北师大数学八年级下册期末测试题(6)及答案
【最新】北师大版数学八年级下册《期末测试卷》及答案解析

北师大版八年级下册期末考试数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图
形又是中心对称图形的是()
A. B. C. D. 2.下列各式由左到右的变形中,属于分解因式的是()A. ()amnpamanapB. 2222()()abcababc
C. 21055(21)xxxxD. 295(3)(3)5xxxxx
3.要使分式52x有意义,则x的取值应满足()
A. 2xB. 1xC. 2xD. 1x4.不等式251x的解集在数轴上表示正确的是()
A. B.
C. D. 5.用配方法解方程
2220xx时,配方结果正确的是()
A. 2(2)3xB. 2(1)3xC. 2(2)4xD. 2(1)4x
6.若关于x的一元二次方程2(1)410kxx有两个实数根,则k的取值范围是()A. 5kB. 5k,且1kC. 5k,且1kD. 5k7.已知ABC,如图,4AC,5AB,90C,AC的垂直平分DE交AB于点E,则DE的长
为()A. 3B. 2.5C. 2D. 1.58.下列语句正确的是( ) A. 对角线互相垂直的四边形是菱形
B. 有两对邻角互补的四边形为平行四边形
C. 矩形的对角线相等
D. 平行四边形是轴对称图形
9.下列各选项中因式分解正确的是()
A. 22
11xxB.
32222aaaaa
C. 22422yyyyD.
22
21mnmnnnm
10.如图,腰长为2的等腰直角三角形ABC绕直角顶点A顺时针旋转45得到ABC,则图中阴影部分的
面积等于()
A. 422B. 2C. 22D. 222
11.若关于x的方程333xmmxx=3的解为正数,则m的取值范围是()
A. m<92B. m<92且m≠3
2
C. m>﹣94D. m>﹣94且m≠﹣3
4
12.如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边ABE、ADF,延长CB交AE于点G,点G在点A、E之间,连接CE,CF,EF,则以下四个结论一定正确的是()①CDFEBC;②ADCEAF;③CGAE④ECF是等边三角形.A. 只有①②B. 只有①④C. 只有①②③D. ①②③④二、填空题(本大题共6小题,每小题4分,共24分)
第六章 平行四边形 单元测试(含答案) 2024-2025学年北师大版数学八年级下册

第六章学情评估卷时间:60分钟满分:100分一、选择题(共8小题,每题3分,共计24分)1.正八边形中每个内角的度数为()A.80∘B.100∘C.120∘D.135∘2.在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.∠ABC=∠ADC,∠BAD=∠BCDB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.[2024西安长安区期末]如图,在平行四边形ABCD中,AC,BD相交于点O,∠ODA=90∘,AC=20cm,BD=12cm,则BC的长为()(第3题)A.6cm B.8cm C.9cm D.10cm4.一个多边形的内角和比它的外角和的3倍少180∘,则这个多边形的边数是()A.七B.八C.九D.十5.如图,在▱ABCD中,AD=6,∠ADB=30∘ .按以下步骤作图:①以点C为圆心,CD长为半径作弧,交BD于点F;②分别以点D,F为圆心,CD长为半径作弧,两弧相交于点G.作射线CG交BD于点E.则BE的长为()(第5题)(第6题)B.四边形EGFHD.EH⊥BD(第7题)C.3如图,在平行四边形(第8题)C.2s或14s3(第9题)10.如图,若直线m//n,A,D在直线m上,B,C,E在直线n上,AB//CD,A D=5,BE=8,△DCE的面积为6,则直线m与n之间的距离为________.(第10题)11.如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD于点E,F.如果AE=8,那么CF的长为________.(第11题)12.如图,在▱ABCD中,∠BAD=120∘,连接BD,作AE//BD交CD的延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且AB=2,则EF的长是______.(第12题)13.[2024陕西师大附中期中]如图,在△ABC中,AB>AC,∠A=30∘,AC= 4,点E为AC的中点,点F为边AB上的一个动点,将三角形沿EF折叠,点A的对应点为点A′,当以点E,F,A′,C为顶点的四边形是平行四边形时,线段AF的长为______________.(第13题)三、解答题(共5小题,计61分)14.(10分)A和B分别是两个多边形,阅读A和B的对话,完成下列各小题.(1)嘉嘉说:“因为B的边数比A多,所以B的外角和比A的大.”判断嘉嘉的说法是否正确?并说明理由.(2)设A的边数为n(n>3).①若n=7,求x的值;②淇淇说:“无论n取何值,x的值始终不变.”请用列方程的方法说明理由. 15.[2024榆林月考](10分)如图,▱ABCD的对角线AC,BD相交于点O,EF 过点O且与AB,CD分别相交于点E,F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是16,求▱ABCD的周长.16.(13分)如图,在平行四边形ABCD中,G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF,连接EG,GF,FH,HE.(1)求证:四边形EGFH是平行四边形.(2)连接BD交AC于点O,若BD=14,E为AO的中点,求EG的长.中,点P为BC的中点.延长AB,连接AP,DE,BE,若∠BAC写出你的结论,并加以证明ABC中,D,E分别是边逆向思考,可得以下3则命题:,则E是AC的中点;D,E分别是AB,AC小明通过对命题Ⅰ的思考,发现命题Ⅰ是假命题他的思考方法如下:在图②中使用尺规作图作出满足命题Ⅰ条件的点小明尺规作图的方法步骤如下:于点M.②以点D为圆心,BM的长为半径画弧与边AC交于点E和点E′.请你在图②中完成以上作图.(2)小明通过对命题Ⅱ和命题Ⅲ的思考,发现这两个命题都是真命题,请你从这两个命题中选择一个,并借助图①进行证明.【参考答案】第六章 学情评估卷一、选择题(共8小题,每题3分,共计24分)1.D 2.D 3.B 4.A 5.D 6.D 7.B 8.C二、填空题(共5小题,每题3分,共计15分)9.50∘10.411.812.313.2或23三、解答题(共5小题,计61分)14.(1) 解:嘉嘉的说法不正确.理由:多边形的外角和始终为360∘ ,与多边形的边数无关.(2) ① 由题意,得180∘(7+x−2)−180∘×(7−2)=360∘ ,解得x =2,即x 的值为2.② 由题意,得180∘(n +x−2)−180∘(n−2)=360∘ ,整理得180∘x =360∘ ,解得x =2.所以无论n 取何值,x 的值始终不变.15.(1) 证明:∵ 四边形ABCD 是平行四边形,∴OD =OB ,AB //CD ,∴∠FDO =∠EBO .在△DFO 和△BEO 中,{∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO≌△BEO (ASA),∴OE =OF .(2) 解:∵ 四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,OA =OC .∵EF ⊥AC ,EF 过点O ,∴EF 是AC 的垂直平分线,∴AE =CE .∵△BEC 的周长是16,∴BC +BE +CE =BC +BE +AE =BC +AB =16.=AE,AB交BC边于点M是平行四边形,CM.是平行四边形,选择命题III.证明:如图③,延长ED至点F,使DF=DE,连接BF,∵D是AB边的中点,∴AD=BD.又∵∠ADE=∠BDF,∴△ADE≌△BDF(SAS),∴AE=BF,∠AED=∠BFD,∴AC//BF.∵EF//BC,∴四边形BCEF是平行四边形,∴BF=CE,∴CE=AE,∴E是AC的中点.(选择其中一个即可)。
北师大版初中数学八年级下册期末试卷及答案

北师版初中数学八年级下册期末试卷一、选择题(本大题共小题,共分)下列图形中是中心对称图形的是()A B C D如图,在A B C D 中,E 为C D 上一点,连接A E 、B D ,且A E 、B D 交于点F ,D E A B =,则D F B F 等于()AB C D 如果a <b ,那么下列各式中,一定成立的是()A a >bB a c<b c C a -<b -D a>b 下列各式从左到右的变形中,是因式分解的为().A ()()x y x x y -+=+-+B ()()x x x -=+-C ()x a b a x b x -=-D ()ax b x c x a b c ++=++如图,R t △A B C 中,∠C =D ,A C =,B C =,D E 是A C 边的中垂线,分别交A C ,A B 于点E ,D ,则△D B C 的周长为()A B C D 如果关于x 的方程a x x +=-的解为非负数,且关于x,y 的二元一次方程组x y a x y +=+ìí+=î解满足x y +>-,则满足条件的整数a 有()个.A B C D 在正三角形,正方形,正五边形,正六边形这几个图形中,单独选用一种图形不能进行平面镶嵌的图形是()A 正三角形B 正方形C 正五边形D 正六边形“a 是正数”用不等式表示为()A a 5B a 6C a <D a >下列计算正确的是().A a a a ¸=B -=C -=D a b a b¸´=能判定四边形是平行四边形的是()A 对角线互相垂直B 对角线相等C 对角线互相垂直且相等D 对角线互相平分二、填空题(本大题共小题,共分)当x ___时,分式xx +-的值为零如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第个格子中的数为_____________.-ab c-…若a b a b a b -+++=,则a b +=______.如图,A B C是边长为的等边三角形,取B C边中点E,作E D A B,E F A C,得到四边形E D A F,它的面积记作S;取B E中点E;作E D F B,E F E F,得到四边形E D F F,它的面积记作S.照此规律作下去,S=_______.(第题)(第题)如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为_______.三、解答题(本大题共小题,共分)判断命题“一组对边平行另一组对边相等的四边形是平行四边形”真假,若是真命题,请给出证明;若是假命题,请修改其中一个条件使其变成真命题(一个即可)并请写出证明过程.(要求:画出图形,写出已知,求证和证明过程)下列运算正确吗?如果不正确,请改正.()a b a b m m m++=;()a ax y y x-=--;()a a+=;()x yx y x y+=++.如图,正方形网格中,每个小正方形的边长均为,每个小正方形的顶点叫格点.()在图①中,以格点为端点,画线段M N;()在图②中,以格点为顶点,画正方形A B C D,使它的面积为.已知:如图,A B C为等边三角形,B D为中线,延长B C至E,使C E=C D,连接D E.()证明:B D E是等腰三角形;()若A B=,求D E的长度.东东在完成一项“社会调查”作业时,调查了城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入=基本工资(固定)+计单奖金”的方法计算薪资,并获得如下信息:营业员小李小杨月送餐单数单月总收入元送餐每单奖金为a元,送餐员月基本工资为b元.()求a、b的值;()若月送餐单数超过单时,超过部分每单奖金增加元,假设月送餐单数为x单,月总收入为y元,请写出y与x之间的函数关系式,并求出送餐员小李计划月总收入不低于元时,小李每月至少要送餐多少单?如图,在边长为的正方形A B C D中,动点E以每秒个单位长度的速度从点A开始沿边A B向点B运动,动点F以每秒个单位长度的速度从点B开始沿折线B C﹣C D向点D运动,动点E比动点F先出发秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.()点F在边B C上.①如图,连接D E,A F,若D E⊥A F,求t的值;②如图,连结E F,D F,当t为何值时,△E B F与△D C F相似?()如图,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在在某一时刻t,使得B OO G=?若存在,求出t的值;若不存在,请说明理由.上海“迪士尼”于今年“”开园,准备在暑假期间推出学生门票优惠价如下:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)我市某慈善单位欲购买三种类型的票共张奖励品学兼优的留守学生,其中购买的A种票x张,B种票数是A种票数的倍少张,C种票y张.()请求出y与x之间的函数关系式;()设购票总费用为w元,求w(元)与x(张)之间的函数关系式;()为方便学生游玩,计划购买的每种票至少购买张,则有几种购票方案?并指出哪种方案费用最少?参考答案一、选择题:C A C B CD C D C D二、填空题-三、解答题假命题.改为:两组对边分别相等的四边形是平行四边形.已知:如图,在四边形A B C D 中,A B C D =,A D B C =.求证:四边形A B C D 是平行四边形.证明:连接A C,如图所示:在A B C 和C D A 中,A B C D A D C B A C C A =ìï=íï=î∴()A B C C D A SS S ≌.∴B A C D C A Ð=Ð,A C B C A D Ð=Ð,∴A B C D ,B C A D ,∴四边形A B C D 是平行四边形.()a b a bm m m++=,故原题计算错误;()a a a a a x y y x x y x y x y -=+=-----,故原题计算错误;()a a a aa a+=++=,故原题计算错误;()x y x y x y x y x y++==+++,故原题计算正确.()如图①所示:()如图②所示.()证明:A B C 为等边三角形,D C B \Ð=°C E CD = ,CE D C D E \Ð=Ð,D C B CE D C D E Ð=Ð+Ð=° ,C ED C DE \Ð=Ð=°,B D Q 为中线D BC \Ð=°,D B C CE D \Ð=Ð,B D D E \=,B D E \是等腰三角形;()解:B D Q 为中线,A D A C \==,B D A C ^,A DB \Ð=°,在R t A B D △中,由勾股定理得:B D =D E B D \==.()由题意得:a b a b +=ìí+=î,解得,a =,b =,答:a =,b =.()①当x ££时,y x =+,②x >时,()y x x =´+-+=+,y \与x 的函数关系式为:()x x y x x ì+££=í+>î,´+=< ,x \>,当x +³时,x ³,因此每月至少要送单,答:月总收入不低于元时,每月至少要送餐单.()①如图∵D E ⊥A F ,∴∠A O E D ,∴∠B A F ∠A E O D ,∵∠A D E ∠A E O D ,∴∠B A E ∠A D E ,又∵四边形A B C D 是正方形,∴A E A D ,∠A B F ∠D A E D ,在△A B F 和△D A E 中,{B A E A D E A E A D A B F D A EÐ=Ð=Ð=Ð∴△A B F≌△D A E(A S A)∴A E B F,∴t t,解得t.②如图∵△E B F∽△D C F∴E B B FD C F C=,∵B F t,A E t,∴F C﹣t,B E﹣﹣t﹣t,∴t tt -=-,解得:t=,t=(舍去),故t-=.()①<t5时如图,以点B为原点B C为x轴,B A为y轴建立坐标系,A的坐标(,),G的坐标(,),F点的坐标(t,),E的坐标(,﹣t)E F所在的直线函数关系式是:y tt-x﹣t,B G所在的直线函数关系式是:y x,∵B G=∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t t -x ﹣t ,得t t -F ﹣t ,解得,t+(舍去),t-,②当6t >时如图,以点B 为原点B C 为x 轴,B A 为y轴建立坐标系,A 的坐标(,),G 的坐标(,),F 点的坐标(,t ﹣),E 的坐标(,﹣t )E F 所在的直线函数关系式是:y t -x ﹣t ,B G 所在的直线函数关系式是:y x ,∵B G =∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t -x ﹣t ,得t -F ﹣t ,解得:t .综上所述,存在t-或t ,使得B O O G =.() 购买的A 种票x 张,\购买的B 种票为()x -张,x x y \+-+=,y x \=-;()()()w x x x =+-+-x =-+;()依题意得x x x ³ìï-³íï-³î,解得x ££,x 为整数,x \=、、,\共有种购票方案,方案一:A 种票张,B 种票张,C 种票张;方案二:A种票张,B种票张,C种票张;方案三:A种票张,B种票张,C种票张,=-+中,k=-<,在w x\随x的增大而减小,w´-+=元,\当x=时,w最小,最小值为()即当A种票为张,B种票张,C种票为张时,费用最少,最少费用为元。
新北师大版八年级下册数学期末考试测试题

新北师大版八年级下册数学期末考试测试题八年级下数学期末测试第一套一、填空1、分解因式:ab-2ab+a= -ab+a2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2 cm,则其宽为 1.236 cm.3、若 2/4x+= 345.则 x+y+z= 1384.若 x+2(m-3)x+16 是完全平方式,则 m 的值是5.5.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过 25.2 元.6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号): ①②③④.7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是 (2.5.1.5).8.如图,Rt△ABC中,∠ACB=90°直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,1/CF=3/AD,则S△AEG= S四边形EBCG。
3/5.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 2.10、若不等式(m-2)x>2的解集是x<2/(m-2)。
则x 的取值范围是 (2/(m-2)。
+∞).11、化简的结果为 2a+2b,12、如果x<-2,则(x+2)·(25abx-y)= (2x+4)·(25abx-y);13、已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为√2.二、选择题:1、如果a>b,那么下列各式中正确的是()A、a-3-b答案:A2、下列各式:(1-x)/(5π-3x^2),其中分式共有()个。
北师大版八年级数学下册《名校期末测试卷》含答案

10%,乙种足球售价比
第一次购买时降低了 10%.如果此次购买甲、乙两种足球的总费用不超过 2950 元,那么这所学
校最多可购买多少个乙种足球?
28、(10 分 ) 如图,在 ? ABCD中,对角线 AC,BD相交于点 O,AB⊥ AC,AB=3cm, BC=5cm.点 P 从 A 点出发沿 AD方向匀速运动速度为 lcm/s ,连接 PO并延长交 BC于点 Q.设运动时间为 t ( s) ( 0< t < 5)
26、(8 分) 如图,在 ? ABCD中,∠ ABC的平分线交 AD于点 E,延长 BE交 CD的延长线于 F. ( 1)若∠ F=20°,求∠ A 的度数;
( 2)若 AB=5,BC=8,CE⊥ AD,求 ? ABCD的面积.
27、(9 分) 明德中学在商场购买甲、乙两种不同足球,购买甲种足球共花费 3000 元,购买乙种
足球共花费 2100 元,购买甲种足球数量是购买乙种足球数量的 2 倍.且购买一个乙种足球比购
买一个甲种足球多花 20 元.
( 1)求购买一个甲种足球、一个乙种足球各需多少元;
( 2)为响应国家“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共
50 个,恰逢
该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了
2020-2021学年北师大版八年级下册数学期末试题含答案

2020-2021学年北师大新版八年级下册数学期末试题一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在中,分式的个数为()A.1B.2C.3D.43.下列各式,从左到右变形是因式分解的是()A.a(a+2b)=a2+2ab B.x﹣1=x(1﹣)C.x2+5x+4=x(x+5)+4D.4﹣m2=(2+m)(2﹣m)4.如图,在▱A BCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F.若AE:AF=2:3,▱AB CD的周长为10,则AB的长为()A.2B.2.5C.3D.3.55.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABD=∠BDC,OA=OC B.∠ABC=∠ADC,AB=CDC.∠ABC=∠ADC,AD∥BC D.∠ABD=∠BDC,∠BAD=∠DCB 6.将点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为()A.(﹣1,﹣6)B.(2,﹣6)C.(﹣1,﹣3)D.(5,﹣3)7.如图,线段AB的长为10,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A.4B.5C.3D.48.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为()A.B.4C.2D.59.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是()A.矩形B.正方形C.对角线互相垂直的四边形D.对角线互相垂直且相等的四边形10.若把分式中的x与y都扩大3倍,则所得分式的值()A.缩小为原来的B.缩小为原来的C.扩大为原来的3倍D.不变11.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=912.已知:如图,D、E、F分别是△ABC的三边的延长线上一点,且AB=BF,BC=CD,AC=AE,S△ABC =5cm2,则S△DEF的值是()A.15cm2B.20cm2C.30cm2D.35cm2二.填空题13.若分式的值为零,则x=.14.已知x+y=8,xy=2,则x2y+xy2=.15.若,则代数式的值是.16.如图,在直角三角形ABC中,∠C=90°,∠A=30°,AB=10,点E、F分别为AC、AB的中点,则EF=.17.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.18.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(5,0),点C的坐标是(1,3),则点B的坐标是.三.解答题19.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).20.先化简,再求值:÷(x+2﹣),其中x=.21.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F,求证:DE=BF.22.解方程:(1)=;(2)=+1.23.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点A关于点O对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,得到△A1B1C1,画出图形,并直接写出点A1、B1、C1的坐标.24.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B种书包各有几个?25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,(1)求证:四边形AEFD是矩形;(2)连接OE,若AB=13,OE=,求AE的长.26.中国古贤常说万物皆自然.而古希腊学者说万物皆数.小学我们就接触了自然数,在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另一种特殊的自然数﹣﹣“欢喜数”.定义:对于一个各数位不为零的自然数,如果它正好等于各数位数字的和的整数倍,我们就说这个自然数是一个“欢喜数”.例如:24是一个“欢喜数”,因为24=4×(2+4),125就不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各数位数字之和的4倍,求所有这种“欢喜数”.27.如图,在边长为a的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC 的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.四.填空题28.若关于x的分式方程=2a无解,则a的值为.29.如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线AP交DE 于点P.若AE=AP=1,PB=,则正方形ABCD的面积为.30.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案与试题解析一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:在所列代数式中,分式有,,共2个,故选:B.3.解:A.从左边到右边变形是整式乘法,不是因式分解,故本选项不符合题意;B.等式的右边不是整式积的形式是整式乘法,不是因式分解,故本选项不符合题意;C.从左边到右边变形不是因式分解,故本选项不符合题意;D.从左边到右边变形是因式分解,故本选项符合题意;故选:D.4.解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴BC+CD=10÷2=5,根据平行四边形的面积公式,得BC:CD=AF:AE=3:2.∴BC=3,CD=2,∴AB=CD=2,故选:A.5.解:A、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD,∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;B、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;C、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;D、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;故选:B.6.解:点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为(2﹣3,﹣3),即(﹣1,﹣3),故选:C.7.解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=CG,OD=DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=AB=×10=5,即OB的最小值为5.故选:B.8.解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=4,AB=A′B,根据勾股定理,得AB===5,∴A′B=AB=5,∴AC′=AB﹣BC′=2,在Rt△AA′C′中,根据勾股定理,得AA′===2.故选:C.9.解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是正方形,即EF⊥FG,FE=FG,∴AC⊥BD,AC=BD,故选:D.10.解:原式==,故选:A . 11.解:由题意得:180(n ﹣2)=360×3,解得:n =8,故选:C .12.解:连接AD ,EB ,FC ,如图所示:∵BC =CD ,三角形中线等分三角形的面积,∴S △ABC =S △ACD ;同理S △ADE =S △ADC ,∴S △CDE =2S △ABC ;同理可得:S △AEF =2S △ABC ,S △BFD =2S △ABC ,∴S △EFD =S △CDE +S △AEF +S △BFD +S △ABC =2S △ABC +2S △ABC +2S △ABC +S △ABC =7S △ABC ; 故答案为:S △EFD =7S △ABC =7×5=35cm 2故选:D .二.填空题13.解:由题意得:x 2﹣1=0,且x ﹣1≠0,解得:x =﹣1,故答案为:﹣1.14.解:∵x +y =8,xy =2,∴x2y+xy2=xy(x+y)=2×8=16.故答案是:16.15.解:∵,∴设x=2t,y=3t,∴===﹣.故答案为﹣.16.解:在Rt△ABC中,∠C=90°,∠A=30°,∴BC=AB=5,∵点E、F分别为AC、AB的中点,∴EF=BC=2.5,故答案为:2.5.17.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.18.解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(5,0),∴OA=BC=5,∵C(1,3),∴B(6,3),故答案为(6,3).三.解答题19.解:(1)原式=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)原式=(x﹣y)(3a+2b)(3a﹣2b).20.解:原式=÷=•=,当x=时,原式==.21.证明:∵▱ABCD的对角线AC,BD交于点O,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴DE=BF.22.解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:3x=2x+3x+3,解得:x=﹣,经检验x=﹣是分式方程的解.23.解:(1)点A关于点O对称的点的坐标为(2,﹣3);故答案为:(2,﹣3)(2)如图,△A1B1C1即为所求,A1(﹣3,﹣2),B1(0,﹣6),C1(0,﹣1).24.解:(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意得:=2×,解得:x=70,经检验,x=70是原方程的解,且符合题意,∴x+20=90.答:每个A种书包的进价为70元,每个B种书包的进价为90元.(2)设购进A种书包m个,则购进B种书包(2m+5)个,依题意得:,解得:18≤m≤20.又∵m为整数,∴m可以为18,19,20,∴该商场有3种进货方案,方案1:购进18个A种书包,41个B种书包;方案2:购进19个A种书包,43个B种书包;方案3:购进20个A种书包,45个B种书包.(3)设该商场销售A,B两种书包获利w元,则w=(90﹣70)m+(130﹣90)(2m+5)=100m+200,∵100>0,∴w随m的增大而增大,∴当m=20时,w取得最大值,即购进20个A种书包,45个B种书包.设赠送的书包中A种书包有a个,销售的A种书包中有b个样品,则赠送的书包中B种书包有(5﹣a)个,销售的B种书包中有(4﹣b)个样品,依题意得:90(20﹣a﹣b)+90×0.5b+130[45﹣(5﹣a)﹣(4﹣b)]+130×0.5(4﹣b)﹣70×20﹣90×45=1370,整理得:2a+b=4.又∵a为非负整数,b为正整数,∴当a=0时,b=4,此时4﹣b=0不合题意,舍去;当a=1,b=2.∴5﹣a=4,4﹣b=2,∴赠送的书包中A种书包有1个,B种书包有4个,样品中A种书包有2个,B种书包有2个.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AB=13,∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=OA=2,AC=2OE=4,∴OB===3,∴BD=2OB=6,∵菱形ABCD的面积=BD×AC=BC×AE,即×6×4=13×AE,解得:AE=12.26.解:(1)∵2+8=10,28不是10的整数倍,∴根据“欢喜数”的概念,28不是“欢喜数”;∵1+3+5=9,135=15×9是9的倍数,∴根据“欢喜数”的概念,135是“欢喜数”;(2)①设这个数为一位数a,且a为自然数,a≠0,根据题意可知a=4a,又a≠0,∴这种情况不存在;②设这个数为两位数,a,b为整数,∴10a+b=4(a+b),即b=2a,∴或或或,∴这种欢喜数为12,24,36,48;③设这个数为三位数,a,b,c为整数,∴100a+10b+c=4(a+b+c),则96a+6b=3c,又a,b,c为0到9的整数,且a≥1,∴这种情况不存在;④设这个数为四位数,a,b,c,d为0到9的整数,且a≥1,∴1000a+100b+10c+d=4(a+b+c+d),∴996a+96b+6c=3d,故没有0到9的整数a,b,c,d使等式成立,由此类推,当这个数的位数不断增加时,更加无法满足等式,∴当一个欢喜数等于各数位数字之和的4倍时,这个数为:12或24或36或48.27.解:(1)AC=,∵CF平分∠BCD,FD⊥CD,FP⊥AC,∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∴△FDQ≌△FPA(ASA),∴QD=AP,∵点P在正方形ABCD对角线AC上,∴CD=CP=a,∴QD=AP=AC﹣PC=()a;(2)∵FD=FP,CD=CP,∴CF垂直平分DP,即DP⊥CF,∴ED=EP,则∠EDP=∠EPD,∵FD=FP,∴∠FDP=∠FPD,而EP∥DF,∴∠EPD=∠FDP,∴∠FPD=∠EPD,∴∠EDP=∠FPD,∴DE∥PF,而EP∥DF,∴四边形DFPE是平行四边形,∵EF⊥DP,∴四边形DFPE是菱形;(3)DP2+EF2=4QD2,理由是:∵四边形DFPE是菱形,设DP与EF交于点G,∴2DG=DP,2GF=EF,∵∠ACD=45°,FP⊥AC,∴△PCQ为等腰直角三角形,∴∠Q=45°,可得△QDF为等腰直角三角形,∴QD=DF,在△DGF中,DG2+FG2=DF2,∴有(DP)2+(EF)2=QD2,整理得:DP2+EF2=4QD2;(4)∵∠DFQ=45°,DE∥FP,∴∠EDF=45°,又∵DE=DF=DQ=AP=()a,AD=AB,∴△ADE≌BAP(SAS),∴AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∴∠HPA+∠HAP=90°,∴∠PHA=90°,即BP⊥AE,综上:BP与AE的关系是:垂直且相等.四.填空题28.解:=2a,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.29.解:如图,过点B作BF⊥AE,交AE的延长线于F,连接BD,在Rt△AEP中,AE=AP=1,∴EP=,∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,在△APD和△AEB中,,∴△APD≌△AEB(SAS),∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED,又∵PB=,∴BE==2,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,∴EF=BF=,在Rt△ABF中,AB2=(AE+EF)2+BF2=5+2,∴S=AB2=5+2,正方形ABCD方法二:BD2=BE2+DE2=4+(+2)2=10+4,∴S=DB2=5+2,正方形ABCD故答案为5+2.30.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
北师大版数学八年级下册期末复习(六) 平行四边形
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
2020-2021学年四川省广元市青川县八年级(下)期末数学试卷(北师大版)(附答案详解)
2020-2021学年四川省广元市青川县八年级(下)期末数学试卷(北师大版)1.下列因式分解正确的是()A. x2y2−z2=x2(y+z)(y−z)B. −x2y−4xy+5y=−y(x2+4x+5)C. (x+2)2−9=(x+5)(x−1)D. 9−12a+4a2=−(3−2a)22.下列说法正确的是()A. 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B. 平移和旋转的共同点是改变图形的位置C. 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D. 由平移得到的图形也一定可由旋转得到3.在平面直角坐标系中,点P(2x−6,x−5)在第三象限,则x的取值范围是()A. x<5B. x<3C. x>5D. 3<x<54.如果一个多边形的内角和等于900°,这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形5.点A、B、C、D在同一平面内,从①AB//CD;②AB=CD;③BC//AD;④BC=AD这四个条件中任意选两个,能使四边形ABCD是平行四边形的有()A. 3种B. 4种C. 5种D. 6种6.若关于x的方程x−4x−5−3=ax−5有增根,则增根为()A. x=6B. x=5C. x=4D. x=37.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A. 2B. 2√3C. √3D. 38.若分式1x2−2x+m不论x取何值总有意义,则m的取值范围是()A. m≥1B. m>1C. m≤1D. m<19.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),在关于x的不等式x+b≤kx+4的解集是()A. x≥1B. x≥0C. x≤0D. x≤110.如图,在直角坐标系中,已知点A(−3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A. (60,0)B. (72,0)C. (6715,95) D. (7915,95)11.计算:20212−2021×4040+20202=______.12.用反证法证明“三角形中至少有一个角不小于60°时,假设“______”,则与“______”矛盾,所以原命题正确.13.若x+5x2的值为正数,则x得取值范围为______.14.在括号内添加一个一元一次不等式,使不等式组{()2x−7<5的解集为x<6.15.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF//BC交CE的延长线于F.则四边形AFBD的面积为______.16. 如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论,其中正确的是______. ①△AED ≌△AEF ;②BE +DC =DE ;③S △ABE +S △ACD >S △AED ;④BE 2+DC 2=DE 2.17. (1)分解因式:a 2(b −2)+(2−b).(2)计算:x−15x 2−9−23−x .18. (1)解分式方程:2x 2x−3−12x+3=1.(2)解不等式组{1−2x ≤3①x+43>3x−72−1②,并在数轴上表示其解集.19. 先化简(a 2−4a 2−4a+4−2a−2)÷a 2+2a a−2,再从0、1、−1、2、−2中取一个数代入求值.20. 若关于x 、y 的方程组{x +y =30−k 3x +y =50+k的解都是非负数. (1)求k 的取值范围;(2)若M =3x +4y ,求M 的取值范围.21. 如图所示,△ABC 中,AB =BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于F .(1)若∠AFD =155°,求∠EDF 的度数;(2)若点F 是AC 的中点,求证:∠CFD =12∠B .22.如图所示,△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,若AB=3,AC=2,求∠BAD的度数和线段AD的长.23.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由.24.已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.25.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,没运动时间为t(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:∵x2y2−z2=(xy+z)(xy−z)≠x2(y+z)(y−z),故选项A不符合题意;−x2y−4xy+5y=−y(x2+4x−5)=−y(y+5)(x−4),分解不彻底,故选项B不符合题意;(x+2)2−9=(x+5)(x−1),故选项C符合题意;9−12a+4a2=(3−2a)2≠−(3−2a)2,故选项D不符合题意.故选:C.利用平方差、完全平方公式先判断A、C、D,再利用提公因式与完全平方公式判断B.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.【答案】B【解析】解:A、平移不改变图形的形状和大小,而旋转同样不改变图形的形状和大小,故错误;B、平移和旋转的共同点是改变图形的位置,故正确;C、图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动,故错误;D、平移和旋转不能混淆一体,故错误.故选B.根据平移和旋转的性质,对选项进行一一分析,排除错误答案.要根据平移和旋转的定义来判断.(1)在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动成为平移;(2)旋转就是物体绕着某一点或轴运动.平移和旋转的共同点是改变图形的位置.3.【答案】B【解析】解:∵点P(2x−6,x−5)在第三象限,∴{2x−6<0①x−5<0②,解不等式①,得:x<3,解不等式②,得:x<5,则x<3,故选:B.先根据第三象限内点的坐标符号特点列出关于x的不等式组,再分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.【答案】D【解析】解:设所求正n边形边数为n,则(n−2)⋅180°=900°,解得n=7.故选:D.根据n边形的内角和为(n−2)⋅180°得到(n−2)⋅180°=900°,然后解方程即可.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.【答案】B【解析】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、②④.故选:B.根据平行四边形的判定方法中,①②、③④、①③、②④均可判定是平行四边形.本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行且相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.6.【答案】B【解析】解:∵最简公分母是x−5,原方程有增根,∴最简公分母x−5=0,∴增根是x=5.故选:B.增根是化为整式方程后产生的不适合分式方程的根.确定增根的可能值,让最简公分母x−5=0即可.本题考查了分式方程的增根问题,只需让最简公分母为0即可.7.【答案】C【解析】解:∵△ABC是等边三角形P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,QF为线段BP的垂直平分线,∴∠FQB=90°,=√3,∴BQ=BF⋅cos30°=2×√32∴BP=2BQ=2√3,在Rt△BEP中,∵∠EBP=30°,∴PE=1BP=√3.2故选:C.先根据△ABC是等边三角形P是∠ABC的平分线可知∠EBP=∠QBF=30°,再根据BF= 2,FQ⊥BP可得出BQ的长,再由BP=2BQ可求出BP的长,在Rt△BEF中,根据∠EBP=30°即可求出PE的长.本题考查的是等边三角形的性质、角平分线的性质及直角三角形的性质,熟知等边三角形的三个内角都是60°是解答此题的关键.8.【答案】B【解析】解:分式1不论x取何值总有意义,则其分母必不等于0,x2−2x+m即把分母整理成(a+b)2+k(k>0)的形式为(x2−2x+1)+m−1=(x−1)2+(m−1),因为无论x取何值(x2−2x+1)+m−1=(x−1)2+(m−1)都不等于0,所以m−1>0,即m>1,故选:B.主要求出当x为什么值时,分母不等于0.可以采用配方法整理成(a+b)2+k(k>0)的形式即可解决.此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.当分母是个二项式时,分式有意义的条件时分母能整理成(a+b)2+ k(k>0)的形式,即一个完全平方式与一个正数的和的形式.只有这样不论未知数取何值,式子(a+b)2+k(k>0)都不可能等于0.9.【答案】D【解析】解:由函数图象得当x≤1时,y1≤y2,即x+b≤kx+4,所以关于x的不等式x+b≤kx+4的解集为x≤1.故选:D.找出一次函数y1=x+b的图象在一次函数y2=kx+4图象下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.【答案】A【解析】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(−3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=√=5∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5 (1)∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A.根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.本题考查规律性:点的坐标,解题的关键是可以发现其中的规律,利用发现的规律找出所求问题需要的条件.11.【答案】1【解析】解:20212−2021×4040+20202=20212−2×2021×2020+20202=(2021−2020)2=12=1.先根据完全平方公式a2±2ab+b2=(a±b)2进行因式分解,再进行计算即可解得答案.本题主要考查了利用完全平方公式进行因式分解的简便计算,解答此类问题的关键是熟知公式和分析题目的形式,有效地进行整式变形.12.【答案】三角形的三个内角都小于60°三角形的内角和是180°【解析】解:用反证法证明“三角形中至少有一个角不小于60°时,假设“三角形的三个内角都小于60°”,则与“三角形的内角和是180°”矛盾,所以原命题正确.熟记反证法的步骤,直接填空即可.本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.13.【答案】x>−5且x≠0【解析】解:由题意可知:x+5>0且x2≠0,∴x>−5且x≠0,故答案为:x>−5且x≠0.根据题意可得x+5>0,从而可求出x的取值范围.本题考查分式的值,解题的关键是根据题意正确列出不等式,本题属于基础题型.14.【答案】解:2x−7<5的解集为x<6,∵不等式组的解集为x<6,∴另一个不等式为x−7<0(答案不唯一).【解析】解第2个不等式求出其解集,再结合不等式组的解集可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】12【解析】解:∵AF//BC,∴∠AFC=∠FCD,在△AEF与△DEC中,{∠AFC=∠FCD ∠AEF=∠DEC AE=DE∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=12AB⋅AC=12×4×6=12,∴S四边形AFBD=12.故答案为:12由于AF//BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD 是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.16.【答案】①③④【解析】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∠FAD=90°,∴AF=AD,∵∠DAE=45°,∴∠DAE=∠FAE=45°,在△AED和△AEF中,{DA=FA∠DAE=∠FAE AE=AE,∴△AED≌△AEF(SAS),故①正确,∴EF=ED,S△AED=S△AEF,∵在Rt△ABC中,AB=AC,∴∠BAC=90°,∠ABC=∠C=45°,∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴BF=CD,∠ABF=∠C=45°,∴∠EBF=90°,∴BE2+BF2=EF2,∴BE2+DC2=DE2;故④正确,②错误.∵△ABF≌△ACD,∴S△ABF=S△ACD,∴S△ABE+S△ACD=S△ABE+S△ABF=S四边形AFBE=S△BEF+S△AEF,∴S四边形AFBE>S△AED,即 ABE+S△ACD>S△AED,故③正确.故答案为:①③④.依据旋转的性质,即可得到∠BAF=∠CAD,AF=AD,BF=CD,进而得出△FAE≌△DAE(SAS),即可得到S△AED=S△AEF,可得到S△ABE+S△ACD>S△AED,再根据勾股定理即可得到BE2+BF2=EF2,进而得到BE2+DC2=DE2.本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了三角形全等的判定与性质以及勾股定理.17.【答案】解:(1)原式=a2(b−2)−(b−2)=(a2−1)(b−2)=(a+1)(a−1)(b−2).(2)原式=x−15(x+3)(x−3)+2(x+3)(x−3)(x+3)=x−15+2x+6(x+3)(x−3)=3x−9(x+3)(x−3)=3(x−3)(x+3)(x−3)=3x+3.【解析】(1)根据提取公因式以及平方差公式即可求出答案.(2)根据分式的减法运算法则即可求出答案.本题考查因式分解以及分式的减法运算,解题的关键是熟练运用分式的减法运算法则以及因式分解法,本题属于基础题型.18.【答案】解:(1)方程两边同乘以(2x−3)(2x+3),得2x(2x+3)−(2x−3)=(2x−3)(2x+3),解这个整式方程得x=−3,检验:当x=−3时,(2x+3)(2x−3)=27≠0,∴x=−3原分式方程的解;(2)解不等式①得x≥−1,解不等式②得x<5,∴不等式组的解集为−1≤x<5.将解集表示在数轴上表示为:【解析】(1)方程两边同乘以(2x−3)(2x+3)将方程转化为整式方程,解方程可求解x 值,最后检验可求解方程的解;(2)先求解两不等式的解集,再取其公共部分即可求解不等式组的解集,最后将解集表示在数轴上即可求解.本题主要考查解分式方程,一元一次不等式的解法,在数轴上表示不等式组的解集,掌握解分式方程的一般步骤及解不等式组的方法是解题的关键.19.【答案】解:原式=[a2−4(a−2)2−2a−2]⋅a−2a(a+2)=[(a−2)(a+2)(a−2)2−2a−2]⋅a−2a(a+2)=(a+2a−2−2a−2)⋅a−2a(a+2)=aa−2⋅a−2 a(a+2)=1a+2,由分式有意义的条件可知a不能取±2,0,当a=1时.原式=13.【解析】根据分式的加减运算法则以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案.本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.20.【答案】解:(1)解方程组{x +y =30−k 3x +y =50+k ,得:{x =k +10y =−2k +20,∵方程组的解都是非负数,∴{k +10≥0−2k +20≥0, 解得:−10≤k ≤10;(2)M =3x +4y =3(k +10)+4(−2k +20)=−5k +110,∵−10≤k ≤10,∴−50≤−5k ≤50,则60≤−5k +110≤160,即60≤M ≤160.【解析】(1)解方程用含k 的式子表示x 、y ,根据方程组的解都是非负数得出关于k 的不等式组,解之可得;(2)根据M =3x +4y 得出M =−5k +110,结合k 的范围可得答案.本题考查的是解二元一次方程组和解一元一次不等式组,根据题意列出关于k 的不等式组是解答此题的关键.21.【答案】解:(1)∵∠AFD =155°,∴∠DFC =25°,∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°,在Rt △EDC 中,∴∠C =90°−25°=65°,∵AB =BC ,∴∠C =∠A =65°,∴∠EDF =360°−65°−155°−90°=50°.(2)连接BF∵AB =BC ,且点F 是AC 的中点,∴BF⊥AC,∠ABF=∠CBF=12∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=12∠ABC.【解析】(1)求得∠A的度数后利用四边形的内角和定理求得结论即可;(2)连接FB,根据AB=BC,且点F是AC的中点,得到BF⊥AC,∠ABF=∠CBF=1 2∠ABC,证得∠CFD=∠CBF后即可证得∠CFD=12∠ABC.本题考查了等腰三角形的性质,解题的关键是从复杂的图形中找到相等的线段,这是利用等腰三角形性质的基础.22.【答案】解:法1:∵△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,∴∠BAC+∠BDC=120°+60°=180°,∴A,B,D,C四点共圆,∴∠BAD=∠BCD=60°,∠ACD+∠ABD=180°,又∵∠ABD=∠ECD,∴∠ACD+∠ECD=180°,∴∠ACE=180°,即A、C、E共线,∵把△ABD绕着D点按顺时针方向旋转60°到△ECD的位置,AB=3,∴AB=CE=3,∴AD=AE=AC+AB=3+2=5;法2:∵△ABC的∠BAC=120°,以BC为边向形外作等边△BCD,∴∠BAC+∠BDC=120°+60°=180°,∴四边形ABCD,∴∠BAD=∠BCD=60°,∠ACD+∠ABD=180°,又∵∠ABD=∠ECD,∴∠ACD+∠ECD=180°,∴∠ACE=180°,即A、C、E共线,∵把△ABD 绕着D 点按顺时针方向旋转60°到△ECD 的位置,AB =3,∴AB =CE =3,∴AD =AE =AC +AB =3+2=5.【解析】根据∠BAC +∠BDC =180°得出A 、B 、D 、C 四点共圆,根据四点共圆的性质得出∠BAD =∠BCD =60°.推出A ,C ,E 共线;由于∠ADE =60°,根据旋转得出AB =CE =3,求出AE 即可.本题利用了:①等边三角形的性质,三角为60度,三边相等;②四边形内角和为360度;③一个角的度数为180度,则三点共线;④角的和差关系求解.23.【答案】解:(1)AF =BE .证明:在△AFC 和△BEC 中,∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60°,在△AFC 与△BEC 中,{AC =BC∠ACF =∠BCE CF =CE,∴△AFC≌△BEC(SAS),∴AF =BE .(2)成立.理由:在△AFC 和△BEC 中,∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACB =∠FCE =60度,∴∠ACB −∠FCB =∠FCE −∠FCB ,即∠ACF =∠BCE ,在△AFC 与△BEC 中,{AC =BC∠ACF =∠BCE CF =CE,∴△AFC≌△BEC(SAS),∴AF =BE .【解析】(1)根据题中所给的等边三角形的条件,两对边对应相等,有一个角都等于60°,变换这个60°的对应角,利用SAS 证AF 和BE 所在的三角形全等;(2)利用了等边三角形的性质,根据特殊角和旋转不变性确定两线段相等.本题主要考查旋转的性质:旋转前后图形的大小和形状不变,只是位置发生了变化.证两条线段相等,通常是证这两条线段所在的两个三角形全等,类似的题,证明方法基本不变.24.【答案】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,BD=2BO.由已知BD=2AD,∴BO=BC.又E是OC中点,∴BE⊥AC.(2)由(1)BE⊥AC,又G是AB中点,∴EG是Rt△ABE斜边上的中线.∴EG=12AB.又∵EF是△OCD的中位线,∴EF=12CD.又AB=CD,∴EG=EF.【解析】(1)由已知条件易证△OBC是等腰三角形,E是OC的中点,根据等腰三角形中底边上的高与中线合一的性质知BE⊥AC.(2)利用直角三角形中斜边上的中线等于斜边的一半及中位线定理可证EG=EF.本题考查了等腰三角形的性质,直角三角形的性质,三角形中位线的性质,范围比较广.25.【答案】解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:160x =40030+x,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10−a)件,列不等式组:300≤20⋅a+50⋅(10−a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.【解析】(1)设A商品每件x元,则B商品每件(30+x)元,根据“160元全部购买A商品的数量与用400元全部购买B商品的数量相同”列方程求解可得;(2)设购买A商品a件,则购买B商品共(10−a)件,列不等式组:300≤20⋅a+50⋅(10−a)≤380,解之求出a的整数解,从而得出答案.本题主要考查分式方程与不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系与不等关系,并据此列出方程和不等式组.26.【答案】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD//BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=5−t,∵AP//BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=5−t,t=5,2∴当t为5秒时,四边形ABQP是平行四边形;2(2)如图1,过A作AH⊥BC于H,过O作OG⊥BC于G,Rt △ABC 中,∵AB =3,BC =5,∴AC =4,∴CO =12AC =2, S △ABC =12AB ⋅AC =12BC ⋅AH , ∴3×4=5AH ,AH =125,∵AH//OG ,OA =OC ,∴GH =CG ,∴OG =12AH =65,∴y =S △OCD +S △OCQ =12OC ⋅CD +12CQ ⋅OG , ∴y =12×2×3+12×t ×65=35t +3;(3)存在,如图2,∵OE 是AP 的垂直平分线,∴AE =12AP =12t ,∠AEO =90°,由(2)知:AO =2,OE =65,由勾股定理得:AE 2+OE 2=AO 2,(12t)2+(65)2=22, ∴t =165或−165(舍), ∴当t =165秒时,使点O 在线段AP 的垂直平分线上.【解析】(1)先证明△APO≌△CQO ,AP =CQ =t ,根据AP =BQ 列方程可得结论;(2)作高线AH 和OG ,根据三角形的中位线定理和面积法分别求AH 和OG 的长,根据y =S △OCD +S △OCQ =12OC ⋅CD +12CQ ⋅OG ,代入可得结论;(3)如图2,在Rt △AEO 中,根据勾股定理得:AE 2+OE 2=AO 2,列方程可得t 的值.本题考查四边形综合题、平行四边形的性质、三角形中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
【最新】北师大版八年级下册数学《期末测试题》含答案
2019-2020学年度第二学期期末测试北师大版八年级数学试题时间:120分钟 总分:120分一、选择题(每个小题3分,共30分)1.若a b ,则下列各式成立的是()2•己如等腰三角形的底边长是 6,腰长为5,则这个等腰三角形的面积是 ()A. 30B. 15C. 24D. 12224亠 23•下面四个式子①2a y 2a xy •,②x 3x④ab ac a a b c ,从左到右不是因式分解的() A. 1个 B. 2个C. 3个D. 4个4•下列三角形中,不一定是直角三角形的是 () A. 三角形中有一边的中线等于这边的一半 B. 三角形三内角之比是 1:2:3C. 三角形有一内角是30°,且有一边是另一边的一半D. 三角形三边分别是m 2 n 2、2mn 、m 2 n 2m n 0325.若方程的根是正数,则k 的取值范围是()x 3 x kA. k 2B. 3 k 2C. k 2 且 k 3D. k 3三角形,(6)等边三角形,一定可以拼成的图形是 ()7.点P 的坐标恰好是方程x 22x 24 0的两个根,则经过点 P 的正比例函数图象一定过()象限A. 一、三B. 二、四C. 一D.四8.某质检部门抽取甲、乙两厂相同数量的b2a221:③ 3mn 6m n 3mn n 2m ;6.用两个完全相同直角三角形拼下列图形:(1)平行四边形, ⑵ 矩形,(3)菱形,(4)正方形,(5)等腰A.⑴⑷⑸;B.⑵(5)(6);C. (1)(2)( 3);D. (1)(2)(5).产品进行质量检测,结果甲有48件合格产品,乙厂有45件合格产品,甲厂的合格率比乙厂高5% •设求甲厂的合格率为x%,则x应满足的方程为().48 45 48 45 48 45 48 45A -------------------B ------------------------- ------C ------------------------------D ------------------------- ------A x% x 5 % B. x 5 % x% C. x% x 5 % D. x 5 % x%9•如图,由点P 14, 1 , A a , 0 , BO , a ,0 a 14确定的△ PAB 的面积是18,则a 的值是().10.己如等边△ ABC 的边长为4,点P 是边BC 上的动点,将△ ABP 绕点A 逆时针旋转60得到VACQ , 点D 是AC 边的中点,连接DQ ,则DQ 的最小值是()A. 2B. 3C. 2D.不能确定二、填空题(每个小题3分,共18分)x 2 911. 若分式 ----- 的值为零,则x= _________.x 312. 若关于x 的一元二次方程 a 1 x a a 10的一个根是0,则a 的值是 ___________ .13.如图,若四边形 ABCD 各内角的平分线相交得到四边形EFGH ,贝U F H 的度数为 _________________x 8 4x 114.如果不等式组的解集是x 3,那么m 的取值范围是 __________x m积是200,则BF 的长是 _____________C. 12D. 3 或1215.如图,正方形 ABCD 的面枳是256,点E 在AD 上,点F 在AB 的延长线上,EC FC ,△ CEF 的面21.如图,菱形 ABCD 中,AB 4 , E 为 BC 中点,AE BC , AF CD 于点 F , CG // AE , CG交16.已知四边形ABCD , AB BC , AD DC , AB BC ,如果AD 4, DC 2,则BD 的长为、简答题(共72分)17.解不等式(组) (1)2x 134x 1 145x 1 3x 4 ⑵ 1 2 X 一X 3 318.(1)化简:2 2 . 2a ab abb19.先化简:2x 1 x 1(x 1),然后x 在-1, 0, 1, 2四个数中选一个你认为合适的数代入求值.x 2 2x 1xx(2)解分式方20.如图,已知 △ ABC ,AC BC ,请用尺规作图在 BA 上取一点P ,使得PA PC BA .AF于点H,交AD于点G .(1)求菱形ABCD的面积;(2 )求CHA的度数.E, F分别是BC, AC的中点,延长BA到点D,使得AB 2AD,连接DE, DF,AE, EF,AF与DE交于点0 .(1)证明:AF与DE互相平分;⑵如果AB 6, BC 10,求DO的长.23.2019年618年中大促活动中,各大电商分期进行降价促销.某宝店铺热销网红A款服装进行价格促销,促销价比平时售价每件降90元,如果卖出相同数量的A款服装,平时销售额为5万元,促销后销售额只有4万元.(1)该店铺A款服装平时每件售价为多少元?(2)该店铺在6. 1 —6. 2第一轮促销中,A款服装销售情况非常火爆,商家决定为第二轮6. 16—6. 18 大促再进一批货,经销A款的同时再购进同品牌的B款服装,己知A款服装每件进价为300元,B款服装每件进价为200元,店铺预计用不少于7.2万元且不多于7.3万元的资金购进这两款服装共300件•请你算一算,商家共有几种进货方案?⑶在6. 16—6. 18促销活动中,A款仍以平日价降90元促销,B款服装每件售价为280元,为打开B款服装的销路,店铺决定每售出一件B款服装,返还顾客现金a元,要使(2)中所购进服装全部售完后所有方案获利相同,a的值应是多少?24.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换•旋转变换是几何变换的一种基本模型•经过旋转,往往能使图形的几何性质明白显现•题设和结论中的元素由分散变为集中,相互之 间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1, △ ABC 是边长为1的等边三角形,P ABC 内部一点,连接 PA 、PB PC ,求PA PB PC 的最小值.S 1 S2方法分析:通过转化,把由三角形内一点发出的三条线段 (星型线)转化为两定点之间的折线 (化星为折),再利用 两点之间线段最短”求最小值(化折为直)•问题解决:如图2,将△ BPA 绕点B 逆时针旋转60至△ BP A ,连接PP 、AC ,记AC 与AB 交于点D ,PC ,贝U PA PB PC 最小值是的最小值.易知BA BA BC 1 , A BCABAABC 120 •由 BP BP , P BP60 ,可知△ P BP 为正三角形,有PB P P •故 PA PB PC PA P P PCA C .3 •因此,当A 、P 、P 、C 共线时,PA PB PC 有最小值3 •BAC 30 , AB 4, CA学以致用:⑴如图3,在厶ABC 中, 3 , PABC 内部一点,连接PA 、PB 、连接PA 、PB 、 PC ,D 、PQ ,求 PA PDPQ为△ABC 内部 求..2PA PB PC 的'值.(2)如图4丄在厶ABC 中, BAC⑶如图5, P 是边长为2的正方形C 上一点,连接PA答案与解析一、选择题(每个小题3分,共30分)1•若a b ,则下列各式成立的是()a bA 、 a 1 b 1B. 2a 2bC. 1 a 1 bD.2 2【答案】A 【解析】 【分析】不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 【详解】解: A 、两边同时加 1,不等号方向不变,故 A 成立;B 、 两边都乘以2,不等号的方向不变,故 B 不成立;C 、 两边都加1,不等号的方向不变,故 C 不成立;1D 、 两边都乘以,不等号的方向改变,故 D 不成立;2故选:A .【点睛】本题考查了不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方 向改变.2.己如等腰三角形的底边长是 6,腰长为5,则这个等腰三角形的面积是 () A. 30B. 15C. 24D. 12【答案】D 【解析】【分析】AB AC 5,BC 6,作AD BC •利用勾股定理求出Q AB AC , AD BC ,AB AC 5,BC 6,作 AD BC .AD 即可解决问题.如图,由题意:BD DC 3,在Rt ADC 中,AD .AC2CD2、. 52324,1 1二S ABC BC AD 6 4=12 ,2 2故选:D .【点睛】本题考查等腰三角形的性质和勾股定理的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.2 2 4 2 2 2 o o3•下面四个式子① 2a y 2a xy :② x 3x 1 x x 3 1 :③ 3mn2 6m2n 3mn n 2m ;④ab ac a a b c,从左到右不是因式分解的()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:①左边不是多项式,不是因式分解;②右边不是积的形式,不是因式分解;③符合因式分解的定义;④ab ac a a(b c 1),原式不是因式分解.故从左到右不是因式分解的有3个.故选:C .【点睛】本题考查了因式分解的定义,解决这类问题的关键在于能否正确应用分解因式的定义来判断.4•下列三角形中,不一定是直角三角形的是()A.三角形中有一边的中线等于这边的一半B.三角形三内角之比是1: 2:3C.三角形有一内角是30°,且有一边是另一边的一半D.三角形三边分别是m2 n2、2mn、m2 n2 m n 0【答案】C【解析】【分析】根据直角三角形的定义以及判定方法一一判断即可.【详解】解:A、三角形中有一边的中线等于这边的一半,这个三角形是直角三角形.B、三角形三内角之比是1:2:3,这个三角形的三个内角分别为30° , 60 , 90是直角三角形.C、三角形有一内角是30°,且有一边是另一边的一半,这个三角形不一定是直角三角形.D、三角形三边分别是m2 n2、2mn、m2 n2(m n 0),Q (m2 n2)2 (2mn)2 (m2 n2)2,这个三角形是直角三角形,故选:C .【点睛】本题考查勾股定理的逆定理,直角三角形的判定等知识,解题的关键是熟练掌握直角三角形判定方法,属于中考常考题型.3 25.若方程的根是正数,则k的取值范围是()x 3 x kA. k 2B. 3 k 2C. k 2 且k 3D. k 3【答案】A【解析】【分析】先求出分式方程的解,得出6 3k 0,求出k的范围,再根据分式方程有解得出x 3 0, x k 0, 求出x 3 , k 3,即可得出答案.【详解】解:方程两边都乘以(x 3)(x k)得:3(x k) 2(x 3),3x 3k 2x 6,3x 2x 6 3k,x 6 3k ,3 2Q方程的根为正数,6 3k 0,解得:k 2,又:x 3 0, x k 0,二 x 3 , k 3 , 即k 的取值范围是k 2, 故选:A .【点睛】本题考查了分式方程解的应用,关键是求出 6 3k 0和得出x 3 , k 3,是一道比较容易出错的题目.6.用两个完全相同的直角三角形拼下列图形: ⑴平行四边形,(2)矩形,(3)菱形,⑷正方形, 形,(6)等边三角形,一定可以拼成的图形是()A.⑴(4)(5);B.⑵(5)(6);C.⑴(2)(3);D.(1)(2)(5).【答案】D 【解析】试题分析:此题需要动手操作或画图即可判断。
北师大版八年级数学下册期末中测试卷(AB卷含答案)
八年级下册期中测试卷(A 卷)说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟一、选择题:(每小题3分,共36分)1.(3分)已知a >b ,下列不等式中正确的是( ) A .a+3<b+3 B .a ﹣1<b ﹣1 C .﹣a >﹣b D .>2.(3分)下列各式从左到右,不是因式分解的是( )A .x 2+xy+1=x (x+y )+1B .a 2﹣b 2=(a+b )(a ﹣b ) C .x 2﹣4xy+4y 2=(x ﹣2y )2D .ma+mb+mc=m (a+b+c )3.(3分)下列多项式中,不能运用平方差公式因式分解的是( )A .﹣m 2+4B .﹣x 2﹣y2C .x 2y 2﹣1 D .(m ﹣a )2﹣(m+a )24.(3分)将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2的度数是( ) A .65°B .70°C .75°D .80°5.(3分)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.(3分)若a ﹣b=2,ab=3,则ab 2﹣a 2b 的值为( ) A .6B .5C .﹣6D .﹣58.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .18 C .20 D .16或209.(3分)如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A .a >0 B .a <0 C .a >﹣1 D .a <﹣110.(3分)已知△ABC 中,求作一点P ,使P 到∠A 的两边的距离相等,且PB=PC ,则下列确定P 点的方法正确的是( )A .P 是∠A 与∠B 两角平分线的交点 B .P 是AC 、AB 两边上中垂线的交点 C .P 是∠A 的角平分线与BC 的中垂线的交点D .P 是∠A 的角平分线与AB 的中垂线的交点 11.(3分)某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是( )A .17B .16C .15D .1212.(3分)如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( ) A .2cm2B .1cm 2C .cm 2D .cm 2二、填空题(每小题3分,共12分)13.(3分)分解因式:4x 2﹣8x+4= .14.(3分)如图,△ABC 中,AD ⊥BC ,AE 是∠BAC 的平分线,∠B=60°,∠BAC=84°,则∠DAE= . 15.(3分)如图,已知一次函数y 1=kx 1+b 1与一次函数y 2=kx 2+b 2的图象相交于点(1,2),则不等式kx 1+b 1<kx 2+b 2的解集是 .16.(3分)如图,已知Rt △ABC 中,AC ⊥BC ,∠B=30°,AB=10,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 1⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段A 1C 1,A 2C 2,…,则A 1C 1= ;则A 3C 3= ;则A n C n = .三、解答题(本部分共7题,合计52分)17.(12分)计算:(1)解不等式:x ﹣(2x ﹣1)≤3学校 姓名 年级密 封 线 内 不 要 答 题密 封线(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.18.(5分)先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.19.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△OAB 的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角顶点A在y轴,画出△OAB.①点B的坐标是;②把△OAB向上平移5个单位后得到对应的△O1A1B1,画出△O1A1B1,点B1的坐标是;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是.20.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.(6分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.22.(8分)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.(9分)如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点P点Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上相遇?密封线八年级下册期中测试卷(A卷)答案一、选择题1—5 DABAA 6—10 DCCDC 11-12 CB二、填空题13.4(x﹣1)2 14. 12° 15. x<116.,5×()6,5×()2n三、解答题17、【解答】解:(1)去括号得,x﹣2x+1≤3,移项得,x﹣2x≤3﹣1,合并同类项得,﹣x≤2,把x的系数化为1得,x≥﹣2;(2)由①得,x≥﹣3,由②得,x<2,故不等式组的解集为:﹣3≤x<2.在数轴上表示为:;(3)原式=﹣x(4a2﹣12a+9)=﹣x(2a﹣3)2.18、【解答】解:4x(m﹣1)﹣3x(m﹣1)2=(m﹣1)[4x﹣3x(m﹣1)]=(m﹣1)(4x﹣3mx+3x),=(m﹣1)(7x﹣3mx),当x=,m=3时,原式=(3﹣1)(7×﹣3×3×)=2×(﹣3)=﹣6.19、【解答】解:①点B的坐标是(﹣4,﹣3);②如图,△O1A1B1为所作,点B1的坐标是(﹣4,1);③如图,△O2A2B2为所作,点B2的坐标是(3,﹣4).故答案为(﹣4,﹣3),(﹣4,1),(3,﹣4).20、【解答】解:(1)连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)∵BE=2CE,AE=2CE;∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=∠ABE=30°,∵DE⊥AB,∠C=90°,∴DE=CE.21、【解答】解:设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.根据题意可得,12x×100+10(10﹣x)×180≥15600,解得;x≤4,∴10﹣x≥6,∴至少要派6名工人去生产乙种产品才合适.22、【解答】解:(1)根据题意得,甲旅行社时总费用:y甲=400+400×50%x,乙旅行社时总费用:y乙=400×60%(x+1);(2)设我校区级“三好学生”的人数为x人,根据题意得:400+400×50%x<400×60%(x+1),解得:x>10,当学生人数超过10人,甲旅行社比较优惠,当学生人数10人之内,乙旅行社比较优惠,刚好10人,两个旅行社一样.23、【解答】解:(1)①∵t=1(秒),∴BP=CQ=3(厘米),∵AB=12,D为AB中点,∴BD=6(厘米)又∵PC=BC﹣BP=9﹣3=6(厘米),∴PC=BD,∵AB=AC,∴∠B=∠C,在△BPD与△CQP 中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t===1.5(秒),此时V Q ===4(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24(秒)此时P运动了24×3=72(厘米)又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.八年级下册期中测试卷(B 卷)说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟一、选择题:(每小题3分,共36分)1.(3分)若a <b ,则下列各不等式中一定成立的是( ) A .a ﹣1<b ﹣1B .﹣a <﹣bC .D .ac <bc2.(3分)下列标志既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(3分)下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣x+2=x (x ﹣1)+2C .x 2+2x ﹣1=(x ﹣1)2D .x 2﹣1=(x+1)(x ﹣1) 4.(3分)不等式2(x+1)<3x 的解集在数轴上表示出来应为( ) A .B .C .D .5.(3分)如图,将等腰直角三角形ABC 绕点A 逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为( ) A .B .C .D .6.(3分)如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE=2,则两平行线AD 与BC 间的距离为( ) A .4 B .5C .6D .77.(3分)如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则图中等腰三角形的个数有( ) A .1个 B .2个 C .3个 D .4个8.(3分)若关于x 的一元一次不等式组有解,则m 的取值范围是( )A .m ≥﹣8B .m ≤﹣8C .m >﹣8D .m <﹣8 9.(3分)到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 10.(3分)若x 2﹣mx+4是完全平方式,则m 的值为( ) A .2B .4C .±2D .±411.(3分)如图,△ABC 中,DE 是AC 的垂直平分线,AE=5cm ,△ABD 的周长为18cm ,则△ABC 的周长为( )A .23cmB .28cmC .13cmD .18cm12.(3分)如图,O 是等边△ABC 内一点,OA=6,OB=8,OC=10,以B 为旋转中心,将线段BO 逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC 绕点B 逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有( ) A .①②B .①②③C .①②④D .①②③④二、填空题(每小题3分,共12分)13.(3分)多项式3a 2b 2﹣6a 3b 3﹣12a 2b 2c 的公因式是 .14.(3分)若m ﹣n=3,mn=﹣2,则4m 2n ﹣4mn 2+1的值为 .15.(3分)已知函数y 1=k 1x+b 1与函数y 2=k 2x+b 2的图象如图所示,则不等式y 1<y 2的解集是 .16.(3分)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (3,0),B (0,4),则点B 80的坐标为 ,点B 81的坐标为 .学校 姓名 年级密 封 线 内 不 要 答 题密 封线三、解答题(本部分共7题,合计52分)17.(8分)分解因式:(1)a3﹣2a2b+ab2(2)x2(m﹣n)+y2(n﹣m)18.(4分)在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.19.(6分)解不等式组:.20.(7分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21.(8分)如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.22.(9分)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x 的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?23.(10分)如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB 方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.(1)求AB的长;(2)当t为多少时,△ABD的面积为6cm2?(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)密封线八年级下册期中测试卷(B卷)答案一、选择题1—5 AADDB 6—10 ACCBD 11-12 BB二、填空题13.3a2b2 14.﹣23 15. x<1 16.(480,4);(488,0)三、解答题17、【解答】解:(1)a3﹣2a2b+ab2=a(a2﹣2ab+b2)=a(a﹣b)2;(2)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x﹣y)(x+y).18、【解答】解:∵直线y=kx+3经过(2,7),∴2k+3=7,解得:k=2,∴2x﹣6≤0,解得:x≤3.19、【解答】解:,解①得x>1,解②得x≤4.则不等式组的解集是1<x≤4.20、【解答】解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).21、【解答】(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD,在△ACE和△BCD 中,,∴△ACE≌△BCD(SAS);(2)解:∵△ACE≌△BCD,∴∠CAE=∠B,AE=BD=8,∵∠CAB=∠B=45°,∴∠EAD=45°+45°=90°,在Rt△EAD中,由勾股定理得:ED===10.22、【解答】解:(1)设购买排球x个,购买篮球和排球的总费用y元,y=20x+80(100﹣x)=8000﹣60x;(2)设购买排球x个,则篮球的个数是(100﹣x),根据题意得:,解得:23≤x≤25,因为x是正整数,所以x只能取25,24,23,当买排球25个时,篮球的个数是75个,当买排球24个时,篮球的个数是76个,当买排球23个时,篮球的个数是77个,所以有3种购买方案.(3)根据(2)得:当买排球25个,篮球的个数是75个,总费用是:25×20+75×80=6500(元),当买排球24个,篮球的个数是76个,总费用是:24×20+76×80=6560(元),当买排球23个,篮球的个数是77个,总费用是:23×20+77×80=6620(元),所以采用买排球25个,篮球75个时更合算.23、【解答】解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴2AB2=BC2,∴AB==3cm;(2)过A作AF⊥BC交BC于点F,则AF=BC=3cm,∵S△ABD=6cm2,∴AF×BD=12,∴BD=4cm.若D在B点右侧,则CD=2cm,t=1s;若D在B点左侧,则CD=10cm,t=5s.(3)动点E从点C沿射线CM方向运动2秒或当动点E从点C沿射线CM的反向延长线方向运动6秒时,△ABD≌△ACE.理由如下:(说理过程简要说明即可)①当E在射线CM上时,D必在CB上,则需BD=CE.∵CE=t,BD=6﹣2t∴t=6﹣2t∴t=2(1分)证明:∵AB=AC,∠B=∠ACE=45°,BD=CE,∴△ABD≌△ACE.(1分)②当E在CM的反向延长线上时,D必在CB延长线上,则需BD=CE.∵CE=t,BD=2t﹣6∴t=2t﹣6∴t=6(1分)证明:∵AB=AC,∠ABD=∠ACE=135°,BD=CE∴△ABD≌△ACE.(1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大数学八年级下册期末测试题(6)
一、选择题
1.下面四个多项式中,能进行因式分解的是( ).
A.22yx B.yx2 C.12x D.12xx
2.要使分式21xx有意义,则x的取值应满足( ).
A.2x B.1x C.2x D.1x
3.如图1,在平行四边形ABCD中,下列结论中错误的是( ).
A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD
4.若yx,则下列式子中错误的是( ).
A.33yx B.33yx C.33yx D.yx33
5.下列图形中,不是中心对称图形的是( ).
6.若一个多边形的每一个外角都是40°,则这个多边形是( ).
A.六边形 B.八边形 C.九边形 D.十边形
7.下列命题的逆命题是真命题的是( ).
A.对顶角相等 B.全等三角形的面积相等
C.两直线平行,内错角相等 D.等边三角形是等腰三角形
8.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为( ).
A.7 B.8 C.6或8 D.7或8
9.如图2,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,
AC=5,则DE=( ).
A.1.5 B.3 C.4 D.5
10.直线1l:bxky1与xky22在同一平面直角坐标系中的图像如图3所示,则
关于x的不等式xkbxk21的解为( )
A.1x B.1x C.2x D.无法确定
二、填空题
11.计算:111mmm= .
12.不等式)2(382xx的解集为 .
13.如图4,在△ABC 中,点D、E分别是AB、AC的中点,∠B=70°,则∠ADE=_______度。
14.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标
是 .
15.已知3ba,4ab,则22abba的值为 .
16.如图5,在△ABC中,∠C=90°,AB=10,AD是△ABC
的一条角平分线,若CD=3,则△ABD的面积为_________.
三、解答题
17.分解因式:181222xx. 18.解不等式组)(13162223xxxx.
19..如图6,在平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E,F.
(1)写出图中所有全等的三角形;
(2)选择(1)中的任意一对进行证明。
图1
图3
图4
图5
图6
O
图
G
F
E
D
C
图
图2
B
A
EAB
C
D
20.解方程:123xx
21.如图7,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点
均在格点上,点C的坐标为(4,1)。
(1)把△ABC向上平移5个单位后得到对应的△111CBA,画出△111CBA;
(2)以原点O为对称中心,画出与△111CBA关于原点O对称的△222CBA。
22.如图,在平行四边形ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延
长线上,且BCCF21,求证:四边形OCFE是平行四边形。
23.化简求值:96623612xxxx,其中1x。
24.如图9,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长
AE交BC的延长线于点F.
求证:(1)FC=AD;
(2)AB=BC+AD.
25.某校为美化校园,计划对面积为18002m的区域进行绿化,安排甲、乙两个工程队完成。已知甲队每天能
完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为4002m区域的绿化时,甲队比乙
队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少2m?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,
至少应安排甲队工作多少天?
图7
图9
参考答案
一、选择题
1. C 2. A 3. D 4. D 5. B
6. C 7. C 8. D 9. A 10. B
二、填空题
11. 1 12. x≤2 13. 70 14. (1,5) 15. -12 16. 15
三、解答题
17. 解:原式=2(x2-6x+9)
=2(x-3)2.
18. 解:)1(3162223xxxx,
解得:14xx,
∴不等式组的解为-1≤x<4.
19.解:(1)①△ABD≌△CDB②△ABE≌△CDF③△AED≌△CFB;(2)①证明
△ABD≌△CDB.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=CB,
∵BD=DB,
∴△ABD≌△CDB.
②证明△ABE≌△CDF.
证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°.
∵ABCD是平行四边形,
∴AB∥CD且AB=CD.
∴∠ABE=∠CDF.
∴△ABE≌△CDF.
③证明△AED≌△CFB.
证明:∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°.
∵ABCD是平行四边形,
∴AD∥CB且AD=CB.
∴∠ADE=∠CBF.
∴△AED≌△CFB.
20. 解:去分母得3(x-1)=2x,
去括号得:3x-3=2x,
解得:x=3,
检验:当x=3时,x(x-1)≠0,
则原方程的解为x=3.
21. 解:根据平移定义和图形特征可得:①C
1
(4,4);
②C2(﹣4,﹣4)。
22. 证明:如图,∵四边形ABCD是平行四边形,
∴点O是BD的中点.
又∵点E是边CD的中点,
∴OE是△BCD的中位线,
∴OE∥BC,且OE=21BC.
又∵CF=21BC,
∴OE=CF.
又∵点F在BC的延长线上,
∴OE∥CF,
∴四边形OCFE是平行四边形.
23. 解:原式=23)3(2)3(3632xxxxx
当x=-1时,原式=2231
24.
证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
CEFAED
ECDE
BCFADC
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
25.解:(1)设乙工程队每天能完成绿化的面积是xm 2 ,根据题意得:42400400xx ,
解得:x=50经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m 2 ),
答:甲、乙两工程队每天能完成绿化的面积分别是100m 2 、50m 2 ;
(2)设至少应安排甲队工作x天,根据题意得:
0.4x+25.0501001800x ×0.25≤8,解得:x≥10,
答:至少应安排甲队工作10天.