高考物理(必考点 热考点 预测点)第一部分 必考点 专练3 牛顿运动定律和直线运动1
高考物理一轮复习:3-1《牛顿第一定律、牛顿第三定律》ppt课件

题的能力.
实验四:验证牛顿第二 定律
2.本章复习关注两点: (1)对力和运动关系的认识历程、牛顿运动 定律、惯性、作用力、反作用力的概念, 规律的理解和辨析.
(2)以生产、生活和科学实验中有关的命题
背景,考查应用牛顿运动定律分析实际问
题的能力.
高三物理一轮复习
第三章 牛顿运动定律 第1节 牛顿第一定律 牛顿第三定律
考点阐释
1.作用力与反作用力的“三同、三异、三无关”
2.应用牛顿第三定律时应注意的问题
(1)定律中的“总是”二字说明对于任何物体,在任何 条件下牛顿第三定律都是成立的.
考点二 对牛顿第三定律的理解
考点阐释
不同点
(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失, 则另一个必然同时产生或消失.
D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要 制适当的速度,另一方面要将身体稍微向
将身体稍微向里倾斜,通过调控人和车的惯性达到转弯的目的 里倾斜,调控人和车的重心位置,但整体
答案 解析
的惯性不变,选项D错误.
考点一 对牛顿第一定律的理解
题组设计
3.(2014·高考北京卷)伽利略创造的
把实验、假设和逻辑推理相结合的
用细绳把小球悬挂起来,当小球静止时,下列
说法中正确的是
()
A.小球受到的重力和细绳对小球的拉力是一 对作用力和反作用力
B.小球受到的重力和小球对细绳的拉力是一 对作用力和反作用力
C.小球受到的重力和细绳对小球的拉力是一 对平衡力
D.小球受到的重力和小球对细绳的拉力是一 对平衡力
答案 解析 图片显/隐
考
考点一 对牛顿第一定律的理解
点 考点二 对牛顿第三定律的理解
高考物理热点快速突破必考部分专题牛顿运动定律

G专题04 牛顿运动定律【高考命题热点】主要考查有关“牛一”、整体法隔离法的选择题、验证“牛二”的实验题和涉及“牛二”的综合型大题。
【知识清单】1. 牛顿第一定律(惯性定律):物体不受力或所受合外力为零时物体将保持静止或匀速直线运动状态,直到有外力迫使它改变这种运动状态为止。
惯性:物体保持原来运动状态的特性。
惯性只跟质量有关,质量越大,惯性越大。
力不是维持物体运动的原因,而是改变物体运动状态的原因。
2. 牛顿第二定律:mFamaF合合或==(a由合外力决定,方向与合外力一致)3. 牛顿第三定律:作用力和反作用力是等大、反向,在同一直线上分别作用在两个物体的两个力。
4. 超重和失重超重:GFN>(压力或支持力)a竖直向上;即向上加速或向下减速失重:GFN<(压力或支持力)a竖直向下即同理向下加速或向上减速5. 整体法和隔离法条件:系统各物体运动状态一致,即有共同加速度,各物体相对静止。
思路:先整体后隔离,隔离受力少和简单物体。
例:(多选)如图在光滑地面上,水平外力F拉动小车和木块一起做无相对滑动的匀加速直线运动。
小车质量为M,木块质量为m,力大小是F,加速度大小是a,木块和小车之间动摩擦因数为μ,则在这个过程中,木块收到的摩擦力大小为是(BCD)A.maμ B.ma C.mMmF+D.MaF-热点突破提升练四1.牛顿第一定律和牛顿第二定律共同确定了力与运动的关系,下列相关描述正确的是( ) A .力是维持物体运动状态的原因 B .力是使物体产生加速度的原因C .速度变化越快的物体惯性越大,匀速运动或静止时没有惯性D .质量越小,惯性越大,外力作用的效果越明显2.一个人站在升降机的地板上,在升降机加速上升的过程中,以下说法正确的是( ) A .人对升降机的压力小于升降机对人的支持力 B .人对升降机的压力与升降机对人的支持力大小相等 C .升降机对人的支持力等于人的重力D .人的重力和升降机对人的支持力是一对作用力和反作用力3.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。
南方新高考高考物理大一轮复习专题三牛顿运动定律第1讲牛顿第一定律牛顿第三定律课件

第十七页,共24页。
⊙典例剖析(pōuxī) 例 1:一起重机通过一绳子将货物向上吊起的过程中(忽略
绳子(shéng zi)的重力和空气阻力),以下说法正确的是( )
A.当货物匀速上升时,绳子对货物的拉力与货物对绳子的
拉力是一对(yī duì)平衡力
B.无论货物怎么上升,绳子对货物的拉力大小都等于货物
Ⅰ 运动和已知运动求受力.在这两类问题中,加速度 a 都 起着桥梁的作用.对物体进行正确的受力分析、运动状
Ⅰ 态及运动过程分析,是解决这两类问题的突破口. 3.高考命题中,牛顿运动定律及其应用更多的是与功和
能、动量、电场与磁场等知识点结合起来,通过连接体、 弹簧、皮带、碰撞、爆炸等方式构建一定的物理情景, — 着重考查考生根据题设物理情景构建适当的物理模型,
)
逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为
第十三页,共24页。
图 3-1-2 A.如果斜面光滑(guāng huá),小球将上升到与 O 点等高的位置 B.如果小球不受力,它将一直保持匀速运动或静止状态 C.如果小球受到力的作用,它的运动状态将发生改变 D.小球受到的力一定时,质第量十四页越,共2大4页。,它的加速度越小
》》》考点 1 牛顿第一定律 ⊙重点(zhòngdiǎn)归纳 1.伽利略理想实验表明:力不是(bùshi)维持物体运动的原因.理想 实验是一种抽象思维(chōu xiànɡ sī wéi)的方法.
第十一页,共24页。
2.牛顿第一定律(即惯性(guànxìng)定律)的理解
(1)明确了惯性(guànxìng)的概念.
对绳子的拉力大小
C.无论货物怎么上升,绳子对货物的拉力大小总大于货物
的重力大小
D.若绳子质量不能忽略且货物匀速上升时,绳子对货物的
2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动

专题三运动学图像和动力学图像高频考点·能力突破考点一常规图像1.常规图像2.图像问题的解题思路例 1 [2022·河北卷]科学训练可以提升运动成绩,某短跑运动员科学训练前后百米全程测试中,速度v与时间t的关系图像如图所示.由图像可知( )A.0~t1时间内,训练后运动员的平均加速度大B.0~t2时间内,训练前、后运动员跑过的距离相等C.t2~t3时间内,训练后运动员的平均速度小D.t3时刻后,运动员训练前做减速运动,训练后做加速运动[解题心得]预测1 (多选)如图所示为甲、乙两物体在同一直线上运动的位移—时间图像,由图像可知( )A.甲、乙两物体开始运动时的速度方向相反B.甲、乙两物体同时同地开始运动C.甲物体在0~4 s内的平均速率比乙物体在1~4 s内的平均速率大D.两图线交点表示两物体速度相同预测2 (多选)2020东京奥运会田径男子4×100米接力比赛,由汤星强、谢震业、苏炳添和吴智强组成的中国队取得优异成绩.如图(a)所示,假设某接力比赛中甲、乙两运动员在直道交接棒过程的v-t图像大致如图(b)所示.设t1时刻为交接棒时刻,下列说法正确的是( )A.甲为交棒运动员,乙为接棒运动员B.0~t1过程中,甲在前,乙在后,二者距离越来越小C.t1~t2过程中,接棒运动员的加速度越来越小D.交接棒时的速度越大,因交接棒而损失的时间越少预测3 [2022·北京押题卷]很多智能手机都有加速度传感器,能通过图像显示加速度情况.用手掌托着手机,打开加速度传感器,手掌从静止开始迅速上下运动,得到如图所示的竖直方向上加速度随时间变化的图像,该图像以竖直向上为正方向.由此可判断出( )A.手机可能离开过手掌B.手机在t1时刻运动到最高点C.手机在t2时刻改变运动方向D.手机在t1~t3时间内,受到的支持力先减小再增大考点二非常规图像1.非常规图像a - F图像2.解决非常规图像的方法对于这类新型图像问题,关键是认清图像中横、纵轴所代表的物理量,找出它们的函数关系,并能迁移运用物理知识和方法清楚理解图像中的“点”“线”“斜率”“截距”和“面积”的物理意义.例2 [2022·河北押题卷]无人驾驶汽车在新冠疫情期间对疫情防控起到了积极作用.某自主品牌的一款无人驾驶汽车在直线测试时的速度平方与位移关系v2- x图像如图所示.从汽车经过x=0位置时开始计时,则以下说法中正确的是( )A.汽车做匀加速直线运动B.汽车的加速度大小为10 m/s2C.该车在2 s内的位移大小为2.0 mD.该车在2 s内的位移大小为3.6 m[解题心得]预测4 一质点沿直线运动,如图所示是从t=0时刻开始的质点的xt- t(式中x为位移)图像,可以推知( )A.质点做匀减速运动B.加速度的大小是1 m/s2C.t=2 s时的速度是1 m/sD.t=2 s时位移是3 m预测5 [2022·安徽示范高中皖北协作区联考](多选)如图1所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A,滑块A受到随时间t变化的水平拉力F作用时,用传感器测出滑块A的加速度a,得到如图2所示的a- F图像,已知g取10 m/s2,则( )A.滑块A的质量为2 kgB.木板B的质量为6 kgC.当F=12 N时,木板B的加速度为4 m/s2D.滑块A与木板B间的动摩擦因数为0.4素养培优·情境命题与体育运动、交通有关的v - t图像问题情境1 [2022·湖南株洲4月质检]为节约运行时间,设想一种高铁进站不停车模式.如图(a)所示,站台内铁路正上方有一固定轨道AB,高铁分为可分离的上下副、主车两部分,副车可在主车车顶轨道上滑行,主车保持匀速过站,需下车的乘客提前进入副车甲中,需上车的乘客已在静止于A端的副车乙中等待.车尾到B端瞬间,甲刚好完全滑上固定轨道AB,主、副车分离,副车甲立即减速,甲的车头到A端时刚好停下,乘客下车.当主车车头到A 端时,副车乙立即从固定轨道开始加速滑上车顶轨道,当乙的车尾与主车车尾对齐时主、副车刚好共速,锁死一起前进.设高铁以40 m/s 速度匀速驶来,副车长均为20 m,副车甲、乙运动的v - t图像如图(b)所示,则主车长为( )A.180 m B.200 mC.220 m D.820 m[解题心得]情境2 图(a)为2022年北京冬奥会冰壶比赛中的一个画面.比赛中,为了使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小.假设某运动员以初速度v0沿冰面将冰壶推出,冰壶做直线运动直到停止的过程中,其速度—时间(v - t)图像如图(b)所示,则下列判定正确的是( )A.0~t1和t2~t3时间内,运动员在用毛刷擦冰面B.t1~t2时间内,冰壶的加速度大小为v1−v2t2C.t1~t2时间内,冰壶的位移大小为1(v1+v2)·(t2-t1)2(v0+v1+v2)D.0~t3时间内,冰壶的平均速度大小为13[解题心得]情境3 (多选)2021年7月31日,第二十届全国大学生机器人大赛ROBOCON圆满闭幕,本次大赛的主题项目为“投壶行觞”和“机器马术”.如图甲,在一次比赛中a、b两机器人从同一起跑线沿同一方向做直线运动,它们的速度—时间图像如图乙所示,则下列说法正确的是( )A.20 s时,a、b两机器人在运动方向上相距约500 mB.40 s时,a、b两机器人速度相等,在运动方向上相距最远,为400 mC.60 s时,b机器人在a机器人的前方,在运动方向上相距400 mD.a、b加速时,b机器人的加速度大于a机器人的加速度[解题心得]专题三 运动学图像和动力学图像高频考点·能力突破考点一例1 解析:根据v - t 图像的斜率表示加速度,及题图可知0~t 1时间内,训练后运动员的平均加速度比训练前的小,故A 错误;根据v - t 图像围成的面积表示位移,及题图可知0~t 2时间内,训练前运动员跑过的距离比训练后的大,故B 错误;根据v - t 图像围成的面积表示位移,及题图可知t 2~t 3时间内,训练后运动员的位移比训练前的位移大,根据平均速度等于位移与时间的比值,可知训练后运动员的平均速度大,故C 错误;由v - t 图像可直接看出,t 3时刻后,运动员训练前速度减小,做减速运动,运动员训练后速度增加,做加速运动,故D 正确.答案:D预测1 解析:甲物体开始运动时沿正向运动,乙物体开始运动时沿负向运动,A 正确;甲物体从0时刻在x =-5 m 位置开始运动,乙物体从1 s 时开始运动,开始运动的位置为x =0 m ,B 错误;x t 图线的斜率的绝对值表示速度大小,则甲物体在0~4 s 内平均速率为v 甲=5−(−5)4m/s =2.5 m/s ,乙物体在1~4 s 内平均速率为v 乙=|−5|3m/s =53 m/s ,则甲物体在0~4 s 内的平均速率比乙物体在1~4 s 内的平均速率大,C 正确;x t 图线的交点表示该时刻位置坐标相同,即两物体相遇,速度应看图线斜率,D 错误.答案:AC预测2 解析:由图(b)可知,交接棒过程中,接棒运动员在前,从静止开始向前加速运动,交棒运动员在后,开始时交棒运动员速度大于接棒运动员速度,二者之间的距离越来越小,当二者速度相等时,二者距离达到最小,此时要完成交接棒动作.交接棒完成后,接棒运动员继续加速直到达到最大速度,交棒运动员继续减速直到停下,综上分析,甲为交棒运动员,乙为接棒运动员,A 正确.0~t 1过程中,乙在前,甲在后,二者距离越来越小,B 错误.由图(b)可知,t 1~t 2过程中,接棒运动员乙做加速度逐渐减小的加速运动,C 正确.交接棒时的速度越大,移动相同位移所需时间越短,因交接棒而损失的时间越少,D 正确.答案:ACD预测3 解析:根据Δv =a Δt 可知,a - t 图像与坐标轴围成的面积表示速度变化量,可知手机在t 1时刻速度为正,还没有到最高点,故B 错误;根据Δv =a Δt 可知a t 图像与坐标轴围成的面积表示速度变化量,可知手机在t 2时刻前后速度均为正,运动方向没有发生改变,故C 错误;由图可知t 1~t 2时间内加速度向上不断减小,根据牛顿第二定律得N -mg =ma ,即N =ma +mg .可知t 1~t 2时间内支持力不断减小,t 2~t 3时间内加速度向下,不断增大,根据牛顿第二定律得mg -N =ma ′得N =mg -ma ′,可得支持力还是不断减小,故D 错误;由图可知,手机的加速度某一段时间内等于重力加速度,则手机与手掌没有力的作用,手机可能离开过手掌,故A 正确.答案:A 考点二例2 解析:根据速度—位移关系v 2−v 02=2ax , 当x =0时,车的初速度为v 0=6 m/s , 将x =2 m ,v 2=16 m 2/s 2代入可得a =-5 m/s 2.可知车做匀减速运动,则车的速度减小为零的时间为t =0−6−5s =1.2 s<2 s. 所以该车在2 s 内的位移大小为x =62×1.2 m=3.6 m ,故D 正确,A 、B 、C 错误. 答案:D预测4 解析:由题分析可得图线的函数表达式为x t =1+12t ,即x =t +12t 2,又因为匀变速直线运动中位移公式为x =v 0t +12at 2,根据对应关系得v 0=1 m/s ,a =1 m/s 2>0,v 0与a 方向相同,则质点做匀加速运动,故A 项错误,B 项正确.当t =2 s 时,根据公式v =v 0+at ,求出速度是3 m/s ,故C 项错误.当t =2 s 时,代入表达式x =t +12t 2,可得位移是4 m ,故D 项错误.答案:B预测5 解析:设滑块A 的质量为m ,木板B 的质量为M ,滑块A 与木板B 间的动摩擦因数为μ.由题图2可知,当F =F m =10 N 时,滑块A 与木板B 达到最大共同加速度a m =1ms 2,根据牛顿第二定律有F m =(M +m )a m ,解得M +m =10 kg.当F >10 N 时,A 与B 将发生相对滑动,对A 单独应用牛顿第二定律有F -μmg =ma ,整理得a =Fm -μg .根据题图2解得m =2 kg ,μ=0.4,则M =8 kg ,故A 、D 正确,B 错误;当F =12 N 时,木板B 的加速度为a B =μmg M=1ms 2,故C 错误.答案:AD 素养培优·情境命题情境1 解析:根据题意,对副车乙和主车的运动进行简化分析,如图所示.已知副车长20 m ,由v t 图像可知,副车乙发生的位移为x 1=12×(24.5-15.5)×40 m=180 m ,在这一段时间内,主车做匀速直线运动,主车发生的位移为x 2=(24.5-15.5)×40 m=360 m ,故主车的长度为L =x 2-x 1+20 m =360 m-180 m +20 m =200 m ,故选B 正确.答案:B情境2 解析:v t 图线的斜率表示加速度,由图知t 1~t 2时间内图线斜率小,说明加速度小,由牛顿第二定律a =fm =μmg m=μg ,知t 1~t 2时间内冰壶与冰面间的动摩擦因数小,说明运动员在用毛刷擦冰面;0~t 1和t 2~t 3时间内图线斜率大,动摩擦因数大,说明此时间段运动员没有用毛刷擦冰面,故A 错误;由加速度定义式a =ΔvΔt 知t 1~t 2时间内,冰壶的加速度大小为a =v 1−v2t 2−t 1,故B 错误;v t 图线与坐标轴围的面积表示位移,在t 1~t 2时间内,冰壶的位移大小为x =12(v 1+v 2)(t 2-t 1),故C 正确;根据平均速度的定义式v ̅=xt 知在0~t 3时间内,冰壶的平均速度大小为v̅=x总t总=12(v0+v1)t1+12(v1+v2)(t2−t1)+12v2(t3−t2)t3=(v0−v2)t1+v1t2+v2t32t3,故D错误.答案:C情境3 解析:根据图像可知,t=20 s时b车才出发,20 s时两者间距即为a在0~20 s内的位移;速度—时间图像与坐标轴围成的“面积”表示位移,则Δx=x a=10+402×20m=500 m,故A正确;由图像所围面积可知:0~40 s内a比b多运动的位移S=(10+402×20+12×40×20)m=900 m,故B错误;由a、b图像所围面积可知,60 s时二者的位移之差等于20 s时的位移差,由A选项分析可知,此时b机器人在a机器人的后方,在运动方向上相距500 m,故C错误;速度—时间图像图线的斜率表示加速度,由图像可知:a、b加速时,a图线的斜率小于b图线的斜率,说明b机器人的加速度大于a机器人的加速度,故D正确.答案:AD。
高中物理重难点及高考题解 牛顿运动定律

高中物理重难点及高考题解牛顿运动定律一.牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这就是牛顿第一定律,又叫惯性定律。
这种保持原来的匀速直线运动或静止状态的性质叫做惯性。
1.牛顿第一定律牛顿第一定律揭示了宇宙中一切物体(或物质)的存在形式,即一切物体在不受外力作用时处于匀速直线运动状态,或处于静止状态,并且运动是绝对的,而静止是相对的。
同时牛顿第一定律也说明了力不是维持物体速度的原因,而是改变物体速度的原因。
2.惯性(1)惯性是物体本身的固有属性,不论物体处于怎样的运动状态,物体均具有惯性。
(2)质量是物体惯性大小的量度。
质量越大,惯性也就越大。
【难点突破】惯性是物体最基本的属性。
表现为:当物体不受外力或所受合外力为零时,惯性表现为物体运动状态不改变;当物体所受合外力不为零时,惯性表现为改变物体运动状态的难易程度。
【例题】如图所示,水平放置的小瓶内有水,其中有一气泡。
当瓶从静止状态突然向右运动时,小气泡在瓶内将向何方运动?(1)甲同学认为:在瓶内的小气泡由于惯性将向左运动,你认为这个结论正确吗?并说明理由。
(2)乙同学认为:瓶中的水由于惯性保持原来的静止状态,相对于瓶子来说向左运动,而瓶中的气泡就向右移动,你认为这个结论正确吗,请说明理由。
【分析】【题解】【答案】二.牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。
1.牛顿第二定律(1)牛顿第二定律揭示了物体的加速度跟它受到的合外力及物体本身质量之间的定量关系,其数学表达式为a ∝mF 式中各物理量取国际单位制中的单位后可以写为F 合=ma(2)牛顿第二定律反映了合外力的方向决定加速度的方向,而加速度的方向和速度改变量的方向一致,所以速度改变量的方向也就决定于合外力的方向。
(3)作用在物体上的每一个力都会使物体产生一个加速度,物体最终表现出来的加速度是这些加速度的矢量和,由此可以提供计算物体加速度的两条途径,即可以先求合外力,再求合外力产生的加速度;可以先求所有外力产生的加速度,再求这些加速度的矢量和。
高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析(1)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。
已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。
求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。
【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。
设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F与小环速度v随时间变化规律如图所示,取重力加速度g=10m/s2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°4.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.5.如图所示.在距水平地面高h =0.80m 的水平桌面一端的边缘放置一个质量m =0.80kg 的木块B ,桌面的另一端有一块质量M =1.0kg 的木块A 以初速度v 0=4.0m/s 开始向着木块B 滑动,经过时间t =0.80s 与B 发生碰撞,碰后两木块都落到地面上,木块B 离开桌面后落到地面上的D 点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D 点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.6.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.7.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.8.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
2021年高考物理专题汇编 专题1 力与直线运动 第3讲 牛顿运动定律(A)(含解析)
2021年高考物理专题汇编专题1 力与直线运动第3讲牛顿运动定律(A)(含解析)一.选择题1.(xx・烟台高考测试・14).在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法,下列关于物理学研究方法的叙述中正确的是()A.质点、速度、点电荷等都是理想化模型B.物理学中所有物理量都是采用比值法定义的C.伽利略开创了实验研究和逻辑推理相结合探索物理规律的科学方法D.重心、合力和交变电流的有效值等概念的建立都体现了等效替代的思想2.(xx・景德镇三检・14).在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加,物理学中把这种研究方法叫做“微元法”。
下列几个实例中应用到这一思想方法的是()A.在不需要考虑物体本身的大小和形状时,用点来代替物体,即质点B.在“探究弹性势能的表达式”的活动中为了计算弹簧弹力所做的功,把拉伸弹簧的过程分为很多小段,拉力在每小段可以认为是恒力,各小段弹力做功的代数和就是整个过程弹力所做的功C.一个物体受到几个力共同作用产生的效果与某一个力产生的效果相同,这个力叫做那几个力的合力D.在探究加速度与力和质量之间关系时,先保持质量不变探究加速度与力的关系,再保持力不变探究加速度与质量的关系3.(xx・丰台区二练・15). 人在处于一定运动状态的车厢内竖直向上跳起,下列分析人的运动情况的选项中正确的是A. 只有当车厢处于静止状态,人才会落回跳起点B. 若车厢沿直线水平匀速前进,人将落在跳起点的后方C. 若车厢沿直线水平加速前进,人将落在跳起点的后方D. 若车厢沿直线水平减速前进,人将落在跳起点的后方4.(xx・永州三模・15).一质量为m的铁块以初速度v1沿粗糙斜面上滑,经过一段时间又返回出发点,整个过程铁块速度随时间变化的图象如图所示,下列说Array法正确的是()A.铁块上滑过程与下滑过程满足v1t1=v2(t2-t1)B.铁块上滑过程处于超重状态C.铁块上滑过程与下滑过程的加速度方向相反D.铁块上滑过程损失的机械能为5.(xx・衡水高三调・19).如图是汽车运送圆柱形工件的示意图。
高考物理重点必考知识点总汇
高考物理重点必考知识点总汇高中物理课本共三册,其中第一,二册为必修,第三册为必修加选修。
查字典物理网为大家引荐了高考物理重点必考知识点,请大家细心阅读,希望你喜欢。
运动和力公式汇编1.牛顿第一运动定律(惯性定律):物体具有惯性,总坚持匀速直线运动形状或运动形状,直到有外力迫使它改动这种形状为止。
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决议,与合外力方向分歧}3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实践运用:反冲运动}4.共点力的平衡F合=0,推行 {正交分解法、三力汇交原理}5.超重:FNG,失重:FN6.牛顿运动定律的适用条件:适用于处置低速运动效果,适用于微观物体,不适用于处置高速效果,不适用于微观粒子。
(见第一册P67)注:平衡形状是指物体处于运动或匀速直线形状,或许是匀速转动。
冲量与动量公式汇编1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相反}2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决议}3.动量定理:I=p或Ft=mvtmvo {p:动质变化p=mvtmvo,是矢量式}4.动量守恒定律:p前总=p后总或p=p也可以是m1v1+m2v2=m1v1+m2v25.弹性碰撞:Ek=0 {即系统的动量和动能均守恒}6.非弹性碰撞0EKEKm {EK:损失的动能,EKm:损失的最大动能}7.完全非弹性碰撞EK=EKm {碰后连在一同成一全体}8.物体m1以v1初速度与运动的物体m2发作弹性正碰:v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)9.由8得的推论等质量弹性正碰时二者交流速度(动能守恒、动量守恒)10.子弹m水平速度vo射入运动置于水平润滑空中的长木块M,并嵌入其中一同运动时的机械能损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专练3 牛顿运动定律和直线运动 [命题特点] 高考对本考点的考查4年7考,频度较高.考题以直线运动为背景,考查受力分析、牛顿运动定律、匀变速直线运动规律及图象. 1.如图1所示是一做匀变速直线运动的质点的位置—时间图象(x-t图象),P(t1,x1)为图象上一点.PQ为过P点的切线,与x轴交于点Q(0,x2).则下列说法正确的是( )
图1 A. t1时刻,质点的速率为x1t1
B. t1时刻,质点的速率为x1-x2t1 C. 质点的加速度大小为x1-x2t21 D. 0~t1时间内,质点的平均速度大小为2(x1-x2)t1 答案 B
2.如图2所示,欲使在粗糙斜面上匀速下滑的木块A停止,可采用的方法是( ) 图2 A.在木块A上再叠放一个重物 B.对木块A施加一个垂直斜面向下的力 C.对木块A施加一个竖直向下的力 D.增大斜面的倾角 答案 B
3.一小球在空气中从某高处由静止开始下落,t0时刻到达地面.其v-t图象如图3所示.由此可以断定物体在下落过程中( )
图3 A. 不受空气阻力 B. 受到的空气阻力大小不变 C. 受到的空气阻力越来越小 D. 受到的空气阻力越来越大 答案 D 解析 v-t图象斜率代表加速度,根据图象可知斜率越来越小,所以加速度越来越小,由牛顿第二定律a
=Fm,可得小球的合力越来越小,从而判断小球下落过程必受空气阻力,且空气阻力越来越大.所以D选项正确. 4.(多选)小陈在地面上从玩具枪中竖直向上射出初速度为v0的塑料小球,若小球运动过程中受到的空气阻力与其速率成正比,小球运动的速率随时间变化的规律如图4所示,t1时刻到达最高点,再落回地面,落地速率为v1,下列说法中正确的是( )
图4 A. 小球上升过程中的平均速度大于 v02
B. 小球下降过程中的平均速度大于 v12 C. 小球射出时的加速度值最大,到达最高点的加速度值为 0 D. 小球的加速度在上升过程中逐渐减小,在下降过程中也逐渐减小 答案 BD
5.(多选)如图5所示,质量为M、倾角为θ的斜面放在粗糙水平面上,质量为m的物体在斜面上恰能匀速下滑.现加上平行斜面向下的力F,使物体在斜面上加速下滑,重力加速度为g.则此时地面对斜面的支持力FN的大小和物体的加速度大小a为( )
图5 A. a=Fm-gsin θ B. FN=(M+m)g C. a=Fm D. FN=(M+m)g+Fsin θ 答案 BC 解析 没加外力时物体在斜面上恰能匀速下滑,物体处于平衡状态,可得斜面对物体的摩擦力与斜面对物体支持力的合力竖直向上,跟物体的重力相抵消,由牛顿第三定律得,物体对斜面的摩擦力与物体对斜面的压力的合力必定竖直向下,大小必为mg,所以斜面受到地面的支持力FN=(M+m)g;当施加沿斜面向下的力F后,m与M之间的弹力没有变化,因而m与M之间的滑动摩擦力也没有变化,故弹力和摩擦力的合力也不会变化,物体对斜面的摩擦力与物体对斜面的压力的合力必定竖直向下,大小必为mg,斜面受到地面的支持力仍是FN=(M+m)g;选小物体为研究对象,没加外力时物体在斜面上恰能匀速下滑,则沿斜面方向合
力为零,斜面施加的摩擦力与重力沿斜面的分力相抵消,当加上外力F时,物体的加速度为a=Fm. 6.如图6所示,质量都为m的A、B两物体叠放在竖直弹簧上并保持静止.现用大小等于mg的恒力F竖直向上拉B,B向上运动h时与A分离.则下列说法中正确的是( )
图6 A. B和A刚分离时,弹簧为原长 B. B和A刚分离时,它们的加速度为g C. 在B与A分离之前,它们做匀加速运动
D. 弹簧的劲度系数等于mgh 答案 D
7.如图7所示,质量为M的吊篮P通过细绳悬挂在天花板上,物块A、B、C质量均为m,B、C叠放在一起,物块B固定在轻质弹簧上端,弹簧下端与A物块相连,三物块均处于静止状态,弹簧的劲度系数为k(弹簧始终在弹性限度内),下列说法正确的是( ) 图7 A. 静止时,弹簧的形变量为mgk B. 剪断细绳瞬间,C物块处于超重状态 C. 剪断细绳瞬间,A物块与吊篮P分离
D. 剪断细绳瞬间,吊篮P的加速度大小为(M+3m)gM+m 答案 D
8.如图8所示,穿在水平直杆上质量为m的小球开始时静止.小球与杆间的动摩擦因数为μ.现对小球施加沿杆方向的恒力F0=2μmg,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kv(图中未标出).已知小球运动过程中未从杆上脱落,则( )
图8 A. 小球先做加速度减小的加速运动,后做加速度增大的减速运动直到静止 B. 小球先做加速度增大的加速运动,后做加速度减小的减速运动,直到最后做匀速运动 C. 小球的最大加速度为2μg
D. 恒力F0的最大功率为Pm=3μmgk 答案 C 解析 刚开始运动,加速度为:a1=F0-μ(mg-kv)m,当速度v增大时,加速度增大,当速度v增大到符合kv>mg后,加速度为:a2=F0-μ(kv-mg)m,当速度v增大时,加速度减小,当a2减小到0后,做匀速运动,
故A、B错误;当阻力为零时,加速度最大,故小球的最大加速度为F0m=2μmgm=2μg,故C正确.当加速度为零时,小球的速度最大,此时有:a2=F0-μ(kv-mg)m,故速度为:v=F0+μmgμk,故恒力F0的最大功率为Pm=F20+F0μmgμk=6μm2g2k,故D错误.
9.(多选)如图9所示,木块A、B分别重50 N和60 N,它们与水平地面之间的动摩擦因数均为0.24.夹在A、B之间的轻弹簧被压缩了2 cm,弹簧的劲度系数为400 N/m.系统置于水平地面上静止不动.现用水平力F作
用在木块B上,则( )
图9 A. 若F=1 N,则木块B所受摩擦力大小是9 N B. 若F=1 N,则木块A所受摩擦力大小是7 N C. 若木块A、B能一起保持匀速运动,则拉力F=24.6 N D. 若木块A、B能一起保持匀速运动,则A、B间弹簧的伸长量为3 cm 答案 AD 10.(多选)如图10所示,质量m=1 kg的物体(可视为质点)以v0=10 m/s的初速度从倾角θ=30°的固定斜面底端沿斜面向上运动,物体上滑的最大高度h=4 m,取g=10 m/s2,则( )
图10 A. 物体上滑到高度为2 m时的速度大小为5 m/s B. 物体与斜面间的动摩擦因数为0.5 C. 物体上滑过程中克服摩擦力做功为10 J D. 物体上滑到最高点后还能返回斜面底端,且上滑过程的时间小于下滑过程的时间 答案 CD 11.实验小组为了探究物体在倾角不同的斜面上的运动情况,将足够长的粗糙木板的一端固定在水平地面上,使物体以大小相同的初速度v0由底端冲上斜面,如图11所示,每次物体在斜面上运动过程中斜面倾角保持不变.在倾角θ从0°逐渐增大到90°的过程中( ) 图11 A. 物体的加速度增大 B. 物体的加速度减小 C. 物体在斜面上能达到的最大位移先增大后减小 D. 物体在斜面上能达到的最大位移先减小后增大 答案 D 解析 设物体质量为m,物体与斜面间的动摩擦因数为μ.当物体沿倾角为θ的斜面上滑时,受到重力mg,斜面支持力FN,滑动摩擦力Ff,如图所示.
对物体由牛顿第二定律得: mgsin θ+Ff=ma FN-mgcos θ=0
Ff=μFN
联立解得:a=gsin θ+μgcos θ=g1+μ2sin(θ+φ), 其中,φ为锐角,且tan φ=μ. 当θ从0°逐渐增大到90°的过程中,加速度a先增大后减小,因此,A、B错误.
物体沿斜面上升的最大位移x=0-v 20-2a=v 202g1+μ2sin(θ+φ), 当θ从0°逐渐增大到90°的过程中,x先减小后增大,因此,C错误,D正确. 12.如图12所示,一固定杆与水平方向夹角为α,将一质量为m1的滑块套在杆上,通过轻绳悬挂一质量为m2的小球,杆与滑块之间的动摩擦因数为μ.若滑块与小球保持相对静止以相同的加速度a一起运动,此时
绳子与竖直方向夹角为β,且α
图12 A. 沿杆减速下滑 B. 沿杆减速上滑 C. 沿杆加速下滑 D. 沿杆加速上滑 答案 B 13. 如图13所示,倾角为θ,质量为M的斜劈形物体放在水平地面上,质量为m的粗糙物块以某一初速度沿物体的粗糙斜面向上滑至速度为零后又加速返回,而物体M始终保持静止,则在物块m上、下滑动的整个过程中( )
图13 A.地面对物体M的摩擦力大小相同 B.地面对物体M的支持力总小于(M+m)g C.地面对物体M的摩擦力先向右后向左 D.地面对物体M的摩擦力先向左后向右 答案 B 解析 物块先减速上滑,后加速下滑,加速度一直沿斜面向下,对整体受力分析,受到总重力、支持力和向左的静摩擦力,如图甲,根据牛顿第二定律,有
在x轴上受力分析:Ff=macos θ① 在y轴上受力分析:(M+m)g-FN=(M+m)asin θ② 物块上滑时,受力分析如图乙,根据牛顿第二定律,有