《试卷8份集锦》内蒙古呼和浩特市中考数学第一次押题试卷
内蒙古呼和浩特市中考数学一模试卷

内蒙古呼和浩特市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A . 2.5×B . 0.25×C . 25×D . 2.5×2. (2分)(2012·盐城) 甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是 =0.90, =1.22, =0.43, =1.68,在本次射击测试中,成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁3. (2分)已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是()A . m<nB . m>nC . m=nD . m、n的大小关系不能确定4. (2分)(2016·福州) 如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A .B .C .D .5. (2分)下列二次根式中,最简二次根式是()A .B .C .D .6. (2分)(2017·深圳模拟) 如图,在已知的∆ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A . 90°B . 95°C . 100°D . 105°7. (2分) (2017九下·梁子湖期中) 如图,在Rt△ABC中,∠ACB=90°,AC=2 ,BC=6,动点P,Q分别在边AB,BC上,则CP+PQ的最小值为()A . 3B . 3+C . 2D . 2+8. (2分)将二次函数y=2x2﹣4x﹣1的图象向右平移3个单位,则平移后的二次函数的顶点是()A . (﹣2,﹣3)B . (4,3)C . (4,﹣3)D . (1,0)9. (2分)(2020·惠山模拟) 如图,△ABC与△DEF都是正方形网格中的格点三角形(顶点在格点上),那么△ABC与△DEF的周长比为()A .B . 1:2C . 1:3D . 1:410. (2分)(2018·盘锦) 如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A . FA:FB=1:2B . AE:BC=1:2C . BE:CF=1:2D . S△ABE:S△FBC=1:4二、填空题 (共8题;共8分)11. (1分) (2017九下·张掖期中) 函数y= 中自变量x的取值范围是________.12. (1分)不等式组的解集是________.13. (1分)(2016·黔东南) 如图,点A是反比例函数y1= (x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2= (x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.14. (1分) (2017九上·钦州月考) 今年9月10日,退休老师老黄去与老同事们聚会,共庆第33个教师节.晚上,读初三的孙子小明问老黄:“爷爷,今天有几个同事参加聚会啦?”爷爷:“我来考考你:我们每个人都与其他人握了一次手,一共握了120次,你知道我们一共有多少人参加聚会吗?”若小明设参加聚会的人有x个,则可列方程为________15. (1分)(2017·茂县模拟) 如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是________(结果保留π).16. (1分)(2019·嘉善模拟) 如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是________cm3.17. (1分) (2016八下·嘉祥期中) 如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE∥BD,DE∥AC,若AD=4,则四边形CODE的周长________.18. (1分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题: (共8题;共89分)19. (5分)(2018·金华模拟) 计算:.20. (8分) (2015七上·宝安期末) 在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有________盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于________度.(3)请将图2的统计图补充完整.(4)通过计算得出________类礼盒销售情况最好.21. (20分)某位同学抛掷两个筹码,这两个筹码一面都画上×,另一面都画上Ф,分10组实验,每组20次,下面是共计200次实验中记录下的结果.(1)在他的每次实验中,掷出的哪些都是不确定事件?(2)在他的10组实验中,掷出“两个×”成功次数最多的是第几组实验?掷出“两个×”失败次数最多的是第几组实验?(3)在他的第一组实验中,掷出“两个×”的成功率是多少?在他的前两组实验中,掷出“两个×”的成功率是多少?在他的前八组实验中,掷出“两个×”的成功率是多少?(4)在他的10组实验中,掷出“两个×”的成功率是多少?掷出“一个×”的成功率是多少?掷出“没有×”的成功率是多少?这三个成功率的和是多少?22. (11分)(2019·临海模拟) 定义:如图1,点M,N在线段AB上,若以线段AM,MN,NB为边恰好能组成一个直角三角形,则称点M,N为线段AB的勾股分割点.(1)如图1,M,N为线段AB的勾股分割点,且AM=4,MN=3,则NB=________;(2)如图2,在▱ABCD中,CD=21,E为BC中点,F为CD边上一动点,AE,AF分别交BD于点M,N,当点M,N为线段BD的勾股分割点时,求FD的长;(3)如图3,△ABC中,∠ACB=90°,AC=BC=2,延长BA到点M,延长AB到点N,使点A,B恰好是线段MN的勾股分割点(AB>AM≥BN),过点M,N分别作AC,BC的平行线交于点P.①PC的长度是否为定值?若是,请求出该定值;若不是,请说明理由;②直接写出△PMN面积的最大值.23. (5分)(2013·崇左) 自古以来,钓鱼岛及其附属岛屿都是我国固有领土.如图,为了开发利用海洋资源,我勘测飞机测量钓鱼岛附属岛屿之一的北小岛(又称为鸟岛)两侧端点A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了800米,在点D测得端点B 的俯角为45°,求北小岛两侧端点A、B的距离.(结果精确到0.1米,参考数≈1.73,≈1.41)24. (10分) (2017九上·江门月考) 小莉的爸爸一面利用墙(墙的最大可用长度为11m),其余三面用长为40m的塑料网围成矩形鸡圈(其俯视图如图所示矩形ABCD),设鸡圈的一边AB长为xm,面积ym2 .(1)写出y与x的函数关系式;(2)如果要围成鸡圈的面积为192m2的花圃,AB的长是多少?25. (15分)(2017·新野模拟) 如图,在平面直角坐标系中,已知矩形OABC的三个顶点A(0,10),B(8,10),C(8,0),过O、C两点的抛物线y=ax2+bx+c与线段AB交于点D,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.26. (15分)已知:一次函数y=﹣2x+10的图象与反比例函数(k>0)的图象相交于A,B两点(A在B 的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在1的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y 轴于点D.若,求△ABC的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共8题;共89分)19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、21-4、22-1、22-3、23-1、24-1、24-2、25-1、25-2、25-3、26-1、。
内蒙古呼和浩特市中考数学一模考试试卷

内蒙古呼和浩特市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共41分)1. (3分)(2017·景泰模拟) 计算2﹣3的结果是()A . 5B . ﹣5C . 1D . ﹣12. (3分) (2020八上·嘉陵期末) 等腰三角形的两边a,b满足|a-7|+ =0,则它的周长是()A . 13B . 15C . 17D . 193. (3分)(2019·威海) 下列运算正确的是()A .B .C .D .4. (3分)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3)、B(4,1),A、B 两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A . (1,0)B . (5,4)C . (1,0)或(5,4)D . (0,1)或(4,5)5. (3分)当的值为最小值时,a 的取值为()A . -1B . 0C . -D . 16. (3分) (2018八上·龙岗期末) 下列命题是假命题的为()A . 如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B . 锐角三角形的所有外角都是钝角C . 内错角相等D . 平行于同一直线的两条直线平行7. (3分)某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当.关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()A .B .C .D .8. (2分)(2017·枣庄) 如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A . 2 <r<B . <r<3C . <r<5D . 5<r<9. (3分)(2018·河南模拟) 某居民小区开展节约用电活动,对该小区100户家庭的节电量情况进行了统计,4月份与3月份相比,节电情况如下表:节电量(千瓦时)20304050户数10403020则4月份这100户节电量的平均数、中位数、众数分别是()A . 35、35、30B . 25、30、20C . 36、35、30D . 36、30、3010. (3分)如图,AC=BC,AD=BD,下列结论不正确的是()A . CO=DOB . AO=BOC . AB⊥CDD . △ACO≌△BCO11. (2分)一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A .B .C .D .12. (2分)已知一次函数y=﹣2x+3,则与该一次函数的图象关于x轴对称的一次函数的表达式为()A . y=2x﹣3B . y=﹣2x﹣3C . y=2x+3D . y=﹣2x+313. (2分) (2018八上·湖北月考) 如图,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A .B .C .D .14. (2分)(2016·广元) 设点A(x1 , y1)和点B(x2 , y2)是反比例函数y= 图象上的两点,当x1<x2<0时,y1>y2 ,则一次函数y=﹣2x+k的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限15. (2分) (2018八上·洛阳期末) 如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD∥OB 交OA于点D,若PD=2,PC=()A . 1B . 2C . 3D . 416. (2分) (2019七下·潮阳月考) 如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1 ,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2 ,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().A . 407B . 406C . 405D . 404二、填空题 (共3题;共9分)17. (3分)(2017·香坊模拟) 把多项式2mx2﹣4mxy+2my2分解因式的结果是________.18. (2分) (2015八下·津南期中) 如图,四边形ABCD的两条对角线AC,BD互相垂直,A1 , B1 , C1 ,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为________.19. (4分)(2017·渝中模拟) 正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH 沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2 ,AE=8,则S四边形EFMG=________.三、解答题(共7小题,满分68分) (共7题;共46分)20. (10分)解下列不等式(组)并把它们的解集在数轴上表示出来(1)<1﹣(2).21. (10分)(2015·宁波) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.22. (10分) (2019七上·昌平期中) 阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.23. (2分) (2019八下·吴兴期末) 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E。
内蒙古呼和浩特市中考数学一模试卷

内蒙古呼和浩特市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中,最小的是().A . 0.1B . 0.11C . 0.02D . 0.122. (2分)(2016·深圳模拟) 由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()A .B .C .D .3. (2分)从《中华人民共和国2010年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)()A . 3.9×1013B . 4.0×1013C . 3.9×105D . 4.0×1054. (2分) (2016八上·长春期中) 下列运算正确的是()A . a2+a3=2a5B . a6÷a2=a3C . a2•a3=a5D . (2ab2)3=6a3b65. (2分)小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A .B .C .D .6. (2分) (2017七上·泉州期末) 地球的表面积约为510000000km2 ,将510000000用科学记数法表示为()A . 0.51×109B . 5.1×109C . 5.1×108D . 0.51×1077. (2分)如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2 ,则四边形A1DCC1的面积为()A . 10 cm2B . 12 cm2C . 15 cm2D . 17 cm28. (2分)如图,在方格纸上建立的平面直角坐标系中,将Rt△ABC绕点C 按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A . (-1,1)B . (-1,2)C . (1,2)D . (2,1)9. (2分)一个两位数的两个数字之和为7,则符合条件的两位数的个数是()A . 8B . 7C . 6D . 510. (2分)一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A . ①②B . ①③C . ②③D . ①②③二、填空题 (共6题;共7分)11. (2分)81的平方根是________;的算术平方根是________.12. (1分)(2016·绵阳) 因式分解:2mx2﹣4mxy+2my2=________13. (1分) (2017八下·苏州期中) 若反比例函数y= 图象经过点A(﹣,),则k=________.14. (1分) (2018八上·秀洲月考) 如图,在△ABC中,点D在BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠BCE=________。
2024-2025学年内蒙古呼和浩特八中七年级(上)第一次月考数学试卷(含答案)

2024-2025学年内蒙古呼和浩特八中七年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−711的倒数是( )A. 711B. −711C. 117D. −1172.在−1,+7.5,0,−23,−0.9,15中,非负数共有( )A. 1个B. 2个C. 3个D. 4个3.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A. a +b <0B. |a|>|b|C. a−b <0D. ab >04.下列各组数中,互为相反数的是( )A. −(+7)与+(−7)B. −12与+(−0.5)C. −54与45D. +(−0.01)与−(−0.01)5.若|a|=−a ,则a 是( )A. 非负数B. 负数C. 正数D. 非正数6.若|x|=2,|y|=7,x >y ,则x +y 的值为( )A. −5B. 9C. 5或9D. −5或−97.已知|a |=3,|b |=4,且ab <0,则a−b 的值为( )A. 1或7B. 1或−7C. ±1D. ±78.若|a−6|+|b +5|=0,则−b +a−23的值是( )A. 1013B. −1123C. 13D. −439.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b−a <0;(2)|a|<|b|;(3)a +b >0;(4)b a>0.其中正确的是( )A. (1)(2)B. (2)(3)C. (3)(4)D. (1)(4)10.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2019将与圆周上的数字( )重合.A. 3B. 0C. 1D. 2二、填空题:本题共6小题,每小题3分,共18分。
内蒙古呼和浩特市2019-2020学年中考第一次质量检测数学试题含解析

内蒙古呼和浩特市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各式中计算正确的是 A .()222x y x y +=+B .()236xx =C .()2236x x = D .224a a a +=2.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .3.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 逆时针旋转,使ON 边与BC 边重合,完成第一次旋转;再绕点C 逆时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,O 间的距离不可能是( )A .0B .0.8C .2.5D .3.44.设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是( ) A .2k-2 B .k-1 C .k D .k+1 5.下列式子一定成立的是( ) A .2a+3a=6a B .x 8÷x 2=x 4 C .12a a =D .(﹣a ﹣2)3=﹣61a 6.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .39πC .9932π D .1833π7.不等式组302xx+>⎧⎨-≥-⎩的整数解有()A.0个B.5个C.6个D.无数个8.如图,在▱ABCD中,AB=1,AC=42,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F.若AC⊥AB,则FD的长为()A.2 B.3 C.4 D.69.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-410.在0,-2,5,14,-0.3中,负数的个数是().A.1 B.2 C.3 D.411.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为()A.8×107B.880×108C.8.8×109D.8.8×101012.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线3(0)y xx=>与此正方形的边有交点,则a的取值范围是________.14.一个多项式与3212x y -的积为5243343x y x y x y z --,那么这个多项式为 . 15.点(1,–2)关于坐标原点 O 的对称点坐标是_____.16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.17.如图,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE ⊥OF ,OE 、OF 分别交AB 、BC 于点E 、点F ,AE=3,FC=2,则EF 的长为_____.18.如图,已知点A 是反比例函数2y x=-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)20.(6分) (1)解方程组31021x y x y +=⎧⎨-=⎩(2)若点A 是平面直角坐标系中坐标轴上的点,( 1 )中的解 , x y 分别为点B 的横、纵坐标,求AB 的最小值及AB 取得最小值时点A 的坐标.21.(6分)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP=AC ,且∠B=2∠P . (1)求证:PA 是⊙O 的切线; (2)若PD=3,求⊙O 的直径;(3)在(2)的条件下,若点B 等分半圆CD ,求DE 的长.22.(8分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB的延长线上,且()090Aαα∠=<<o o,连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)23.(8分)如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:2DM MF MB=⋅;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.24.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=32,求弦AD的长.25.(10分)如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数ymx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.(12分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)27.(12分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】 【分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断. 【详解】A. ()2222x y x xy y +=++,故错误. B. ()236x x =,正确.C. ()2239x x =,故错误. D. 2222a a a +=, 故错误. 故选B. 【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键. 2.C 【解析】 【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解. 【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误. 故答案选:C. 【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.3.D 【解析】 【分析】如图,点O 的运动轨迹是图在黄线,点B ,O 间的距离d 的最小值为0,最大值为线段可得0≤d≤3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CH⊥BD于点H,∵六边形ABCDE是正六边形,∴∠BCD=120º,∴∠CBH=30º,∴BH=cos30 º·33=∴3∵22112+=∴32点B,O间的距离d的最小值为0,最大值为线段32∴320≤d≤3.1,故点B,O间的距离不可能是3.4,故选:D.【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.4.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数, ∵1≤x≤1,∴当x=1时,y 最小=1(k-1)+1=1k-1. 故选A . 【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0,b >0时函数图象经过一、二、四象限是解答此题的关键. 5.D 【解析】 【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可. 【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误; B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a C 错误; D :(-a -2)3=-a -6=-61a ,故D 正确. 故选D. 【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现. 6.B 【解析】 【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可. 【详解】∵四边形ABCD 是菱形,∠DAB=60°, ∴AD=AB=6,∠ADC=180°-60°=120°, ∵DF 是菱形的高, ∴DF ⊥AB ,∴∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×2120?360π⨯9π. 故选B . 【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键. 7.B 【解析】 【分析】先解每一个不等式,求出不等式组的解集,再求整数解即可. 【详解】解不等式x+3>0,得x >﹣3, 解不等式﹣x≥﹣2,得x≤2, ∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个, 故选B . 【点睛】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值. 8.C 【解析】 【分析】利用平行四边形的性质得出△ADF ∽△EBF ,得出BE AD =BFDF,再根据勾股定理求出BO 的长,进而得出答案. 【详解】解:∵在□ABCD 中,对角线AC 、BD 相交于O , ∴BO=DO,AO=OC,AD ∥BC , ∴△ADF ∽△EBF , ∴BE AD =BFDF,∵,∴, ∵AB=1,AC ⊥AB ,∴,∴BD=6,∵E是BC的中点,∴BEAD=BFDF=12,∴BF=2,FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.9.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.10.B【解析】【分析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.故选B.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.B【解析】【分析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)1333【解析】【分析】根据题意得出C 点的坐标(a-1,a-1),然后分别把A 、C 的坐标代入求得a 的值,即可求得a 的取值范围.【详解】解:反比例函数经过点A 和点C .当反比例函数经过点A 时,即2a =3,解得:a=±3;当反比例函数经过点C 时,即2(1)a =3,解得:a=1±3, 33故答案为:33. 【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=k x(k 为常数,k≠0)的图象上14.22262x xy y z -++【解析】试题分析:依题意知()()524334325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭ =22262x xy y z -++考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。
2020年呼和浩特市数学中考第一次模拟试卷(及答案)

22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的 个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名;
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;
该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;
该组数据的平均数是 不是30,所以选项D不正确.
故选B.
点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.
12.A
解析:A
【解析】
从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,
故本题答案应为:A
【点睛】
熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.
9.B
解析:B
【解析】
【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 , , ,然后解不等式组即可.
【详解】
解:根据题意得
,
,
,
解得m≤ 且m≠2.
故选B.
10.A
解析:A
【解析】
试题分析:根据CD:AD=1:2,AC=3 米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD= =8米,则BC=BD-CD=8-3=5米.
A. B. C. D.
4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()
《最新6套汇总》内蒙古呼和浩特市2019-2020学年中考数学第一次模试卷
2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为72.以下所给的数值中,为不等式﹣2x+3<0的解集的是()A.x<﹣2B.x>﹣1C.x<﹣32D.x>323.不等式组1212xx-≥⎧⎨+>⎩的最小正整数解是()A.1 B.2 C.3 D.44.下列函数中,自变量x的取值范围是x>3的是()A.y=B.y=C.y=D.y=5.如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(-1,),顶点B(1,),设直线AE 与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为( )A. B.1 C. D.6.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5 B+1 C.D.24 57.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB 的中垂线,交BC 于P 点,则P 即为所求;(乙)以B 为圆心,AB 长为半径画弧,交BC 于P 点,则P 即为所求. 对于两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确9.下列四个函数中,自变量的取值范围为x ≥1的是( )A .y =B .y =C .y =D .y =10.已知抛物线2(0)y ax bx c b a =++>>与x 轴只有一个交点,以下四个结论:①抛物线的对称轴在y 轴左侧;②关于x 的方程220ax bx c +++=有实数根;③0a b c ++>;④b a c-的最大值为1.其中结论正确的为( ) A.①②③B.③④C.①③D.①③④11.在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( ) A .平均数B .众数C .中位数D .方差12.如图,AB ∥CD ,点EF 平分∠BED ,若∠1=30°,∠2=40°,则∠BEF 的度数是( )A.70°B.60°C.50°D.35°二、填空题 13.分式方程3512x x =++的解为_____. 14.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点M 是直角边AC 上一动点,连接BM ,并将线段BM 绕点B 逆时针旋转60°得到线段BN ,连接CN .则在点M 运动过程中,线段CN 长度的最大值是_____,最小值是_____.15.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,C 是优弧AB 上的一个动点,若∠P =40°,则∠ACB =_____°.16.小鲁在一个不透明的盒子里装了5个除颜色外其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是__________.17.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则BD的长为_______.18.因式分解:2a2﹣8= .三、解答题19.如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别是E、F,DE=BF,求证:四边形ABCD是平行四边形.20.(1)计算:(﹣1)8+24×(﹣2)﹣3(2)化简:2) 1xx x 1÷(1--+121.点A(-1,0)是函数y=x2-2x+m2-4m的图像与x轴的一个公共点.(1)求该函数的图像与x轴的另一个公共点的坐标以及m的值;(2)将该函数图像沿y轴向上平移个单位后,该函数的图像与x轴只有一个公共点.22.实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中C类女生有名,D类男生有名;将上面的条形统计图补充完整;(2)计算扇形统计图中D所占的圆心角是;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.甲、乙两个工程队计划修建一条长18千米的乡村公路,已知甲工程队比乙工程队每天多修路0.6千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.6万元,乙工程队每天的修路费用为0.5万元,要使两个工程队修路总费用不超过6.3万元,甲工程队至少修路多少天?24.192728xx--=25.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为 30,测得C点的俯角β为60° ,求建筑物CD的高度(结果保留根号).【参考答案】***一、选择题13.1 214.2, 1 15.7016.16 2517.18.2(a+2)(a-2).三、解答题19.见解析【解析】【分析】根据DE=CF,求出DF=BE,再由AB∥CD,求出∠CDF=∠ABE,从而得到△CDF≌△ABE,CD=AB结合AB∥CD,最终得到结论.【详解】证明:∵DE=CF,∴DE+EF=BF+EF,DF=BE,∵AB∥CD,∴∠CDF=∠ABE,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△CDF 和△ABE 中,CDF ABE DF BECFD AEB ∠=∠⎧⎪=⎨⎪∠=⎩,∴△CDF ≌△ABE (ASA ), ∴CD=AB , 又∵AB ∥CD四边形ABCD 是平行四边形. 【点睛】考查了证明全等三角形的方法,并根据一组对边平行且相等,来证明四边形为平行四边形. 20.(1)-4;(2)11x -. 【解析】 【分析】(1)根据幂的运算性质以及二次根式的性质化简即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】解:(1)原式=1124()8+⨯-=1﹣3﹣2=﹣4; (2)原式=(1)(1)x x x +-÷1x x +=(1)(1)x x x +-•1x x +=11x -.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 21.(1)另一个公共点的坐标是(3,0).m 1=1,m 2=3.(2)4. 【解析】 【分析】(1)求出二次函数对称轴,根据二次函数图像的对称性可得与x 轴的另一个交点坐标,将x =-1,y =0代入函数解析式可求出m ;(2)求出函数图像顶点坐标,根据函数图像平移规律即可得到平移方式. 【详解】解:(1)在函数y =x 2-2x +m 2-4m 中, ∵a =1,b =-2,∴该二次函数图像的对称轴是过点(1,0)且平行于y 轴的直线. ∵点A (-1,0)是函数y =x 2-2x +m 2-4m 的图像与x 轴的一个公共点, 根据二次函数图像的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0).将x =-1,y =0代入函数y =x 2-2x +m 2-4m 中,得0=3+m 2-4m . 解这个方程,得m 1=1,m 2=3. (2)函数解析式为:y =x 2-2x -3, 当x=1时,y=-4,∴将该函数图像沿y 轴向上平移4个单位后,该函数的图像与x 轴只有一个公共点. 【点睛】本题考查了二次函数的图像和性质,熟练掌握二次函数的对称性以及对称轴的求法是解题关键.22.(1)2;1;(2)36°;(3)P (一男一女)=12. 【解析】 【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C 类女生和D 类男生人数(2)用D 的人数除以总人数再乘360°即可得到D 的圆心角; (3)根据被调査的A 类和D 类学生男女生人数列表即可得出答案 【详解】 (1)3÷15%=20, 20×25%=5.女生:5-3=2 1-25%-50%-15%=10% 20×10%=2,男生:2-1=1 故答案为:,2,1(2)从图中得到D 的人数为2人,总人数为20,236020⨯°=36° (3)画出树状图(或列表)∴共有6种等可能结果,其中一男一女的有3种,故P (一男一女)=3162= 【点睛】此题考查条形统计图,扇形统计图,列表法,解题关键在于看懂图中数据23.(1)甲每天修路1.8千米,则乙每天修路1.2千米;(2)甲工程队至少修路8天 【解析】 【分析】(1)可设甲每天修路x 千米,则乙每天修路(x ﹣0.6)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a 天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可. 【详解】(1)设甲每天修路x 千米,则乙每天修路(x ﹣0.6)千米, 根据题意,可列方程:18181.50.6x x ⨯=-, 解得x =1.8,经检验x =1.8是原方程的解,且x ﹣0.6=1.2, 答:甲每天修路1.8千米,则乙每天修路1.2千米; (2)设甲修路a 天,则乙需要修(18﹣1.8a )千米, ∴乙需要修路18 1.81.2a-=15﹣1.5a (天),由题意可得0.6a+0.5(15﹣1.5a )≤6.3, 解得a≥8,答:甲工程队至少修路8天. 【点睛】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验. 24.545x =- 【解析】 【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答. 【详解】192728x x --= 去分母得:45692x x -=- 移项、合并同类项得:554x -= 系数化为1得:545x =- 【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.25.建筑物CD 的高度为 【解析】 【分析】过点D 作DE ⊥AB 于点E ,依题可得:∠ACB=β=60°,∠ADE=α=30°,BC=18m ,根据矩形性质得DE=BC=18m ,CD=BE ,在Rt △ABC 中,根据正切函数的定义求得AB 长 ;在Rt △ADE 中,根据正切函数的定义求得AE 长 ;由CD=BE=AB −AE 即可求得答案. 【详解】解:过点D 作DE ⊥AB 于点E,则四边形BCDE 是矩形,由题意得,∠ACB=β=60∘,∠ADE=α=30∘,BC=18m , ∴DE=BC=18m ,CD=BE ,在Rt △ABC 中,AB=BC ⋅tan ∠ACB=18×tan60∘=(m)在Rt △ADE 中,AE=DE ⋅tan ∠ADE=18×tan30∘= (m)∴CD=BE=AB −AE= =答:建筑物CD 的高度为 【点睛】本题考查了解直角三角形的应用,要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.2019-2020学年数学中考模拟试卷一、选择题1.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ). A .8% B .9% C .10% D .11%2.太阳的直径约为1 390 000千米,这个数用科学记数法表示为( ) A.0.139×107千米 B.1.39×106千米 C.13.9×105千米D.139×104千米3.下列事件是随机事件的是( ) A .人长生不老 B .明天就是5月1日C .一个星期有七天D .2020年奥运会中国队将获得45枚金牌4.如图是洛阳市某周内日最高气温的折线统计图,关于这7天的日最高气温说法正确的是( )A.众数是28B.中位数是24C.平均数是26D.方差是85.如图,△ABC 中,AB =AC =2,BC =2,D 点是△ABC 所在平面上的一个动点,且∠BDC =60°,则△DBC 面积的最大值是( )A.3B.3C. D.26.若55+55+55+55+55=25n,则n 的值为( ) A .10B .6C .5D .37.如图,□DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□DEFG 的面积为( )A .4B .C .3D .28.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,BD=2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE ⊥AC ;②EG=GF ;③△EFG ≌△GBE ;④EA 平分∠GEF ;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .①③④C .①②⑤D .②③⑤9.如图,△ABC 中,∠ACB=90°,∠B=30°,AC=1,过点C 作CD 1⊥AB 于D 1,过D 1作D 1 D 2⊥BC 于D 2,过D 2作D 2 D 3⊥AB 于D 3,这样继续作下去,……,线段D n D n+1能等于(n 为正整数)( )A .32n⎛⎫⎪⎝⎭B .132n +⎛⎫⎪⎝⎭C.2n⎛⎫ ⎪ ⎪⎝⎭D.12n +⎛⎫⎪ ⎪⎝⎭10.下列说法正确的是( )A .对角线互相垂直的四边形是平行四边形B .对角线相等且互相平分的四边形是矩形C .对角线相等且互相垂直的四边形是菱形D .对角线互相垂直的平行四边形是正方形11.如图,点O 是等边三角形ABC 内的一点,BOC=150∠︒,将BCO ∆绕点C 按顺时针旋转60︒得到ACD ∆,则下列结论不正确的是( )A.BO=ADB.DOC=60∠︒C.OD AD ⊥D.OD//AB12.计算2123131x xx x +----的结果为( ) A .1 B .-1C .331x - D .331x x +- 二、填空题13.如图,半径为13的等圆⊙O 1和⊙O 2相交与A ,B 两点,延长O 1O 2与⊙O 1交于点D ,连接BD 并延长与⊙O 2交于点C ,若AB =24,则CD =_____.14.如图,菱形OABC 的边长为2,且点A 、B 、C 在⊙O 上,则劣弧BC 的长度为______.15.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.16.如图,AC 、BD 相交于点O ,A D ∠=∠,请补充一个条件,使AOB ≌DOC △,你补充的条件是__________.(填出一个即可)17.如图,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是____元.18.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启17秒,按此规律选一下去.如果不考虑其他因素,一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是______.三、解答题19.计算:(1221(1)()3-⨯---(2)a (a ﹣8)﹣(a ﹣2)220.如图,在平面直角坐标系中,矩形ABCD 的顶点,B C 在x 轴的正半轴上,8,6AB BC ==.对角线,AC BD 相交于点E ,反比例函数(0)ky x x=>的图像经过点E ,分别与,AB CD 交于点,F G .(1)若8OC =,求k 的值;(2)连接EG,若2BF BE-=,求CEG的面积.21.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣6,b=1 322.今年省城各城区相继召开了创建全国文明城市推进大会.某校为了将“创城”工作做到更好,教务处、团委和体育组联合组织成立三个新社团,分别是篮球社团、排球社团、足球社团,经统计,将七、八年级同学报名情况绘制了下面不完整的统计图.请解答下列问题:(1)七、八年级新社团的报名总人数是;(2)请你把条形统计图补充完整;(3)在扇形统计图中,表示“排球”的扇形圆心角度数为;(4)从报名八年级足球社团的学生“张明”“李力”“王华”3人中选取其中两人去参加学校的社团年度表彰会,请用树状图或列表法求出“张明”和“王华”一起被选中的概率是多少?23.先化简,再求值:(2﹣11xx-+)22691x xx++÷-,其中x=tan45°+(12)﹣124.如图,直线m:y=kx(k>0)与直线n:y x=-+相交于点C,点A、B为直线n与坐标轴的交点,∠COA=60°,点P从O点出发沿线段OC向点C匀速运动,速度为每秒1个单位,同时点Q从点A出发沿线段AO向点O匀速运动,速度为每秒2个单位,设运动时间为t秒.(1)k=;(2)记△POQ的面积为S,求t为何值时S取得最大值;(3)当△POQ的面积最大时,以PQ为直径的圆与直线n有怎样的位置关系,请说明理由.25.我国古代有一道著名的算术题,原文为:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意为:一批客人来到李三的旅店住宿,如果每个房间住7人,那么有7位客人没房住;如果每个房间住9人,那么有1间空房,问共有多少位客人?多少间房?请你用初中数学知识方法求出上述问题的解.【参考答案】***一、选择题二、填空题13. 14.23π 15.1016.AO DO =17.18.35三、解答题19.(1)0;(2)﹣4a ﹣4.【解析】【分析】根据实数运算法则和整式运算法则分别计算即可,要注意负指数幂的意义.【详解】解:(1221(1)()3-⨯---=4+5×1﹣9=4+5﹣9=0;(2)a (a ﹣8)﹣(a ﹣2)2=a 2﹣8a ﹣a 2+4a ﹣4=﹣4a ﹣4.【点睛】本题考查实数运算和整式运算,负指数幂的意义,熟练掌握运算顺序和运算法则是解题关键.20.(1)k =20;(2)△CEG 的面积为215. 【解析】【分析】(1)先利用矩形的性质和线段中点坐标公式得到E (5,4),然后把E 点坐标代入k y x =可求得k 的值;(2)利用勾股定理计算出AC =10,则BE =EC =5,所以BF =7,设OB =t ,则F (t ,7),E (t+3,4),利用反比例函数图象上点的坐标得到7t =4(t+3),解得t =4,从而得到反比例函数解析式为y =28x,然后确定G 点坐标,最后利用三角形面积公式计算△CEG 的面积. 【详解】(1)∵在矩形ABCD 的顶点B ,AB =8,BC =6,而OC =8,∴B (2,0),A (2,8),C (8,0),∵对角线AC ,BD 相交于点E ,∴点E 为AC 的中点,∴E (5,4),把E(5,4)代入y=kx得k=5×4=20;(2)∵AC=10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=28x,当x=10时,y=2814 105=,∴G(10,145),∴△CEG的面积=114213255⨯⨯=.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.21.-8【解析】【分析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣6,b=13时,原式=﹣8.【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(1)120人;(2)补全图形见解析;(3)108°;(4)“张明”和“王华”一起被选中的概率为13.【解析】【分析】(1)由篮球的总人数及其所占百分比可得答案;(2)求出八年级排球人数、七年级足球人数,继而补全图形即可得;(3)用360°乘以排球对应的百分比即可得;(4)画树状图列出所有等可能结果,再从中找出符合条件的结果数,继而根据概率公式计算可得.【详解】(1)七、八年级新社团的报名总人数是(36+24)÷50%=120(人),故答案为:120人;(2)八年级排球人数为120×30%﹣16=20(人),七年级足球人数为120×20%﹣12=12(人), 补全图形如下:(3)在扇形统计图中,表示“排球”的扇形圆心角度数为360°×30%=108°,故答案为:108°;(4)画树状图如下:由树状图知,共有6种等可能结果,其中“张明”和“王华”一起被选中的有2种结果, 所以“张明”和“王华”一起被选中的概率为2163=. 【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,由图形获取正确信息是解题关键.23.13. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:(2﹣11x x -+)22691x x x ++÷- =22(1)(1)(1)(1)1(3)x x x x x x +--+-=÷++ =2221(1)(1)1(3)x x x x x x +-++-=⋅++ =23(1)(1)1(3)x x x x x ++-⋅++ =13x x -+ , 当x =tan45°+(12)﹣1=1+2=3时,原式=311333-=+ . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)k ;(2)当t =32时,S 有最大值;(3)直线AB 与以PQ 为直径的圆O 相离,理由详见解析.【解析】【分析】 (1)依据k =tan ∠COA 进行求解即可;(2)如图1所示:过点P 作PD ⊥OA ,垂足为D .由锐角三角函数的定义和特殊锐角三角函数值可求得PD ,然后利用三角形的面积公式列出关系式,最后利用配方法求得三角形面积最大时t 的值即可;(3)如图2所示:过点P 作PD ⊥OA 垂足为D ,过圆心O 作OE ⊥AB ,垂足为E .首先证明四边形,四边形OPCE 为矩形,然后求得d 和r 的值即可.【详解】(1)k =tan ∠COA(2)如图1所示:过点P 作PD ⊥OA ,垂足为D .令直线n :y y =0=0,解得x =6, ∴OA =6. ∵∠COA =60°,PD ⊥OA ,∴PD OP =,即PD t =∴PD .22221333(62)3()()))2222OPQ S t t t t =⨯-=-+-=-△ ∴当t =32时,S 有最大值. (3)如图2所示:过点P 作PD ⊥OA 垂足为D ,过圆心O 作OE ⊥AB ,垂足为E .令直线n :y x =0得:y =.∴OB =∵tan∠BAO=OBOA=,∴∠BAO=30°.∴∠ABO=60°.∴OC=OBsin60°=2=3.∵∠COA=60°,∴∠BOC=30°.∴∠BOC+∠OBC=90°.∴∠OCA=90°.当t=32时,OD=3122⨯=34,PD=32.DQ=3﹣34=94.∴tan∠PQO=494∴∠PQO=30°.∴∠BAO=∠PQO.∴PQ∥AB,∴∠CPQ+∠PCA=180°.∴∠CPQ=180°﹣90°=90°.∴∠ECP=∠CPO=∠OEC=90°.∴四边形OPCE为矩形.∴d=OE=PC=OC﹣OP=3﹣32=32.PQ.∴r=PO=12.∵d>r.∴直线AB与以PQ为直径的圆O相离.【点睛】本题主要考查的是直线和圆的位置关系、一次函数、矩形的性质和判定、二次函数的最值、锐角三角函数的综合应用,求得d和r的值是解题的关键.25.共有63位客人,8间房.【解析】【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】解:设有x间房,则7x+7=9(x﹣1),x=8,所以7x+7=63(人)答:共有63位客人,8间房.【点睛】本题考查了一元一次方程的应用,解题的关键是找到关键描述语,列出等量关系.2019-2020学年数学中考模拟试卷一、选择题1.有理数a在数轴上的位置如图所示,下列结论正确的是()A.﹣2+a是负数B.﹣2+a是正数C.a﹣2是负数D.a﹣2为02.如图,在平面直角坐标系中,点B的坐标(0,,∠AOC=45°,∠ACO=30°,则OC的长为( )3.我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,……,那么方程x+y+z=10的正整数解得组数是()A.34 B.35 C.36 D.374.设函数kyx=(0k≠,0x>)的图象如图所示,若1zy=,则z关于x的函数图象可能为()A.B.C.D.5.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形6.下列运算正确的是( )=﹣5 B.(x3)2=x5C.x6÷x3=x2D.(﹣14)-2=167.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037用科学记数法表示为()A.3.7x10-5B.3.7x10-6C.3.7x10-7D.37x10-58.如图,在△ABC中,∠C=90°,以点B为圆心,以适当长为半径画弧交AB、BC于P、Q两点,再分别以点P,Q为圆心,大于12PQ的长为半径画弧,两弧相交于点N,射线BN交AC于点D.若AB=10,AC=8,则CD的长是()A.2 B.2.4 C.3 D.49.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°10.如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是()A.40°B.50°C.60°D.80°11.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH=()A.3 B.4 C.5 D.612.已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)二、填空题13.如图,矩形纸片ABCD 中,AB =4,点E 在边CD 上移动连接AE ,将多边形ABCE 沿直线AE 翻折,得到多边形AB′CE,点B 、C 的对应点分别为点B′、C′(1)当点E 与点C 重合时,设B′C′与AD 的交点为F ,若AD =4DF ,则AD =______ (2)若AD =6,B′C′的中点记为P ,则DP 的取值范围是______14.如图,在矩形ABCD 中,AB =AD =2,点E 为线段CD 的中点,动点F 从点C 出发,沿C→B→A 的方向在CB 和BA 上运动,将矩形沿EF 折叠,点C 的对应点为C’,当点C’恰好落在矩形的对角线上时(不与矩形顶点重合),点F 运动的距离为_____.15.若关于x 的方程kx 2﹣3x ﹣94=0有实数根,则实数k 的取值范围是_____. 16.如图是23名射击运动员的一次测试成绩的频数分布折线图,则射击成绩的中位数_____。
呼和浩特市中考数学一模试卷
呼和浩特市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·阳新模拟) -2的绝对值的相反数是()A .B .C . 2D . -22. (2分)下列计算正确的是()A . =2B .C .D .3. (2分) 2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为()A . 2.5×10-6B . 2.5×10-5C . -2.5×10-5D . -2.5×10-64. (2分) (2016七下·天津期末) 下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a﹣1>b﹣1;③若a>b,则﹣2a<﹣2b;④若a>b,则ac>bc.其中正确的个数是()A . 1B . 2C . 3D . 45. (2分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S甲2=0.35,S乙2=0.15,S丙2=0.25,S丁2=0.27,这4人中成绩发挥最稳定的是()A . 甲B . 乙C . 丙D . 丁6. (2分)周末,李红帮父亲到瓷砖店去购买一种多边形形状的瓷砖,用镶地板,她购买的瓷砖形状不可以是()A . 正三角形B . 正方形C . 正五边形D . 正六边形7. (2分)已知关于x的分式方程的解是负数,则m的取值范围是()A . m≤3B . m≤3且m≠2C . m<3D . m<3且m≠28. (2分)在Rt△ABC中,如果一条直角边和斜边的长度都扩大为原来的2倍,那么锐角A的各个三角函数值()A . 都缩小B . 都不变C . 都扩大5倍D . 无法确定9. (2分)函数y=的图象经过的点是()A . (2,1)B . (2,-1)C . (2,4)D . (-,2)10. (2分)(2020·衢江模拟) 如图所示,已知在三角形纸片中,,,,在边上取一点,以为折痕,使的一部分与重合,与延长线上的点重合,则的长度为()A .B .C .D .11. (2分)是圆的两条弦,是圆的一条直径且平分,下列结论中不一定正确的是()A .B .C .D .12. (2分)(2018·潮南模拟) 如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF 为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S 四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分)(2017·黄冈模拟) 某一天的最高气温为6℃,最低气温为﹣4℃,那么这天的最高气温比最低气温高________℃14. (1分)(2017·北仑模拟) 函数y= 中,自变量x的取值范围是________.15. (1分)(2020·无锡模拟) 因式分解: = ________16. (1分) (2018九上·平顶山期末) 某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为________。
初中数学内蒙古呼和浩特市中考模拟数学考试题及答案[].docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果的相反数是2,那么等于()A. —2B. 2C.D.试题2:计算的结果是()A. B. C. D.试题3:已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为()A. 2 B. 4 C. D.试题4:用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050(精确到0.001)试题5:将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()[来源:Zx试题6:经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A. B. C. D.试题7:如果等腰三角形两边长是6cm和3cm,那么它的周长是()A. 9cmB. 12cmC. 15cm或12cmD. 15cm试题8:已知一元二次方程的一根为,在二次函数的图象上有三点、、,y1、y2、y3的大小关系是()A. B. C. D.试题9:如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. B. C. D.试题10:下列判断正确的有()①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形②中心投影的投影线彼此平行③在周长为定值的扇形中,当半径为时扇形的面积最大④相等的角是对顶角的逆命题是真命题A. 4个B. 3个C. 2个D. 1个试题11:函数中,自变量x的取值范围_________________________.试题12:已知关于x的一次函数的图象如图所示,则可化简为_________________.试题13:一个样本为1,3,2,2,.已知这个样本的众数为3,平均数为2,那么这个样本的方差为____________________在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为__________.(注:取3)试题15:若,则的值为________________.试题16:如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为____________.试题17:计算:试题18:化简:试题19:如图所示,再一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离,现测得AC=30m,BC=70m,∠CAB=120°,请计算A、B两个凉亭之间的距离.解方程组试题21:如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.试题22:在同一直角坐标系中反比例函数的图象与一次函数的图象相交,且其中一个交点A的坐标为(–2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.试题23:为了解我市3路公共汽车的运营情况,公交部门随机统计了某天3路公共汽车每个运行班次的载客量,得到如下频数分布直方图.如果以各组的组中值代表各组实际数据,请分析统计数据完成下列问题.(1)找出这天载客量的中位数,说明这个中位数的意义;(2)估计3路公共汽车平均每班的载客量大约是多少?(3)计算这天载客量在平均载客量以上班次占总班次的百分数.(注:一个小组的组中值是指这个小组的两个端点数的平均数)试题24:生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?我们可以按以下思路分析:首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:最后二次射击总成绩第8次射击需得成绩20环19环18环根据以上分析可得如下解答:解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:_______________________________________解得 _______________所以第8次设计不能少于________环.试题25:如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,.(1)求证:直线PB是⊙O的切线(2)求cos∠BCA的值试题26:已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8).(1)求m的值,并将平移后的抛物线解析式写成的形式;(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在≤时对应的函数值y的取值范围;(3)设一次函数,问是否存在正整数使得(2)中函数的函数值时,对应的x的值为,若存在,求出的值;若不存在,说明理由.试题1答案:A试题2答案:A试题3答案: D试题4答案: C试题5答案: C试题6答案: C试题7答案: D试题8答案: A试题9答案: B试题10答案: B试题11答案:试题12答案: n试题13答案:试题14答案:试题15答案:试题16答案:试题17答案:解:原式==试题18答案:解:原式===试题19答案:解:过点C作CD⊥AB,垂足为D∵ AC=30m ∠CAB=120°m]∴ AD=15m CD=在Rt△BDC中, BD==65m ∴试题20答案:解:原方程组可化为:①②得∴把带入①得:∴方程组的解为试题21答案:(1)证明:∵正方形ABCD点G,E为边AB、BC中点∴ AG=EC又∵ CF为正方形外角平分线且∠AEF=90°,BG=BE∴∠AGE=∠E∠GAE=∠FEC∴△AGE≌△ECF∴ EG=CF(2)(图略)平行试题22答案:解:将点A(—2,3)代入中得∴∴又∵△AOB的面积为6∴∴∴ |OB|=4∴ B点坐标为(4,0)或(—4,0)①当B(4,0)时,又∵点A(—2,3)是两函数的交点∴代入中得∴∴②当B(—4,0)时,又∵点A(—2,3)是两函数的交点∴代入中得∴∴试题23答案:(1)80人,估计3路公共汽车每天大约有一半的班次的载客量超过80人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年数学中考模拟试卷 一、选择题 1.如图,直角三角板的直角顶点A在直线上,则∠1与∠2( )
A.一定相等 B.一定互余 C.一定互补 D.始终相差10° 2.下列命题错误的是( ) A.平分弦的直径垂直于弦 B.三角形一定有外接圆和内切圆 C.等弧对等弦 D.经过切点且垂直于切线的直线必经过圆心 3.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A.(2,0) B.(0,2) C.(1,3) D.(3,﹣1) 4.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程( )
A.240024008(120%)xx B.240024008(120%)xx
C.240024008(120%)xx D.240024008(120%)xx 5.如图,线段AB是两个端点在2(0)yxx图象上的一条动线段,且1AB,若AB、的横坐标分别为ab、,则22214baab的值是( )
A.1 B.2 C.3 D.4 6.反比例函数myx的图像在第二、四象限内,则点(,1)m在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是( )
A.35° B.25° C.65° D.50° 8.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为 ( ) A.cm B.4cm C.cm D.cm 9.|-3|的值等于( ) A.3 B.-3 C.±3 D. 10.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是( )
A.60° B.80° C.120° D.150° 二、填空题 11.如图,在梯形ABCD中,AD∥BC,EF是梯形的中位线,点E在AB上,若AD:BC=1:3,AD=a,则用a表示FE是:FE=_____.
12.如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是_____. 13.如图,点M的坐标为(3,2),点P从原点O出发,以每秒1个单位的速度沿y轴向上移动,同时过点P的直线l也随之上下平移,且直线l与直线yx平行,如果点M关于直线l的对称点落在坐标轴上,如果点P的移动时间为t秒,那么t的值可以是__.
14.△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是_____. 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.
16.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=3x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则20192018AB的长是_____.
17.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的顶点B的坐标为______.
18.张明想给单位打电话,可八位数的电话号码中的一个数字记不起来了,只记得2884□432,他想随意选一个数字补上,请问恰好是单位电话的概率是_____. 19.如图,在矩形ABCD中,E是CD的延长线上一点,连接BE交AD于点F.如果AB=4,BC=6,DE=3,那么AF的长为______.
三、解答题 20.观察下列等式:2×21=2+21,3×32=3+32,4×43=4+43,… (1)按此规律写出第5个等式; (2)猜想第n个等式,并说明等式成立的理由. 21.已知抛物线y=+bx+c经过点M(3,﹣4),与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C. (1)求这条抛物线的表达式; (2)如果P是这条抛物线对称轴上一点,PC=BC,求点P的坐标; (3)在第(2)小题的条件下,当点P在x轴上方时,求∠PCB的正弦值.
22.已知:如图,在矩形ABCD中,过AC的中点M作EFAC,分别交AD、BC于点E、F. (1)求证:四边形AECF是菱形; (2)如果2·CDBFBC,求BAF的度数. 23.新昌特色小吃是中华饮食文化宝库中的一块瑰宝,种类繁多,色香味美,著名的“米海茶”、“春饼”、“芋饺”、“炸面”、“炒年糕”等都是新昌特色小吃.一数学兴趣小组在全校范围内随机抽取了一些同学进行“我最喜爱的新昌特色小吃”的调查活动,将调查结果绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:
(1)请将条形统计图补充完整. (2)在扇形统计图中,表示“炒年糕”对应的扇形的圆心角是多少度? (3)若该校共有1200名学生,请你估计该校学生中最喜爱“米海茶”的学生有多少人? 24.某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B两地的运费如下表所示:
目的地(车型) A地(元/辆) B地(元/辆) 大货车 800 900 小货车 400 600 (1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答) (2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式. 25.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1)宣传小组抽取的捐款人数为 人,请补全条形统计图; (2)统计的捐款金额的中位数是 元; (3)在扇形统计图中,求100元所对应扇形的圆心角的度数; (4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元? 26.如图1:在平面直角坐标系内,O为坐标原点,线段AB两端点在坐标轴上且点A(﹣4,0),点B(0,3),将AB向右平移4个单位长度至OC的位置 (1)直接写出点C的坐标 ; (2)如图2,过点C作CD⊥x轴于点D,在x轴正半轴有一点E(1,0),过点E作x轴的垂线,在垂线上有一动点P,直接写出:①点D的坐标 ; ②三角形PCD的面积为 ;
(3)如图3,在(2)的条件下,连接AC,当△ACP的面积为332时,直接写出点P的坐标 .
【参考答案】*** 一、选择题 1.B 2.C 3.A 4.A 5.D 6.C 7.A 8.D 9.A 10.C 二、填空题 11.﹣2a 12.4 13.2或3
14.201812
15.322 16.201923 17.(-2,-2) 18.110.
19.247 三、解答题 20.(1)666=6+55;(2)猜想:(n+1)•1nn=(n+1)+1nn(n是正整数).理由见解析. 【解析】 【分析】 观察等式左边的特点,即第几个式子就是几分之(几加1)乘以自己的分子;右边的特点即左边两个因数相加. 【详解】
(1)666=6+55;
(2)猜想:(n+1)•1nn=(n+1)+1nn(n是正整数). ∵左边=(n+1)•11(1)nnnnn, 右边=(n+1)+21(1)(1)(1)nnnnnnnn, 左边=右边 ∴11(1)(1)nnnnnn. 【点睛】 考查数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.该规律实质上是运用了分式的加法运算法则. 21.(1)y=x2﹣x﹣5(2)(1,2)或(l,﹣12)(3) 【解析】 【分析】 (1)根据待定系数法即可求得; (2)根据A、B的坐标求得对称轴为x=1,设点P的坐标为(l,y).由PC=BC根据勾股定理列出12+(y+5)2=52+52.解得即可; (3)作PH⊥BC,垂足为点H,根据勾股定理求得BC,然后求得直线BC的解析式,进而求得D的坐标,然后根据S△PBC=S△PCD+S△PBD,列出.求得PH,解正弦函数即可. 【详解】 解:(1)∵抛物线y═x2+bx+c经过点M(3,﹣4),A(﹣3.0),
∴这条抛物线的表达式为; (2)∵A(﹣3,0),B(5,0), ∴这条抛物线的对称轴为直线x=l. 设点P的坐标为(l,y). ∵PC=BC,点B的坐标为(5,0),点C的坐标为(0,5). ∴PC2=BC2. 12+(y+5)2=52+52. 解得y=2或y=﹣12. ∴点P的坐标为(1,2)或(l,﹣12); (3)作PH⊥BC,垂足为点H.
∵点B(5.0),点C(0,5),点P(1,2), ∴PC=BC=5. 设直线BC的解析式为y=kx﹣5, 代入B(5,0)解得k=1, ∴直线BC的解析式为y=x﹣5, 把x=1代入得,y=﹣4, ∴直线BC与对称轴相交于点D(1,﹣4), ∴PD=6, ∵S△PBC=S△PCD+S△PBD,
解得PH=3.