+,即2ax kx b +<,正确. 综上所述,正确的结论有①②④.第II 卷(非选择题)二、填空题(每题3分,共12分)11______.【解析】由相反数的定义可知-,12.如图,是某个正多边形的一部分,则这个正多边形是_______边形.【答案】十【解析】由题意可得:该正多边形的边数为:360°÷36°=10.即该多边形是:十边形.故答案为:十.13.已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P在反比例函数y=2x的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为_____.【答案】(1,2)或(-2,-1)【解析】如图,设直线AB的解析式为y=kx+b,将A(0,1)、B(-1,0)代入,得:1-0b k b =⎧⎨+=⎩, 解得:11k b =⎧⎨=⎩, ∴直线AB 的解析式为y=x ﹣1, 直线AB 与双曲线y=2x的交点即为所求点P,此时|PA ﹣PB|=AB,即线段PA 与线段PB 之差的绝对值取得最大值,由+12y x y x =⎧⎪⎨=⎪⎩可得12x y =⎧⎨=⎩或-2-1x y =⎧⎨=⎩, ∴点P 的坐标为(1,2)或(-2,-1),14.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,AM 长为半径作弧,交OC 于点M ';③以点M '圆心,MN 长为半径作弧,在COB ∠内部交前面的弧于点N ';④过点N '作射线ON '交BC 于点E .若8AB =,则线段OE 的长为__________.【答案】4【解析】由题意可得出:'''',,AM OM AN ON MN M N ===∴''MAN M ON ≅ ∴''MAN M ON ∠=∠ ∴//OE AB ∵O 为AC 的中点 ∴OE 为ACB △的中位线 ∵8AB =∴142OE AB == 故答案为:4.四、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算:()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭【解析】()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2. 16.解方程:22142xx x +=-- 【解析】两边都乘(x+2)(x -2),得 2+x(x+2)=x 2-4, 2+ x 2+2x= x 2-4, 解得x=-3,经检验:x=-3是方程的解;17.如图,点C,D 分别在射线OA 、OB 上,求作⊙P,使它与OA 、OB 、CD 都相切.(使用直尺、圆规、直角板作图并保留作图痕迹)【解析】如图,作∠DOC 的平分线OM ,∠ODC 的平分线DN ,OM 交DN 于点P 1,作P 1F ⊥OD ,以P 1为圆心,P 1F 为半径作⊙P 1即可;同法作出⊙P 2.1P ,2P 即为所求;18.如图,菱形ABCD 中,点E 是边AD 上一点,延长AB 至点F ,使BF =AE ,连结BE ,CF .求证:BE =CF .【解析】∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC ,∴∠A =∠CBF .在△ABE 和△BCF 中,∵AE =BF ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (SAS),∴BE =CF .19.大雁塔南广场玄奘铜像是为纪念唐代高僧玄奘而设计.在一次课外活动中,甲、乙两位同学测量玄奘铜像的高度他们分别在A ,B 两处用高度为1.8m 的测角仪测得铜像顶部C 的仰角分别为30°,60°,两人间的水平距离AB 为10m ,求玄奘铜像的高度CF .(结果保留根号)【解析】设CG=x m, 在Rt △CGD 中,tan ∠CDG=CGDG,∴DG=CGtan CDG∠,在Rt △CGE 中,tan ∠CEG=CGGE,∴EG=3CG x tan CEG ∠=,由题意得,10x +=,解得,x =,即 ,∴CF=CG+GF=1.82+,答:玄奘铜像的高度CF 为 1.8⎫⎪⎪⎝⎭m . 20.某商场用两个月时间试销某种新型商品,经市场调查,该商品的第x 天的进价y (元/件)与x (天)之间的相关信息如下表:该商品在销售过程中,销售量m (件)与x (天)之间的函数关系如图所示: 在销售过程中,商场每天销售的该产品以每件80元的价格全部售出.(1)求该商品的销售量m (件)与x (天)之间的函数关系;(2)设第x 天该商场销售该商品获得的利润为w 元,求出w 与x 之间的函数关系式,并求出第几天销售利润最大,最大利润是多少元?(3)在销售过程中,当天的销售利润不低于2400元的共有多少天? 【解析】(1)设该商品的销售量m 与x 之间的函数关系为()0m kx b k =+≠ 由图可知,点()0,120,()50,20在m kx b =+上 将点()0,120,()50,20代入得1205020b k b =⎧⎨+=⎩解得2120k b =-⎧⎨=⎩则该商品的销售量m 与x 之间的函数关系为2120m x =-+; (2)由题意,分以下两种情况:①当130x ≤<时()()()2808070212021001200w y m x x x x =-⋅=+-⋅-+=-++()22252450x =--+由二次函数的性质可知,当25x =时,w 取得最大值,最大值为2450 ②当3050x ≤≤时()()80402120804800w x x =-⋅-+=-+∵800k =-< ∴w 随x 的增大而减小则当30x =时,w 取得最大值,最大值为803048002400-⨯+= 因24502400>故第25天时利润最大,最大利润为2450元综上,w 与x 之间的函数关系式为221001200(130)804800(3050)x x x w x x ⎧-++≤<=⎨-+≤≤⎩,第25天时利润最大,最大利润为2450元;(3)①当130x ≤<时,()22252450w x =--+ 则()222524502400x --+= ∴120x =或230x =∴2030x ≤<,利润不低于2400元即此时,共有10天的销售利润不低于2400元 ②当3050x ≤≤时,804800w x =-+ 则8048002400x -+≥ 解得30x ≤30x ∴=即此时,只有1天的销售利润不低于2400元 综上,共有11天的销售利润不低于2400元.21.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知P (一次拿到7元本)23 =.(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法...求嘉嘉两次都拿到7元本的概率.【解析】(1)∵P(一次拿到7元本)2 3 =,∴7元本的个数为6×23=4(个),按照从小到大的顺序排列为4,5, 7,7,7,7,∴这6个本价格的众数是7.(2)①相同;∵原来4、5、7、7、7、7,∴中位数为777 2+=,5本价格为4、5、7、7、7,中位数为7,∴77=,∴相同.②见图∴P(两次都为7)63 2010 ==.22.某跳高集训队,对集训队员进行了一次跳高测试,经过统计,将集训队员的测试成绩(单位:m),绘制成尚不完整的扇形统计图(图①)与条形统计图(图②).(1)a =________,请将条形统计图补充完整; (2)求集训队员测试成绩的众数;(3)教练发现,测试成绩不包括两名请假的队员,补测后,把这两名队员的成绩(均是0.05的整数倍)与原测试成绩并成一组新数据,求新数据的中位数. 【解析】(1)25;补全条形统计图如解图所示:()%110%20%30%15%25%a =-+++=,故25a =;测试成绩为1.50m 的有2人,占总人数的10%,故总人数为210%20÷=(人).则测试成绩为1.55m 的人数为2020%4⨯=(人). (2)由条形统计图可知,集训队员测试成绩的众数为1.65m ; (3)当两名请假队员的成绩均大于或等于1.65m 时,中位数为1.60 1.651.625(m)2+=;当两名请假队员的成绩均小于1.65m 或一个小于1.65m,一个大于或等于1.65m 时,中位数为1.60m. 23.如图,AE 是△ABC 外接圆O 的直径,连结BE,作AD ⊥BC 于D . (1)求证:△ABE ∽△ADC ;(2)若AB=8,AC=6,AE=10,求AD 的长.【解析】(1)如图,∵AE是△ABC外接圆O的直径,且AD⊥BC,∴∠ABE=∠ADC=90°;而∠E=∠C,∴△ABE∽△ADC.(2)∵△ABE∽△ADC,∴AB AEAD AC,而AB=8,AC=6,AE=10,∴AD=4.8.24.如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.【解析】(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,当m1=0时,y=﹣(x﹣1)2+1,当m2=2时,y=﹣(x﹣1)2+1,由上可得,当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)∵抛物线y=﹣(x﹣1)2﹣m2+2m+1,∴该抛物线的顶点P为(1,﹣m2+2m+1),当﹣m2+2m+1最大时,△PCD的面积最大,∵﹣m 2+2m+1=﹣(m ﹣1)2+2,∴当m=1时,﹣m 2+2m+1最大为2,∴y=﹣(x ﹣1)2+2,当y=0时,0=﹣(x ﹣1)2+2,得x 1,x 2=1,∴点C 的坐标为(1,0),点D 的坐标为,0)∴)﹣(1,∴S △PCD =22,即m 为1时△PCD 的面积最大,最大面积是;(3)将线段AB 沿y 轴向下平移n 个单位A(2,3﹣n),B(5,3﹣n)当线段AB 分成1:2两部分,则点(3,3﹣n)或(4,3﹣n)在该抛物线解析式上,把(3,3﹣n)代入抛物线解析式得,3﹣n=﹣(3﹣1)2﹣m 2+3m+1,得n=m 2﹣2m+6;把(4,3﹣n)代入抛物线解析式,得3﹣n=﹣(3﹣1)2﹣m 2+3m+1,得n=m 2﹣2m+11;∴n=m 2﹣2m+6或n=m 2﹣2m+11.25.我们知道三角形任意两条中线的交点是三角形的重心.重心有如下性质:重心到顶点的距离是重心到对边中点距离的2倍.请利用该性质解决问题(1)如图1,在△ABC 中,AF 、BE 是中线,AF ⊥BE 于P .若BP =2,∠F AB =30°,则EP = ,FP = ;(2)如图1,在△ABC 中,BC =a ,AC =b ,AB =c ,AF 、BE 是中线,AF ⊥BE 于P .猜想a 2、b 2、c 2三者之间的关系并证明;(3)如图2,在▱ABCD 中,点E 、F 、G 分别是AD 、BC 、CD 的中点,BE ⊥BG ,AB =3,AD 求AF 的长.【解析】(1)∵在△ABC 中,AF 、BE 是中线,∴BP =2EP =2,AP =2FP ,∴EP =1,∵AF ⊥BE ,∠F AB =30°,∴AB=2BP=4,∴AP =∴FP =12AP ;故答案为:(2)a 2+b 2=5c 2;理由如下:连接EF ,如图1所示:∵AF ,BE 是△ABC 的中线,∴EF 是△ABC 的中位线,∴EF ∥AB ,且EF =12AB =12c , ∴12PE PF PB PA ==, 设PF =m ,PE =n ,∴AP =2m ,PB =2n ,在Rt △APB 中,(2m )2+(2n )2=c 2,即4m 2+4n 2=c 2,在Rt △APE 中,(2m )2+n 2=(12b )2,即4m 2+n 2=14b 2, 在Rt △FPB 中,m 2+(2n )2=(12a )2,即m 2+4n 2=14a 2, ∴5m 2+5n 2=14(a 2+b 2)=54c 2, ∴a 2+b 2=5c 2;(3)连接AC、EC,如图2所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵点E,F分别是AD,BC,CD的中点,∴AE=CE,∴四边形AFCE是平行四边形,∴AF=CE,∵AD∥BC,∴△AEQ∽△CBQ,∴12 AQ EQ AECQ BQ BC===,设AQ=a,EQ=b,则CQ=2a,BQ=2b,∵点E,G分别是AD,CD的中点,∴EG是△ACD的中位线,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,由勾股定理得:AB2﹣AQ2=BC2﹣CQ2,即9﹣a22﹣4a2,∴3a2=11,∴a2=11 3,∴BQ2=4b22﹣4×113=163,∴b2=163×14=43,在Rt△EQC中,CE2=EQ2+CQ2=b2+4a2=16,∴CE=4,∴AF=4.。

〖汇总3套试卷〗漳州市2018年中考数学毕业升学考试三模试题

〖汇总3套试卷〗漳州市2018年中考数学毕业升学考试三模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.4【答案】C【解析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.2.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚【答案】A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用3.4-的相反数是( )A .4B .4-C .14-D .14【答案】A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A .【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.4.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+,得:36a+2.6=2,解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网,当x=18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C. 点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围. 5.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a·4abB .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1)【答案】D【解析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45° 【答案】D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D .【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.7.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°【解析】∵四边形ADA'E 的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED ,∠ADE=∠A'DE ,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE )=140°.8.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94 C.35 D .35 【答案】B【解析】试题解析:在菱形ABCD 中,6AC =,8BD =,所以4OA =,3OD =,在Rt AOD △中,5AD =, 因为11641222ABD S BD OA =⋅⋅=⨯⨯=,所以1122ABD S AB DH =⋅⋅=,则245DH =,在Rt BHD 中,由勾股定理得,22222418655BH BD DH ⎛⎫=-=-= ⎪⎝⎭,由DOG DHB ∽可得,OG OD BH DH =,即3182455OG =,所以94OG =.故选B.9.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°【解析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个【答案】B 【解析】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题包括8个小题)11.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是________.【答案】2a≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x ax x->⎧⎨->-⎩①②,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2.【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..12.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m.【答案】30【解析】分析:首先连接AO,求出AB的长度是多少;然后求出扇形的弧长弧BC为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.详解:如图1,连接AO,∵AB=AC,点O是BC的中点,∴AO⊥BC,又∵90BAC ∠=︒,∴45ABO ACO ∠=∠=︒, ∴2242()AB OB m ==,∴弧BC 的长为:90π4222π180=⨯⨯=(m), ∴将剪下的扇形围成的圆锥的半径是:22π2π2÷=(m),∴圆锥的高是:22(42)(2)30().m -=故答案为30.点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键. 13.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 14.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为 .【答案】1.【解析】∵AB =5,AD =12,∴根据矩形的性质和勾股定理,得AC =13.∵BO 为R t△ABC 斜边上的中线∴BO =6.5∵O 是AC 的中点,M 是AD 的中点,∴OM 是△ACD 的中位线∴OM =2.5∴四边形ABOM 的周长为:6.5+2.5+6+5=1故答案为115.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】1【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键. 16.如图,数轴上不同三点、、A B C 对应的数分别为a b c 、、,其中4, 3,||||a =AB =b =c ,则点C 表示的数是__________.【答案】1【解析】根据两点间的距离公式可求B 点坐标,再根据绝对值的性质即可求解.【详解】∵数轴上不同三点A 、B 、C 对应的数分别为a 、b 、c ,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B 点坐标.17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.【答案】1【解析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.182633=________. 3【解析】根据二次根式的运算法则先算乘法,再将3分母有理化,然后相加即可.【详解】解:原式=233+=3【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(本题包括8个小题)19.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.20.随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.【答案】()1200名;()2见解析;()336;(4)375.【解析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整; ()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数; ()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=; (4)501500375200⨯=, 答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【解析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.22.计算:2sin60°+|3|+(π﹣2)0﹣(12)﹣1 【答案】1【解析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×2+3+1﹣1=1. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.23.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.【答案】 (1) 现在平均每天生产1台机器.(2) 现在比原计划提前5天完成.【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x 台机器,则原计划可生产(x-50)台. 依题意得:60045050x x =-, 解得:x=1.检验x=1是原分式方程的解.(2)由题意得3000300020050200--=20-15=5(天) ∴现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.24.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:y=()()220110401015x x x x x ⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x 天创造的产品利润为W 元.直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?【答案】(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x16260(11020520(1015x x xx x x⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.25.如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.求证:△ADE≌△CBF;若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.【答案】(1)证明见解析;(2)若∠ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF 是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,在△ADE和△CBF中,{AD BC A C AE CF=∠=∠=,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在▱ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定26.如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.【答案】65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC)=180°-12×230°=65°.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体【答案】D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.2.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.2【答案】B【解析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.3.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 【答案】D【解析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.4.空气的密度为0.00129g/cm 3,0.00129这个数用科学记数法可表示为( )A .0.129×10﹣2B .1.29×10﹣2C .1.29×10﹣3D .12.9×10﹣1【答案】C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C .考点:科学记数法—表示较小的数.5.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米【答案】C 【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C.6.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【答案】A【解析】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵22AF AB,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm2【答案】B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.9.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【答案】D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.10.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°【答案】A【解析】利用三角形内角和求∠B ,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.二、填空题(本题包括8个小题)11.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.【答案】1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.12.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 【答案】4;【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,13.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.【答案】3【解析】如图,延长CE 、DE ,分别交AB 于G 、H ,由∠BAD=∠ADE=60°可得三角形ADH 是等边三角形,根据等腰直角三角形的性质可知CG ⊥AB ,可求出AG 的长,进而可得GH 的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案. 【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB=22AC CB+=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.14.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】1【解析】设点P(m,m+2),∵10,∴()222m m++10,解得m1=1,m2=﹣1(不合题意舍去),∴点P(1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键. 15.若圆锥的母线长为4cm ,其侧面积212cm π,则圆锥底面半径为 cm .【答案】3【解析】∵圆锥的母线长是5cm ,侧面积是15πcm 2,∴圆锥的侧面展开扇形的弧长为:l=2305s r π==6π, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622l πππ==3cm , 16.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.【答案】6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即: 第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒,第3个图形有10=6×1+8根火柴棒,……,第n 个图形有6n+1根火柴棒.17.化简:a b a b b a+--22= __________. 【答案】a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。

2018年中考第二次模拟考试参考答案

2018年中考第二次模拟考试参考答案

互信;包容互鉴;达成政治上、战略上的互信,广泛开展合作等 (符合题意,言之有理,答出两点即可,2分)
18.(1)三国同盟和三国协约;法西斯上台,对外侵略。

(3分)
(2)造成巨大人员伤亡;“凡尔赛﹣﹣华盛顿体系”;标志世界方反法西斯战争胜利。

(3分)
(3)联合国;(1分)冷战;地区冲突;民族矛盾;宗教纷争;恐怖主义;霸权主义和强权政治(任意答出两点即可,2分)大力发展经济,增强综合国力;走和平发展的道路;加强国际交流与合作,通过协商解决争端;坚决反对霸权主义和强权政治;奉行和平共处五项原则。

(意思相同或相近即可,答出1点,1分)
九年级历史试卷第1页(共4页)。

福建省漳州市诏安县2013届初中数学毕业班第二次模拟试题

福建省漳州市诏安县2013届初中数学毕业班第二次模拟试题

2013届诏安县初中毕业班模拟卷(2)数 学 试 卷(满分:150分 考试时间:120分钟)友情提示:请把所有答案填写(涂)到答题卡上!请不要错位、越界答题!注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,后必须用黑色签字笔.....重描确认,否则无效.一、选择题(共10题,每题4分,满分40分。

每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.12-的绝对值是A .2B .2-C .12D .12-2.下列运算正确的是A .235a b ab +=B .235a a a ⋅=C .33(2)6a a =D .623a a a ÷= 3.下列图形中,既是轴对称图形又是中心对称图形的是4.如图是由5个相同的小正方体组成的立体图形,它的俯视图是A .B .C .D .5.如果b a =32,则bb a +等于 A .311 B .21 C .53 D .356.下列调查中,调查方式选择正确的是A .为了解1000个灯泡的使用寿命,选择普查B .为了解某公园全年的游客流量,选择抽样调查C .为了解生产的一批炮弹的杀伤半径,选择普查D .为了解一批袋装食品是否含有防腐剂,选择普查 7.下列命题是真命题的是A .如果|a |=1,那么a =1B .一组对边平行的四边形是平行四边形C .如果a 是有理数,那么a 是实数D .对角线相等的四边形是矩形 8.如果反比例函数y =xk 1-的图象经过点(-1,-2),则k 的值是 A .2 B .-2 C .-3 D .39.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为A .15πcm 2B .30πcm 2C .60πcm 2D .3cm 210.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA —弧AB —BO 的路径运动一周.设OP 为s,运动(第4题图)时间为t ,则下列图形能大致地刻画s 与t 之间关系的是A B C D二、填空题(共6题,每题4分,共24分。

2018福建中考数学试题及答案b

2018福建中考数学试题及答案b

2018福建中考数学试题及答案b一、选择题(每题2分,共10分)1. 下列选项中,哪个是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 以下哪个不是二次根式?A. √4B. √(-1)C. √9D. √16答案:B5. 如果一个多项式P(x) = ax^2 + bx + c,其中a、b、c都是常数,且P(1) = 2,P(2) = 8,P(3) = 18,那么a的值是多少?A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个数的立方等于-8,这个数是______。

答案:-27. 如果一个圆的半径是r,那么它的面积是______。

答案:πr²8. 一个数的相反数是-5,这个数是______。

答案:59. 如果一个分数的分子是3,分母是5,那么它的倒数是______。

答案:5/310. 一个数的绝对值是7,这个数可以是______或______。

答案:7 或 -7三、解答题(每题10分,共30分)11. 解方程:2x + 5 = 11。

答案:首先将5移到等式右边,得到2x = 11 - 5,即2x = 6。

然后将等式两边除以2,得到x = 3。

12. 证明:如果一个三角形的两边长分别是a和b,且a + b > c(c 是第三边),那么这个三角形是存在的。

答案:根据三角形不等式定理,任意两边之和大于第三边,所以如果a + b > c,那么可以构成一个三角形。

13. 计算:(3x - 2)(x + 4)。

答案:使用分配律,我们有 (3x - 2)(x + 4) = 3x * x + 3x * 4 - 2 * x - 2 * 4 = 3x² + 12x - 2x - 8 = 3x² + 10x - 8。

最新-2018年九年级数学高中自主招生试题及答案【漳州市】 精品

最新-2018年九年级数学高中自主招生试题及答案【漳州市】 精品

2018年漳州市高中自主招生四校联考数 学 模 拟 试 卷(满分:150分;考试时间:120分钟)亲爱的同学:欢迎你参加本次考试!请细心审题,用心思考,耐心解答.祝你成功! 答题时请注意:请将答案或解答过程写在答题卷的相应位置上,写在试卷上不得分.一、选择题(本大题共有10小题,每小题4分,共40分.每小题都有A 、B 、C 、D 四个选项,其中有且只有一个选项是正确的,请将正确答案的代号填写在答题卷中相应的表格内,答对得4分,答错、不答或答案超过一个的得零分)1.下列四个算式:3227)()a a a -⋅-=-(; 623)(a a -=-; 2433)(a a a -=÷-;336)()(a a a -=-÷-中,正确的有 ( )A .0个 B.1个 C.2个 D.3个 2.下列因式分解中,结果正确的是( )A.2322()x y y yx y -=-B.424(2)(x x x x -=+C.211(1)x x x x x--=-- D.21(2)(1)(3)a a a --=--3、如图是由几个小立方块所搭几何体的俯视图 ,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是 ( )A B C 4.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应准备的白球,红球,黄球的个数分别为( )A. 3,2,1B. 1,2,3C. 3,1,2D.无法确定 5.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(–2)+1=8.现将实数对...(–2,3)放入其中得到实数m ,再将实数对...(m ,1)放入其中后,得到的实数是( ) A. 8 B. 55 C. 66 D. 无法确定6.漳州市为了鼓励节约用水,按以下规定收水费:(1)每户每月用水量不超过20m 3,则每立方米水费为1.2元,(2)每户用水量超过20m 3,则超过的部分每立方米水费2元,设某户一个月所交水费为y (元),用水量为x(m 3), 则y 与x 的函数关系用图像表示为( )7.下面是六届奥运会中国获得金牌的一览表.在5A.16,16 B.16,28 C.16,22 D.51,16 8.下列命题中,真命题是( )A .对角线互相平分的四边形是平行四边形;B .对角线相等的四边形是矩形;C .对角线相等且互相垂直的四边形是正方形;D .对角线互相垂直的四边形是菱形;9. △ABC 的三边长分别为a 、b 、c ,三条中位线组成第一个中点三角形,第一个中点三角形的三条中位线又组成第二个中点三角形,以此类推,求第2018中点三角形的周长为( )A.20082c b a ++ B. 20092cb a ++ C.20102cb a ++ D.20092)(3c b a ++10.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好 落在扇形AEF 的弧EF 上时,弧BC 的长度等于( )A .6π B.4π C.3π D.2π 二、填空题(本大题共有8小题,每小题4分,共32分.请将正确的答案直接填写在答题卷中相应的横线上)11.已知2a b +=,则224a b b -+的值 .12.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是 . 13.如图13,在矩形ABCD 中, 点E 为边BC 的中点, AE ⊥BD ,垂足为点O, 则ABBC 的值等于 。

2018年福建省中考数学B卷含答案

绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(B 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是 ( )A .3-B .2-C .0D .π2.某几何体的三视图如图所示,则该几何体是 ( ) A .圆柱 B .三棱柱 C .长方体 D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是 ( )A .1,1,2B .1,2,4C .2,3,4D .2,3,54.一个n 边形的内角和为360︒,则n 等于 ( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15︒B .30︒C .45︒D .60︒6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知43m =+,则以下对m 的估算正确的 ( ) A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D .若50ACB ∠=︒,则BOD ∠等于( )A .40︒B .50︒C .60︒D .80︒10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程20x bx a ++=的根 B .0一定不是关于x 的方程20x bx a ++=的根 C .1和1-都是关于x 的方程20x bx a ++=的根 D .1和1-不都是关于x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分.请把答案填在题中的横线上)11.计算:0212⎛⎫-= ⎪ ⎪⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组313,20,x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若2AB =,则CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中31m =+.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C ABC '''∽△△,不写作法,保留作图痕迹; (2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A 按逆时针方向旋转90︒得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D . (1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均揽件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知20a =,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米,如图1.求所利用旧墙AD 的长;(2)已知050α<<,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------24.(本小题满分12分)如图,D 是ABC △外接圆上的动点,且B ,D 位于AC 的两侧.DE AB ⊥,垂足为E ,DE 的延长线交此圆于点F .BG AD ⊥,垂足为G ,BG 交DE 于点H .DC ,FB 的延长线交于点P ,且PC PB =. (1)求证:BG CD ∥;(2)设ABC △外接圆的圆心为O ,若3AB DH =,80OHD ∠=︒,求BDE ∠的大小. 已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E .25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,,且抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当12x x <<0时,12120x x y y >(-)(-);当120x x <<时,12120x x y y <(-)(-).以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且B 在C 的左侧,ABC △有一个内角为60︒.(1)求抛物线的解析式;(2)若MN 与直线23y x =-平行,且M ,N 位于直线BC 的两侧,12y y >,解决以下问题:①求证:BC 平分MBN ∠;②求MBC △外心的纵坐标的取值范围.福建省2018年初中学业毕业和高中阶段学校招生考试(B 卷)数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】分析:直接利用绝对值的性质化简,进而比较大小得出答案.解:在实数3-,2-,0,π中,33-=,则320π-<<<-,故最小的数是:2-.故选:B .2.【答案】C【解析】分析:根据常见几何体的三视图逐一判断即可得.解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C . 3.【答案】C【解析】分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C . 4.【答案】B【解析】分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.故选:B .5.【答案】A【解析】分析:先判断出AD 是BC 的垂直平分线,进而求出45ECB ∠=︒,即可得出结论.解:等边三角形ABC 中,AD BC ⊥,∴BD CD =,即:AD 是BC 的垂直平分线,点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠,45EBC ∠=︒,∴45ECB ∠=︒,ABC △是等边三角形,∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒.故选:A . 6.【答案】D【解析】分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D . 7.【答案】B【解析】分析:直接化简二次根式,得出的取值范围,进而得出答案.解:2m ==12<,∴34m <<.故选:B . 8.【答案】A【解析】分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A .9.【答案】D【解析】分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可.解:BC 是O 的切线,∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒, 故选:D . 10.【答案】D【解析】分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.解:关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210,(2)4(1)0,a b a +≠⎧⎨∆=-+=⎩∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根.故选:D .第Ⅱ卷二、填空题 11.【答案】0【解析】分析:根据零指数幂:01(0)a a =≠进行计算即可.解:原式110==-,故答案为:0.12.【答案】120【解析】分析:根据众数的定义:一组数据中出现次数最多的数据即为众数.解:这组数据中120出现次数最多,有3次, ∴这组数据的众数为120,故答案为:120. 13.【答案】3【解析】分析:根据直角三角形斜边上的中线等于斜边的一半解答.解:90ACB ∠=︒,D 为AB 的中点,∴116322CD AB ==⨯=.故答案为:3. 14.【答案】2x >【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.解:313,2,x x x +>+⎧⎨->⎩①0② 解不等式①得:1x >,解不等式②得:2x >,∴不等式组的解集为2x >,15.【答案】31-【解析】分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论.解:如图,过点A 作AF BC ⊥于F , 在Rt ABC △中,45B ∠=︒, ∴22BC AB ==,212BF AF AB ===, 两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,223DF AD AF =-=∴13231CD BF DF BC =+=+-=--,故答案为:31-. 16.【答案】6【解析】分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x=相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫⎪⎝⎭,,则3C a b ⎛⎫ ⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=,整理,得230x mx +=-, 则a b m +=-,3ab =-,222))((412a b a b ab m =-∴+=+-.1•2ABC S AC BC =△222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6.故答案为6. 三、解答题 17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】方程组利用加减消元法求出解即可. 18.【答案】证明:四边形ABCD 是平行四边形,∴OA OC =,AD BC ∥,∴OAE OCF ∠=∠,在OAE △和OCF △中,OAE OCFOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOE COF △≌△(ASA),∴OE OF =.【解析】由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF △≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()211m m m m m m -=+-()()111m mm m m +=+-11m =-当1m 时,原式==【解析】根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题.20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点,求证:DC kD C ''=.证明:D 是AB 的中点D '是A B ''的中点,∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ABC A B C '''△∽△, ∴A A C B AB A C ='''','A A ∠=∠, A A A D AD CC ''''=,'A A ∠=∠, ∴A C D ACD '''△∽△,∴k CD D C A C CA ''''==. 【解析】(1)作=ABC ABC '''∠∠,即可得到A B C '''△;(2)依据D 是AB 的中点, D '是A B ''的中点,即可得到A A BD AD A B ='''',根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A C D ACD '''△∽△,可得k CD D C A C CA ''''==. 21.【答案】解:(1)线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到,∴90DAB ∠=︒,10AD AB ==,∴45ABD ∠=︒,EFG △是ABC △沿CB 方向平移得到,∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥,∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒,90DAB ∠=︒,∴90ADE ∠=︒,90ACB ∠=︒,∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, 8AB =,10AB AD ==,∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论;(2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论.22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元, 乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘.【解析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设AD x=米,则1002xAB-=米.根据题意,得()1004502x x=-.解得110x=,290x=.20a=,且x a≤,∴90x=舍去.∴利用旧墙AD的长为10米.(2)设AD x=米,矩形ABCD的面积为S平方米.①如果按图一方案围成矩形菜园,依题意得()()2100150125022x xS x==--+-,0x a<<,050a<<,∴50x a<<时,S随x的增大而增大.当x a=时,21503S a a=-最大.②如按图2方案围成矩形菜园,依题意,得22(1002)[(25)](25)244x a x a aS x+-==---++,502aa x≤<+.当25504aa<+<时,即1003a<<时,则254ax=+时,2210000200(25)416a aSa++=+=最大.当254aa+≤,即100503a≤<时,S随x的增大而减小.∴x a=时,2(1002)15022aSa a aa+-==-最大.综合①②,当1003a<<时,222100002001(3100)(50)016216a a aa a++---=>,即22100002001(50)162a aa a++>-,此时,按图2方案围成矩形菜园面积最大,最大面积为21000020016a a++平方米;当100503a≤<,两种方案围成的矩形菜园面积最大值相等.∴当时,围成长和宽均为(25)4a+米的矩形菜园面积最大,最大面积为21000020016a a++平方米;当100503a≤<时,围成长为a米,宽为(50)2a-米的矩形菜园面积最大,最大面积为21(50)2a a-平方米.【解析】(1)按题意设出AD,表示AB构成方程;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S与菜园边长之间的数量关系.24.【答案】解:(1)如图1,PC PB=,PCB PBC ∠=∠∴,四边形ABCD 内接于圆,180BAD BCD ∴∠+∠=︒, 180BCD PCB ∠+∠=︒,BAD PCB ∠=∠∴,BAD BFD ∠=∠,BFD PCB PBC ∠=∠=∠∴,BC DF ∴∥, DE AB ⊥,90DEB =∴∠︒,90ABC =∴∠︒, AC ∴是O 的直径, 90ADC =∴∠︒,BG AD ⊥, 90AGB =∴∠︒, ADC AGB ∠=∠∴,BG CD ∴∥;(2)由(1)得:BC DF ∥,BG CD ∥,∴四边形BCDH 是平行四边形,BC DH ∴=,在Rt ABC △中,3AB DH =,∴3tan 3AB DHACB BC DH∠===, ∴60ACB ∠=︒,30BAC ∠=︒,∴60ADB ∠=︒,12BC AC =, ∴12DH AC =. ① 当点O 在DE 的左侧时,如图2,作直径DM ,连接AM 、OH ,则90DAM ∠=︒,90AMD ADM ∠∴∠+=︒.DE AB ⊥,90BED =∴∠︒,90BDE ABD ∠∴∠+=︒.AMD ABD ∠=∠, ADM BDE ∠=∠∴,12DH AC =,DH OD ∴=,80DOH OHD ∠∴∠==︒,20ODH =∴∠︒. 60AOB ∠=︒,40ADM BDE ∠∴∠+=︒,20BDE ADM ∠∴∠==︒.② 当点O 在DE 的右侧时,如图3,作直径DN ,连接BN ,由①得:20ADE BDN ∠=∠=︒,20ODH ∠=︒,40BDE BDN ODH ∠∴∠=∠+=︒,综上所述,BDE ∠的度数为20︒或40︒.【解析】(1)根据等边对等角得:PCB PBC ∠=∠,由四点共圆的性质得:数学试卷 第21页(共24页)数学试卷 第22页(共24页)180BAD BCD ∠+∠=︒,从而得:BFD PCB PBC ∠=∠=∠,根据平行线的判定得:BC DF ∥,可得90ABC ∠=︒,AC 是O 的直径,从而得:90ADC AGB ∠=∠=︒,根据同位角相等可得结论;(2)先证明四边形BCDH 是平行四边形,得BC DH =,根据特殊的三角函数值得:60ACB ∠=︒,30BAC ∠=︒,所以12DH AC =,分两种情况:①当点O 在DE 的左侧时,如图2,作辅助线,构建直角三角形,由同弧所对的圆周角相等和互余的性质得:AMD ABD ∠=∠,则ADM BDE ∠=∠,并由DH OD =,可得结论;②当点O 在DE的右侧时,如图3,同理作辅助线,同理有20ADE BDN ∠=∠=︒,20ODH ∠=︒,得结论.25.【答案】解:(1)抛物线过点(0,2)A ,2c ∴=,当120x x <<时,120x x -<,由1212()()0x x y y -->,得到120y y -<,∴当0x <时,y 随x 的增大而增大,同理当0x >时,y 随x 的增大而减小,∴抛物线的对称轴为y 轴,且开口向下,即0b =,以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,如图1所示, ∴ABC △为等腰三角形,ABC △中有一个角为60︒,∴ABC △为等边三角形,且2OC OA ==,设线段BC 与y 轴的交点为点D ,则有BD CD =,且30OBD ∠=︒, ∴•cos303BD OB =︒=,•sin301OD OB =︒=,B 在C 的左侧,∴B 的坐标为(3,1)--,B 点在抛物线上,且2c =,0b =,321a ∴+=﹣,解得:1a =﹣,则抛物线解析式为22y x =-+;(2)①由(1)知,点211(,2)M x x -+,222(,2)N x x -+,MN 与直线23y x =-平行,∴设直线MN 的解析式为23y x m =-+,则有211223x x m -+=-+,即211232m x x =-++,∴直线MN 解析式为21123232y x x x =--++,把21123232y x x x =--++代入22y x =-+,解得:1x x =或123x x =-, ∴2123x x =-,即222111(23)24310y x x x =--+=-+-,作ME BC ⊥,NF BC ⊥,垂足为E ,F ,如图2所示,M ,N 位于直线BC 的两侧,且12y y >,则2212y y <-<≤,且123x x <<,∴211(1)3ME y x =--=-+,11(3)3BE x x =--=+,22111439NF y x x =--=-+,21(3)33BF x x =--=-,在Rt BEM △中,2111333tan x ME x BE x MBE -+===-+∠, 在Rt BFN△中,22111111111439(23)3(33)(3)3333333tan x x x x x NF x BF x x x NBF -+----=====∠----.数学试卷 第23页(共24页) 数学试卷 第24页(共24页)tan tan MBE NBF ∠=∠,MBE NBF ∠=∠∴,则BC 平分MBN ∠; ②y 轴为BC 的垂直平分线,∴设MBC △的外心为0(0,)P y ,则PB PM =,即22PB PM =,根据勾股定理得:22201013(1)()y x y y ++=+-,2122x y =-,∴220010124(2)()y y y y y ++=-+-,即01112y y =-, 由①得:1121y -<≤-, ∴0302y -<≤, 则MBC △的外心的纵坐标的取值范围是0302y -<≤.【解析】(1)由A 的坐标确定出c 的值,根据已知不等式判断出120y y -<,可得出抛物线的增减性,确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可;(2)①设出点211(,2)M x x -+,222(,2)N x x -+,由MN 与已知直线平行,得到k 值相同,表示出直线MN 解析式,进而表示出ME ,BE ,NF ,BF ,求出tan MBE ∠与tan NBF ∠的值相等,进而得到BC 为角平分线;②三角形的外心即为三条垂直平分线的交点,得到y 轴为BC 的垂直平分线,设P 为外心,利用勾股定理化简22PB PM =,确定出MBC △外心的纵坐标的取值范围即可.。

2018年初中毕业班总复习数学模拟卷 (一) (1)(1)

2018年初中毕业班总数学复习模拟卷 (一)一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项) 1. 下列四个数中最大的数是A .0B .﹣1C .﹣2D .﹣3 2.如图所示的几何体的俯视图是3. 把0.0813写成10n a ⨯(1≤a <10,n 为整数)的形式,则a 为 A .1 B .﹣2 C .0.813 D .8.134.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是 A .黑(3,3),白(3,1) B .黑(3,1),白(3,3) C .黑(1,5),白(5,5) D .黑(3,2),白(3,3)5.一元一次不等式组201103x x -≤⎧⎪⎨+>⎪⎩的解集在数轴上表示出来,正确的是A B C D6.学校国旗护卫队成员的身高分布如下表:身高/cm 159 160 161 162 人数71099则学校国旗护卫队成员的身高的众数和中位数分别是A .160和160B .160和160.5C .160和161D .161和161 7.一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D ,E ,另一边与三角板的两直角边分别交于点F , A ,且∠CDE =40°,那么∠BAF 的大小为A .40oB . 45 oC .50 oD .10 o C DB A 正面 (第2题)(第4题)(第7题)8.如图,在正方形网格中,线段A B ''是线段AB 绕某点逆时针旋转角α得到的, 点A ′与A 对应,则角α的大小为 A .30°B .60°C .90°D .120°9.如图,点A (1,3),以OA 为半径的⊙O 交x 轴于点B ,则AB 的长是 A .13πB .12πC .23πD .π10.如图,点P 在直线AB 上方,且∠APB =90°,PC ⊥AB 于C ,若线段AB =6,AC =x , S △PAB =y ,则y 与x 的函数关系图象大致是第8题 AB CD二、填空题(共6小题,每小题4分,满分24分)11. 计算11(2018)2π-+-(-)=___________. 12.如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____0. 13. 一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个标号为 “4”的小球的事件是 .(填“必然事件”、“不可能事件”或“随机事件”) 14. 如图,直线a 、b 垂直相交于点O ,曲线C 关于点O 成中心对称,点A 的对称点是点A ',AB ⊥a 于点B ,A'D ⊥b 于点D .若OB =3,OD =2,则阴影部分的面积之和为 . 15.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,大和尚一人分3个馒头,小和尚3人分一个馒头,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 . 16. 如图,点A 1,A 2,A 3,A 4,A 5……,A 2018在x 轴的正半轴上,点B 1, B 2,B 3,B 4,B 5……,B 2018在双曲线3y x=上,若△A 1 B 1O ,△A 2 B 2 A 1,△A 3 B 3 A 2,△A 4 B 4 A 3,……△A 2018 B 2018 A 2017均为等边三角形, 则点A 2018的坐标是_____________. (第14题) (第16题)(第9题)(第8题)(第12题)三、解答题(共9小题,满分86分) 17. (满分8分)先化简,再求值:21(1)1xx x +⋅-,其中51x =+.18. (满分8分)如图,已知四边形ABCD .请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD 是平行四边形,并证明.关系:① AD //BC ,②AB //CD ,③∠B +∠C =180O,④ ∠A =∠C . (1)你选择的两个条件是 ;(填序号,写出一种情况即可) (2)证明:19. (满分8分)某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示. (1)求y 与x 的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?20. (满分8分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.21. (满分8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠BCD =∠A . (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为3,CD = 4,求BD 的长. ABCD(第18题)(第19题)(第20题)(第21题)22. (满分10分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第22题)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.23. (满分10分)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P 1(x 1,y 1),P 2(x 2,y 2),可通过构造直角三角形利用图1得到结论:P 1P 2=,他还利用图2证明了线段P 1P 2的中点P (x ,y )的坐标公式:x =1212,22x x y y x y ++==.(1)已知点M (2,﹣1),N (﹣3,5),则线段MN 长度为 ;(2)如图3,点P (2,n )在函数y =x (x ≥0)的图象OL 与x 轴正半轴夹角的平分线上,请在OL 、x 轴上分别找出点E 、F ,使△PEF 的周长最小,简要叙述作图方法,并求出周长的最小值.24. (满分12分)已知抛物线C 1:2y x bx c =-++与直线l :4y x m =-+相交于第一象限不同两点A 和B ,且A 点的坐标是(5,2).(1)填空:直线l 所表达的函数关系式是_________________; (2)求另一交点B 的坐标(用含b 的代数式表示);(3)平移抛物线C 1,平移后的抛物线C 2: y =-x 2+px +q 且经过点A 和C (1,2),在平移过程中,若抛物线C 1向下平移了S (S >0)个单位长度,试求S 的取值范围. (第23题)25.(满分14分)在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B旋转得到矩形BEFG,旋转角为α.射线BG,EF与直线DC分别交于P,Q.(1)如图1,当交点P在边DC上时,试判断BP与PQ的数量关系,并说明理由;(2)如图2,当点G落在直线CD上时,求CE的长;(3)在矩形ABCD旋转过程中(45°<α≤180°),是否存在P,Q为顶点的平行四边形?若存在,求出此时CP的长;若不存在,. ABFABAB图1 图2(第25题)2018年初中毕业班总复习模拟卷 (一)参考答案一、选择题(共10小题,每小题4分,满分40分)11. 1-, 12. 360 , 13. 不可能事件, 14.6, 15.100,11003x y x y +=⎧⎪⎨+=⎪⎩, 16. 2018A , 三、解答题(共9小题,满分86分)17.解:原式=1)(1)(1)xxx xx x +⋅-+(………………………………………………………………2分=14(1)(1)x x x x x +⋅-+……………………………………………………………………分 =11x -. …………………………………………………………………………6分 1x ===当时,原式.……………………………………………8分18. 解:(1)选择①③,①④,②④,③④均可,其余均不可以. …………………………2分解法一:选择①③ . 证明:∵AD ∥BC ,∴∠A +∠B =180,∠C+∠D =180. ………………………………………………5分 ∵∠A =∠C ,∴∠B =∠D . ………………………………………………………………………7分 ∴四边形ABCD 是平行四边形. …………………………………………………8分 解法二: 选择①④ .证明:∵∠B +∠C =180,∴AB ∥CD . 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.解法三: 选择②④.证明:∵∠B +∠C =180, ∴AB ∥CD .∵AB =CD ,∴四边形ABCD 是平行四边形.解法四: 选择③④.证明:∵∠B +∠C =180, ∴AB ∥CD .∴∠A +∠D=180, ∵∠A =∠C , ∴∠B =∠D . ∴四边形ABCD 是平行四边形.19.解:(1)当0<x<20时,y=60;……………………………………………………………………1分当20≤x≤80时,设y与x的函数表达式为y=kx+b,把(20,60),(80,0)代入,可得6020, 080,k bk b=+⎧⎨=+⎩解得1,80. kb=-⎧⎨=⎩∴y=﹣x+80,……………………………………………………………………………………3分∴y与x的函数表达式为y=60(020)80(2080)xx x<<⎧⎨-+≤≤⎩;………………………………………4分(2)若销售利润达到800元,则(x﹣20)(﹣x+80)=800,…………………………………6分解得x1=40,x2=60. …………………………………………………………………………7分∴要使销售利润达到800元,销售单价应定为每千克40元或60元.…………………8分20.解:(1)如图所示;………………………………………………………4分(2)∵DE是AB的垂直平分线,∴AE=BE,………………………………………………………5分∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.…………………………………8分21.(1)证明:如图,连接OC.∵AB是⊙O的直径,C是⊙O上一点,∴∠ACB=90°,即∠ACO+∠OCB=90°.…………………………2分∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD.∴∠BCD+∠OCB=90°,即∠OCD=90°.…………………………4分∴CD是⊙O的切线.………………………………………………5分(2)解:在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴BD =OD ﹣OB =5﹣3=2. ……………………………………………………………8分22. 解:(1)360°×(1-15%-45%)=144°,40×(1-15%-45%)-(6+4+3+2)=1; …………4分(2) 1200×406=180人………………………………………………………………………6分 (3) 列表为乒 篮足羽乒 乒,篮 乒,足 乒,羽 篮 篮,乒篮,足 篮,羽 足 足,乒 足,篮足,羽 羽羽,乒 羽,篮 羽,足共12种情况,恰好选中“乒乓球”、“篮球”这两个项目占2种情况,所以概率为61……10分 23. 解:(1)∵P 1(x 1,y 1),P 2(x 2,y 2),∴Q 1Q 2=OQ 2﹣OQ 1=x 2﹣x 1.∴Q 1Q =212x x -.………………1分 ∴OQ =OQ 1+Q 1Q =x 1+212x x -=212x x +.…………………………………………… …………2分 ∵PQ 为梯形P 1Q 1Q 2P 2的中位线,∴PQ =11221222PQ P Q y y -+=.……………… …………3分 即线段P 1P 2的中点P (x ,y )的坐标公式为122x x x +=,122y y y +=.……………………4分(2)如图,设P 关于直线OL 的对称点为M ,关于x 轴的对称点为N ,连接PM 交直线OL 于点R ,连接PN 交x 轴于点S ,连接MN 交直线OL 于点E ,交x 轴于点F , 由对称性可知EP=EM ,FP=FN , ∴PE+PF+EF=ME+EF+NF=MN ,∴此时△PEF 的周长即为MN 的长,为最小,…………………………5分 设R (x ,x ),由题意可知OR =OS =2,P R =PS =n ,∴224()23x x +=,解得x 1=﹣(舍去),x 2=. ………………… 6分 ∴R (,).∴=n ,解得n =1.∴P (2,1).∴N (2,﹣1). …………………………………………………………………………7分 设M (x ,y ),则2625x +=,1825y +=,解得x =,y =.…………………………………………8分 ∴M (,).∴MN ==. …………………………………………9分24.解:(1) y =-4x +22; ………………………………………………………………………………2分(2)把A (5,2)代入2y x bx c =-++,得c =27-5b ,∴抛物线C 1:y =-x 2+bx +27-5b . ……………………………………………………4分 当-x 2+bx +27-5b =-4x +22时,可得x 1=5,x 2=b -1.∴B (b -1,-4b +26). ……………………………………………………………………6分 (3)把A (5,2)和C (1,2)分别代入y =-x 2+px +q ,得p =6,q =-3.∴C 2:y =-x 2+6x -3=-(x -3)2+6. …………………………………………………7分又∵y =-x 2+bx +27-5b =-(x -b 2)2+(b 24-5b +27) , ∴s =(b 24-5b +27)-6=14(b -10)2-4. ………………………………………………8分∵A ,B 在第一象限且为不同两点,∴b -1>0,-4b +26>0且b -1≠5.∴1<b <132且b ≠6. ……………………… ………9分对于s =14(b -10)2-4.∵14>0,∴当b <10时,s 随b 的增大而减小. …………………10分∵1<b <132且b ≠6,∴-1516<s <654且s ≠0.∵s >0, ∴0<s <654.……………………………………………………………………………11分∴在平移过程中,抛物线y =-x 2+bx +c 向下平移的单位长度s 的取值范围是0<s <654.…12分25.解:(1) 如图1,过点Q 作QH ⊥BG 于H ,则∠QHB =∠HBE =∠E =900.∴四边形QHBE 是矩形. ∴QH =BE =BC .∵∠BCP =∠QHP =90O, ∠QPH =∠BPC , ∴△BCP ≌△QHP (AAS ).∴BP =PQ . ………………………………………………………4分 (2)分两种情况讨论:①点G 落在线段CD 上时,如图2. ∵BG =AB =5,BC =3,∴CG =2253-=4. ∴DG =1,AG =223110+=. ∵1,BA BCBG BE==∠ABG =∠CBE , ∴△ABG ∽△CBE . ∴,CE BCAG BA=∴33101055AG BC CE BA ⋅==⨯=.…………………………7分 ②当点G 落在DC 的延长线上时,如图3 ∵BG =5,BC =3,CG =4,∴DG =9, AG =2239310+=. ∵1,BA BC BG BE==∠ABG =∠CBE , ∴△ABG ∽△CBE . ∴,CE BCAG BA= ∴391031055AG BC CE BA ⋅==⨯=……………………………………………………………10分 (3)当点F 落在线段AB 的延长线上时,四边形BPQF 是平行四边形,如图4.∵BF //PQ ,EQ //BP ,∴四边形BFQP 是平行四边形.此时△BPC ≌△FBQ . ∴CP=BG =AB =5. ……………………………………………………14分2018年初中毕业班总复习模拟卷(一)-数学答题卡漳州市玉兰学校2018届第二次月考试-数学答题卡24.解:。

2018年福建省中考数学A卷试卷(含详细答案)

数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数3-,2-,0,π中,最小的数是( )A .3-B .2-C .0D .π 2.某几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .长方体D .四棱锥3.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,5 4.一个n 边形的内角和为360°,则n 等于( )A .3B .4C .5D .65.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,则ACE ∠等于( )A .15°B .30°C .45°D .60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 7.已知m =m 的估算正确的( )A .23m <<B .34m <<C .45m <<D .56m <<8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩9.如图,AB 是O 的直径,BC 与O 相切于点B ,AC 交O 于点D ,若50ACB ∠=︒°,则BOD ∠等于( )A .40°B .50°C .60°D .80°10.已知关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于s x 的方程20x bx a ++=的根毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,满分24分,请把答案填在题中的横线上)11.计算:01-=⎝⎭.12.某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为 .13.如图,Rt ABC △中,90ACB ∠=︒,6AB =,D 是AB 的中点,则CD = .14.不等式组31320x x x ++⎧⎨-⎩>>的解集为 .15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB CD = .16.如图,直线y x m =+与双曲线3y x=相交于A ,B 两点,BC x ∥轴,AC y ∥轴,则ABC △面积的最小值为 .三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:1,410.x y x y +=⎧⎨+=⎩18.(本小题满分8分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD ,BC 分别相交于点E ,F .求证:OE OF =.19.(本小题满分8分)先化简,再求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中1m =.20.(本小题满分8分)求证:相似三角形对应边上的中线之比等于相似比.要求:(1)根据给出的ABC △及线段A B '',A A A ∠'∠'=∠(),以线段A B ''为一边,在给出的图形上用尺规作出A B C '''△,使得A B C '''△∽ABC △,不写作法,保留作图痕迹;(2)在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.数学试卷 第5页(共34页) 数学试卷 第6页(共34页)21.(本小题满分8分)如图,在Rt ABC △中,90C ∠=︒,10AB =,8AC =.线段AD 由线段AB 绕点A按逆时针方向旋转90°得到,EFG △由ABC △沿CB 方向平移得到,且直线EF 过点D .(1)求BDF ∠的大小; (2)求CG 的长.22.(本小题满分10分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元; 乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过40,超过部分每件多提成2元.如图是2018年4月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:(1)现从2018年4月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以2018年4月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题: ①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.23.(本小题满分10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD MN ≤.已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a =,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; (2)求矩形菜园ABCD 面积的最大值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共34页) 数学试卷 第8页(共34页)24.(本小题满分12分)已知四边形ABCD 是O 的内接四边形,AC 是O 的直径,DE AB ⊥,垂足为E . (1)延长DE 交O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC PB =; (2)过点B 作BC AD ⊥,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB 1DH =,80OHD ∠=︒,求BDE ∠的大小.25.(本小题满分14分)已知抛物线2y ax bx c =++过点(02)A ,. (1)若点(0)也在该抛物线上,求a ,b 满足的关系式;(2)若该抛物线上任意不同两点11M x y (,),22N x y (,)都满足:当1x <2x <0时,12120x x y y (-)(-)>;当120x x <<时,12120x x y y (-)(-)<.以原点O 为心,OA 为半径的圆与拋物线的另两个交点为B ,C ,且ABC △有一个内角为60°. ①求抛物线的解析式;②若点P 与点O 关于点A 对称,且O ,M ,N 三点共线,求证:PA 平分MPN ∠.5 / 17福建省2018年初中学业毕业和高中阶段学校招生考试(A 卷)数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】解:在实数3-,-2,0,π中,33-=,则203π--<<<,故最小的数是:2-.故选:B. 分析:直接利用绝对值的性质化简,进而比较大小得出答案. 2.【答案】C【解析】解:A 、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B 、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C 、长方体的主视图、左视图及俯视图都是矩形,符合题意;D 、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意.故选:C. 分析:根据常见几何体的三视图逐一判断即可得. 3.【答案】C【解析】解:A 、112+=,不满足三边关系,故错误;B 、124+<,不满足三边关系,故错误;C 、234+>,满足三边关系,故正确;D 、235+=,不满足三边关系,故错误.故选:C. 分析:根据三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解. 4.【答案】B【解析】解:根据n 边形的内角和公式,得:2180360n =(-),解得4n =.分析:n 边形的内角和是2180n (-),如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n .故选:B. 5.【答案】A.【解析】解:∵等边三角形ABC 中,AD BC ⊥, ∴BD CD =,即:AD 是BC 的垂直平分线, ∵点E 在AD 上, ∴BE CE =, ∴EBC ECB ∠=∠,数学试卷 第11页(共34页)数学试卷 第12页(共34页)∵45EBC ∠=︒, ∴45ECB ∠=︒, ∵ABC △是等边三角形, ∴60ACB ∠=︒,∴15ACE ACB ECB ∠=∠-∠=︒. 故选:A.分析:先判断出AD 是BC 的垂直平分线,进而求出45EBC ∠=︒,即可得出结论. 6.【答案】D【解析】解:A 、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B 、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C 、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D 、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.分析:根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可. 7.【答案】B【解析】解:∵2m12,∴34m <<.故选:B.. 8.【答案】A【解析】解:设索长为x 尺,竿子长为y 尺,根据题意得:5,1 5.2x y x y =+⎧⎪⎨=-⎪⎩故选:A.分析:设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 9.【答案】D【解析】解:∵BC 是O 的切线, ∴90ABC ∠=︒,∴9040A ACB ∠=︒-∠=︒,由圆周角定理得,280BOD A ∠=∠=︒,7 / 17故选:D.分析:根据切线的性质得到90ABC ∠=︒,根据直角三角形的性质求出A ∠,根据圆周角定理计算即可. 10.【答案】D.【解析】解:∵关于x 的一元二次方程21210a x bx a ++++=()()有两个相等的实数根,∴2210(2)4(1)0a b a +≠⎧⎨∆=-+=⎩,,∴1b a =+或(1)b a =-+.当1b a =+时,有10a b +=-,此时1-是方程20x bx a ++=的根; 当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根. ∵10a +≠, ∴1(1)a a +≠-+,∴1和1-不都是关于x 的方程20x bx a ++=的根. 故选:D.分析:根据方程有两个相等的实数根可得出1b a =+或(1)b a =-+,当1b a =+时,1-是方程20x bx a ++=的根;当(1)b a =-+时,1是方程20x bx a ++=的根.再结合1(1)a a +≠-+,可得出1和1-不都是关于x 的方程20x bx a ++=的根.第Ⅱ卷二、填空题11.【答案】0【解析】解:原式110==-,故答案为:0. 分析:根据零指数幂:01(0)a a =≠进行计算即可. 12.【答案】120【解析】解:∵这组数据中120出现次数最多,有3次, ∴这组数据的众数为120. 故答案为:120.数学试卷 第15页(共34页)数学试卷 第16页(共34页)分析:根据众数的定义:一组数据中出现次数最多的数据即为众数. 13.【答案】3【解析】解:∵90ACB ∠=︒,D 为AB 的中点, ∴116322CD AB ==⨯=. 故答案为:3.分析:根据直角三角形斜边上的中线等于斜边的一半解答. 14.【答案】2x >【解析】解:313,2x x x ++⎧⎨-⎩>①>0,②∵解不等式①得:1x >,解不等式②得:2x >, ∴不等式组的解集为2x >,分析:先求出每个不等式的解集,再求出不等式组的解集即可. 15.1【解析】解:如图,过点A 作AF BC ⊥于F ,在Rt ABC △中,45B ∠=︒,∴2BC =,1BF AF AB ===, ∵两个同样大小的含45︒角的三角尺, ∴2AD BC ==,在Rt ADF △中,根据勾股定理得,DF =∴121CD BF DF BC =+==-,分析:先利用等腰直角三角形的性质求出2BC =,1BF AF ==,再利用勾股定理求出DF ,即可得出结论. 16.【答案】69 / 17【解析】解:设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,得3x m x+=, 整理,得230x mx +=-, 则a b m +=-,3ab =-,∴222))((412a b a b ab m -+=+=-. ∵1•2ABC S AC BC =△ 222133=()213()••()21()21(12)2162a b a b b a a b ab a b m m ⎛⎫-- ⎪⎝⎭-=-=-=+=+ ∴当0m =时,ABC △的面积有最小值6. 分析:根据双曲线3y x =过A ,B 两点,可设3A a a ⎛⎫ ⎪⎝⎭,,3B b b ⎛⎫ ⎪⎝⎭,,则3C a b ⎛⎫⎪⎝⎭,.将y x m =+代入3y x =,整理得230x mx +=-,由于直线y x m =+与双曲线3y x =相交于A ,B 两点,所以a 、b 是方程230x mx +=-的两个根,根据根与系数的关系得出a b m +=-,3ab =-,那么222))((412a b a b ab m -+=+=-.再根据三角形的面积公式得出211•622ABC S AC BC m ==+△,利用二次函数的性质即可求出当0m =时,ABC △的面积有最小值6.17.【答案】解:1,410,x y x y +=⎧⎨+=⎩①②②-①得:39x =, 解得:3x =,把3x =代入①得:2y =-,则方程组的解为3,2.x y =⎧⎨=-⎩【解析】分析:方程组利用加减消元法求出解即可.数学试卷 第19页(共34页)数学试卷 第20页(共34页)18.【答案】证明:∵四边形ABCD 是平行四边形, ∴OA OC =,AD BC ∥, ∴OAE OCF ∠=∠, 在OAE △和OCF △中,,,,OAE OCF OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE COF △≌△(ASA ), ∴OE OF =.【解析】分析:由四边形ABCD 是平行四边形,可得OA OC =,AD BC ∥,继而可证得AOE COF△≌△(ASA ),则可证得结论.19.【答案】解:22111m m m m +-⎛⎫-÷⎪⎝⎭()()2111m m mm m m +-=+-()()111m mm m m +=+-11m =-当1m=时,原式==. 【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将m 的值代入即可解答本题. 20.【答案】(1)解:如图所示,A B C '''△即为所求;(2)已知,如图,ABC A B C '''△∽△,k AB BC A B CA B C A C =='''''=',D 是AB 的中点,D '是A B ''的中点, 求证:DC kD C ''=.证明:∵D 是AB 的中点D '是A B ''的中点, ∴12AD AB =,12A D A B ''='',∴1212A B AB AB A D A B AD ''''=='', ∵ABC A B C '''△∽△,∴A A CB AB AC ='''','A A ∠=∠, ∵A A A D AD CC ''''=,'A A ∠=∠, ∴A CD ACD '''△∽△, ∴k CD D C A C CA ''''==. 【解析】分析:(1)作=A B C ABC '''∠∠,即可得到A B C '''△; (2)依据D 是AB 的中点,D '是A B ''的中点,即可得到=,根据ABC A B C '''△∽△,即可得到A A CB AB AC ='''','A A ∠=∠,进而得出A CD ACD '''△∽△,可得k CD D C A C CA ''''==.21.【答案】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90︒得到, ∴90DAB ∠=︒,10AD AB ==, ∴45ABD ∠=︒,∵EFG △是ABC △沿CB 方向平移得到, ∴AB EF ∥,∴45BDF ABD ∠=∠=︒;(2)由平移的性质得,AE CG ∥,AB EF ∥, ∴DEA DFC ABC ∠=∠=∠,180ADE DAB ∠+∠=︒, ∵90DAB ∠=︒, ∴90ADE ∠=︒, ∵90ACB ∠=︒,∴ADE ACB ∠=∠, ∴ADE ACB △∽△, ∴AD AEAC AB=, ∵8AB =,10AB AD ==, ∴12.5AE =,由平移的性质得,12.5CG AE ==.【解析】分析:(1)由旋转的性质得,10AD AB ==,45ABD ∠=︒,再由平移的性质即可得出结论; (2)先判断出ADE ACB ∠=∠,进而得出ADE ACB △∽△,得出比例式求出AE ,即可得出结论. 22.【答案】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为42=3015; (2)①甲公司各揽件员的日平均件数为3813399404413421=3930⨯+⨯+⨯+⨯+⨯件;②甲公司揽件员的日平均工资为70392148+⨯=元,乙公司揽件员的日平均工资为()()3873974085341523630⎡⨯+⨯+⨯++⎤⨯+⨯+⨯⨯⎣⎦ ()()27171523=40463030⎡-⨯+-⨯⎤⨯+⨯+⨯+⨯⎢⎥⎣⎦=159.4元,因为159.4148>,所以仅从工资收入的角度考虑,小明应到乙公司应聘. 【解析】分析:(1)根据概率公式计算可得; (2)分别根据平均数的定义及其意义解答可得.23.【答案】解:(1)设m AB x =,则()1002m BC x =-, 根据题意得()1002450x x =-,解得15x =,245x =, 当5x =时,10029020x =->,不合题意舍去; 当45x =时,100210x =-, 答:AD 的长为10 m ; (2)设m AD x =, ∴()()21110050125022S x x x ==--+-, 当50a ≥时,则50x =时,S 的最大值为1250;当050a <<时,则当0x a <≤时,S 随x 的增大而增大,当x a =时,S 的最大值为21502a a -, 综上所述,当50a ≥时,S 的最大值为1250;当050a <<时,S 的最大值为21502a a -.【解析】分析:(1)设m AB x =,则()1002m BC x =-,利用矩形的面积公式得到()1002450x x =-,解方程得15x =,245x =,然后计算1002x -后与20进行大小比较即可得到AD 的长; (2)设m A D x =,利用矩形面积得到()11002S x x =-,配方得到()215012502S x =--+,讨论:当50a ≥时,根据二次函数的性质得S 的最大值为1250;当050a <<时,则当0x a <≤时,根据二次函数的性质得S 的最大值为21502a a -.24.【答案】解:(1)如图1,∵AC 是O 的直径,∴90ABC ∠=︒, ∵DE AB ⊥, ∴90DEA ∠=︒, ∴DEA ABC ∠=∠, ∴BC DF ∥, ∴F PBC ∠=∠,∵四边形BCDF 是圆内接四边形, ∴180F DCB ∠+∠=︒, ∵180PCB DCB ∠+∠=︒, ∴F PCB ∠=∠, ∴PBC PCB ∠=∠, ∴PC PB =;(2)如图2,连接OD ,∵AC 是O 的直径,∴90ADC ∠=︒, ∵BG AD ⊥, ∴90AGB ∠=︒, ∴ADC AGB ∠=∠, ∴BG DC ∥, ∵BC DE ∥,∴四边形DHBC 是平行四边形, ∴1BC DH ==,在Rt ABC △中,AB =tan ABACB BC∠=, ∴60ACB ∠=︒, ∴12BC AC OD ==, ∴DH OD =,在等腰三角形DOH 中,80DOH OHD ∠=∠=︒, ∴20ODH ∠=︒, 设DE 交AC 于N , ∵BC DE ∥,∴60ONH ACB ∠=∠=︒,∴()18040NOH ONH OHD ∠=︒∠+∠=︒-, ∴40DOC DOH NOH ∠=∠∠=︒-, ∵OA OD =,∴1202OAD DOC ∠=∠=︒, ∴20CBD OAD ∠=∠=︒, ∵BC DE ∥,∴20BDE CBD ∠=∠=︒.【解析】分析:(1)先判断出BC DF ∥,再利用同角的补角相等判断出F PCB ∠=∠,即可得出结论; (2)先判断出四边形DHBC 是平行四边形,得出1BC DH ==,再用锐角三角函数求出60ACB ∠=︒,进而判断出DH OD =,求出20ODH ∠=︒,即可得出结论.25.【答案】解:(1)∵抛物线2y ax bx c =++过点2(0)A ,, ∴2c =.又∵点(0)也在该抛物线上,∴2((0a b c +=+,∴220(0)a a +=≠.(2)①∵当120x x <<时,1212()()0x x y y -->, ∴120x x -<,120y y -<,∴当0x <时,y 随x 的增大而增大; 同理:当0x >时,y 随x 的增大而减小, ∴抛物线的对称轴为y 轴,开口向下, ∴0b =.∵OA 为半径的圆与拋物线的另两个交点为B 、C , ∴ABC △为等腰三角形, 又∵ABC △有一个内角为60°, ∴ABC △为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又∵2OB OC OA ===,∴•cos30CD OC =︒=,•sin301OD OC =︒=.不妨设点C 在y 轴右侧,则点C 的坐标为1)-. ∵点C 在抛物线上,且2c =,0b =, ∴321a +=-, ∴1a =-,∴抛物线的解析式为22y x =+-.②证明:由①可知,点M 的坐标为211(2)x x -+,,点N 的坐标为222(2)x x -+,. 直线OM 的解析式为11(0)y k x k =≠. ∵O 、M 、N 三点共线,∴10x ≠,20x ≠,且22121222x x x x -+-+=, ∴121222x x x x -+=-+, ∴1212122()x x x x x x =---, ∴122x x =-,即212x x =-, ∴点N 的坐标为211242x x ⎛⎫-+ ⎪⎝⎭,-. 设点N 关于y 轴的对称点为点N ',则点N '的坐标为211242x x ⎛⎫+ ⎪⎝⎭,-. ∵点P 是点O 关于点A 的对称点, ∴24OP OA ==,∴点P 的坐标为(04),. 设直线PM 的解析式为24y k x =+, ∵点M 的坐标为21(2)x x +,-, ∴212124x k x +=+-,∴21212x k x +=-,∴直线PM 的解析式为21124x y x +=-+.∵22211122111122(2)4244==2x x x x x x x +-++-+-+, ∴点N '在直线PM 上, ∴PA 平分MPN ∠.【解析】分析:(1)由抛物线经过点A 可求出2c =,再代入(0)即可找出220(0)a a +=≠; (2)①根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向下,进而可得出0b =,由抛物线的对称性可得出ABC △为等腰三角形,结合其有一个60︒的内角可得出ABC △为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;②由①的结论可得出点M 的坐标为211(2)x x -+,、点N 的坐标为222(2)x x -+,,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点N '的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点N '在直线PM 上,进而即可证出PA 平分MPN ∠s.。

2018年中考数学模拟试卷附答案解析

2018年中考数学模拟试卷满分:120分考试时间:120分钟 2018.05 一、选择题(每题3分,共36分)1.在﹣0.25、+2.3、0、﹣这四个数中,最小的数是()A. ﹣0.25B. +2.3C. 0D. ﹣2.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角3.(2017•杭州)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A. 1.5×108B. 1.5×109C. 0.15×109D. 15×1074.一组数据1,2,a的平均数为2,另一组数据﹣l,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为()A. 1B. 2C. 3D. -15.下列运算中,结果正确的是()A. a4+a4=a4B. (﹣2a2)3=﹣6a6C. a8÷a2=a4D. a3•a2=a56.(2016•漳州)下列四个几何体中,左视图为圆的是()A. B. C. D.7.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8.对于二次函数的图象与性质,下列说法正确的是()A. 对称轴是直线,最小值是 B. 对称轴是直线,最大值是C. 对称轴是直线,最小值是 D. 对称轴是直线,最大值是9.(2017•玉林)如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中矩形的个数共有()A. 5个B. 8个C. 9个D. 11个10.若点B在点A的北偏东30度,则点A在点B的()A. 南偏西30度B. 北偏东60度C. 南偏西60度D. 西南方向11.(2017•玉林)如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O 是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A. 240°B. 360°C. 480°D. 540°12.下列说法中,不正确的是()A. 经过直线外一点,有且只有一条直线与这条直线平行B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 如果∠1与∠2是同位角,那么∠1=∠2D. 平移不改变图形的形状和大小二、填空题(每题3分,共15分)13.已知,则a+b为________.14.分解因式:a3b﹣ab3=________ .15.如图是根据某校为某村进行精准扶贫捐款情况的两幅统计图,己知该校初中三个年级共有学生2000人捐款,请计算该校共捐款________元.16.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是________米.17.如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a﹣b<0;④b2+8a>4ac中正确的是(填写序号)________.三、解答题(共8题,共69分)18.(4分)计算:﹣cos30°+(2017﹣π)0.19.(5分)先化简,再求值:,其中x=﹣.20.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x1x2﹣2x1﹣2x2=10时,求m的值.21.(8分)某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画B.保龄球C.航模D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.(10分)(2017•玉林)如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.23.(10分)(2016•玉林)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)24.(12分)(2017•玉林)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.25.(12分)已知,直线l1:y=﹣x+n过点A(﹣1,3),双曲线C:y= (x>0),过点B(1,2),动直线l2:y=kx﹣2k+2(常数k<0)恒过定点F.(1)求直线l1,双曲线C的解析式,定点F的坐标;(2)在双曲线C上取一点P(x,y),过P作x轴的平行线交直线l1于M,连接PF.求证:PF=PM.(3)若动直线l2与双曲线C交于P1,P2两点,连接OF交直线l1于点E,连接P1E,P2E,求证:EF平分∠P1EP2.答案解析部分一、选择题1.【答案】D【考点】有理数大小比较【解析】【解答】解:在﹣0.25、+2.3、0、﹣这四个数中,最小的数是﹣,故选D【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.2.【答案】B【考点】对顶角、邻补角,同位角、内错角、同旁内角【解析】【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【分析】根据内错角的定义求解.3.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.4.【答案】A【解析】【解答】解:∵一组数据1,2,a的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l,a,1,2,b的唯一众数为﹣l,∴b≠﹣1、1、2、3∴数据﹣1,3,1,2,b的中位数为1.故答案为:1.【分析】根据1,2,a的平均数为2可得=2,解得,a=3;根据另一组数据﹣l,a,1,2,b的唯一众数为﹣l 可得b=-1,则这组数据从小到大排列为:-1,-1.1,2,3,所以中位数是1.5.【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、a4+a4=2a4,故A错误;B、(﹣2a2)3=﹣8a6,故B错误;C、a8÷a2=a6,故C错误;D、a3•a2=a5,故D正确;故选D.【分析】根据幂的乘方、积的乘方、同底数幂的除法和合并同类项进行计算即可.6.【答案】C【考点】简单几何体的三视图【解析】【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是圆的几何体是球.故选:C【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.7.【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故答案为:B.【分析】根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心;A、是轴对称图形,不是中心对称图形,B、是轴对称图形,是中心对称图形,C、不是轴对称图形,是中心对称图形,D、是轴对称图形,不是中心对称图形.8.【答案】B【考点】二次函数的性质,二次函数的最值【解析】【解答】∵在二次函数中,,顶点坐标为(1,2),∴其对称轴为直线,有最大值是2.故答案为:B.【分析】根据二次函数的性质,a<0,抛物线开口向下,函数有最大值,排除A、B;再根据对称轴是直线x=1,排除D,即可得出选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届诏安县初中毕业班模拟卷(2) 数 学 试 卷 (满分:150分 考试时间:120分钟) 友情提示:请把所有答案填写(涂)到答题卡上!请不要错位、越界答题! 注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,后必须用黑.

色签字笔....重描确认,否则无效.

一、选择题(共10题,每题4分,满分40分。每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.12的绝对值是 A.2 B.2 C.12 D.12 2.下列运算正确的是 A.235abab B.235aaa C.33(2)6aa D.623aaa 3.下列图形中,既是轴对称图形又是中心对称图形的是

4.如图是由5个相同的小正方体组成的立体图形,它的俯视图是 A. B. C. D. 5.如果ba=32,则bba等于 A.311 B.21 C.53 D.35 6.下列调查中,调查方式选择正确的是 A.为了解1000个灯泡的使用寿命,选择普查 B.为了解某公园全年的游客流量,选择抽样调查

(第4题图) C.为了解生产的一批炮弹的杀伤半径,选择普查 D.为了解一批袋装食品是否含有防腐剂,选择普查 7.下列命题是真命题的是 A.如果|a|=1,那么a=1 B.一组对边平行的四边形是平行四边形 C.如果a是有理数,那么a是实数 D.对角线相等的四边形是矩形 8.如果反比例函数y=xk1的图象经过点(-1,-2),则k的值是 A.2 B.-2 C.-3 D.3 9.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为 A.15πcm2 B.30πcm2 C.60πcm2 D.3cm2 10.如图,AB是半圆O的直径,点P从点O出发,沿OA—弧AB—BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是

A B C D 二、填空题(共6题,每题4分,共24分。请将答案填入答题卡的相应位置........) 11.分解因式:x2-4= . 12.据了解,漳州市预计到2013年底,全市风电装机容量可达41.11万千瓦,其中数据41.11万千瓦用科学记数法表示为 千瓦。

P A O B

s

t O s

O t

O

s t O s

t (第10题图) 13.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为 。

14.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数是 . 15.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′

处,C′E交AF于点G.若∠CEF=70°,则∠GFD′= °. 16. 如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端最后所在位置的点的坐标是 . 三、解答题(共9题,满分86分,请在答题卡的相应位置........解答)

17.(本题满分8分)计算:30tan6881220 18.(本题满分8分)

(第13题图) (第15题图) (第16题图)

O

(第14题图) 人数 0 从不等式:2x-1<5,3x>0,x-1≥2x中任取两个不等式,组成一个一元

一次不等式组,解你所选的这个不等式组,并在数轴上表示其解集.

19.(本题满分8分) 如图,已知两个菱形ABCD.CEFG,其中点A.C.F在同一直线上,连接BE、

DG. (1)在不添加辅助线时,写出其中的两对全等三角形; (2)证明:BE=DG.

20.(本题满分8分) 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上. (1)CE与AD的位置关系是 。(直接写出结论,不必证明) (2)在下面的菱形斜网格中画出示意图;

(第18题图) (第19题图)

(第20题图) 21.(本题满分8分) 班主任张老师为了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) . (1) 请根据图1,回答下列问题: ① 这个班共有 名学生,发言次数是5次的男生有 人、女生有 人; ② 男、女生发言次数的中位数分别是 次和 次. (2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示.求第二天发言次数比前一天增加3

次的学生人数和全班增加的发言总次数. 22.(本题满分9分) 为了进一步美化漳州,市政府决定对一些排水渠道进行清理淤泥,按计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天. (1)甲、乙两车单独完成任务分别需要多少天? (2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种租车方案中,哪一种租金最少?请说明理由. 23.(本题满分9分) 有一块含有30°角的直角三角板,小刚想测量其短直角边的长度,他手中只有一个量角器,于是他采用了如下的办法,并获得了相关数据: 第一步,他先用三角板标有刻度的一边测出量角器的直径AB的长度为9cm; 第二步,将三角板与量角器按如图所示的方式摆放,并量得∠BOC为80°(O为AB的中点). 请你根据小刚测得的数据,求出三角板的短直角边AC的长. (参考数据:sin80°=0.98,cos80°=0.17,tan80°=5.67;sin40°=0.64,cos40°=0.77,tan40°=0.84,结果精确到0.1cm.)

24.(本题满分14分) 几何模型

如图(1),△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为12rr,,腰上的高为h,连接AP,则ABPACPABCSSS△△△.即:21AB·1r+

21AC·2r=21AB·h,12rrh(定值).

模型应用(1): 如图(2),在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+

A (第23题图)

B

C O FN的长. 模型应用(2): 如图(3),如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为123rrr,,,等边△ABC的高为h,试证明123rrrh

(定值).

模型应用(3): 若正n边形12nAAA内部任意一点P到各边的距离为nrrr,,,21,请问是

12nrrr是否为定值?如果是,请直接写出这个定值.如果不是,请说明理由。 25.(本题满分14分) 在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示;抛物线22yaxax经过点B。 (1)点B的坐标是 ; (2)求抛物线的解析式; (3)在抛物线上是否还存在点P(点B除外),使点A、C、P三点在同一圆

图(1) 图(2)

图(3) 上且圆的直径为10?若存在,求点P的坐标;若不存在,请说明理由。 2013届诏安县初中毕业班模拟卷(2) 数学试卷参考答案及评分标准 一、选择题(共10题,每题4分,满分40分。)

题号 1 2 3 4 5 6 7 8 9 10 答案 C B C A D B C D B C

二、填空题(共6题,每题4分,共24分。)

11.22xx 12.4.111×105 13.14 14.7 15.40 16.(-1,1) 三、解答题(共9题,满分86分)

17.(本题满分8分) 解:原式=3361232……………6分 =-1 ……………8分 18.(本题满分8分) 解法一:选择2x-1<5,3x>0则组成

03512xx

……………2分

解不等式①,得x<3, 解不等式②,得x>0, ……………4分 把不等式①②的解集表示在数轴上如下:

……………6分 ∴原不等式组的解集为0<x<3 ……………8分

①②

相关文档
最新文档