二叉树 的概念
实验报告二叉树

递归遍历右子树输出根结点数data}void postOrder1 (struct btnode *bt){概念栈,结点参数p,prebt入栈While(栈或p是不是为空){提取栈顶元素值if判定p是不是为空或是pre的根结点输出根结点数data栈顶元素出栈栈顶元素p赋给pre记录else if右结点非空将右结点压栈if左结点将左结点压栈}}void main(){struct btnode *root=NULL;root=createbt(root);preOrder(root); midOrder(root); postOrder(root);preOrder1(root); midOrder1(root); postOrder1(root);
信息技术奥赛辅导树与二叉树

D. (k+1)/2
18
满二叉树和完全二叉树 一般应用顺序存储结构 进行数据的存储。
对于非满二叉树,会有 某些编号没有对应的结 点(通常称为“虚结 点”),通常可以用特 殊标记符号(例如:#) 表示虚结点,将树转换 为满二叉树进行存储。
a
b
c
d ef g
hi
j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 abcdef g###h##i j
现实世界中,能用树的结构表示的例子: 学校的行政关系(P31)、书的层次结构(P32)、人类的家 族血缘关系等。
2
例:下图是一个有13个结点的树,其中A是 根,其余结点为分三个互不相交的子集: T1={B,E,F,K,L} T2={F,G} T3={D,H,I,J,M} T1、T2和T3都是 根A的子树。
二叉树是一种很有用的非线性结构。
二叉树具有以下两个特点: (1)非空二叉树只有一个根结点; (2)每一个结点最多有两棵子树,且分别称
为该结点的左子树与右子树。
5
6 6
二叉树的性质:
性质1:在任意一棵二叉树中,度为0的结点(即
叶子结点)总是比度为2的结点多一个。
例子1:某二叉树中度为2的结点有18个,则该二 叉树中有 19 个叶子结点。
满二叉树是指除最后一层外,每一层上的所有结点都有
两个子结点。
完全二叉树是指这样的二叉树:除最后一层外,每一层
上的结点数均达到最大值;在最后一层上只缺少右边 的若干结点。 注意:满二叉树是完全二叉树,完全二叉树不一定是满 二叉树。
若一棵完全二叉树的结点数n为偶数,则叶子结点 数为结点数除以2(即:n/2),若结点数为奇数,则 叶子结点数为结点数加一再除以2(即:(n+1)/2) 10
完全二叉树节点和叶子节点关系

完全二叉树节点和叶子节点关系完全二叉树是一种特殊的二叉树,它的每一层都是满的,除了最后一层,最后一层的节点从左到右排列。
在完全二叉树中,节点和叶子节点之间有着特殊的关系,本文将从定义、性质和应用三个方面来探讨完全二叉树节点和叶子节点的关系。
一、定义完全二叉树是一种特殊的二叉树,它的每一层都是满的,除了最后一层,最后一层的节点从左到右排列。
完全二叉树的定义可以用递归的方式来描述:如果一棵二叉树为空,则它是一棵完全二叉树;如果一棵二叉树的左子树是一棵满二叉树,右子树是一棵完全二叉树,并且左子树的高度等于右子树的高度或者右子树的高度比左子树的高度少1,则这棵二叉树是一棵完全二叉树。
二、性质完全二叉树的节点和叶子节点之间有着特殊的关系,具体来说,完全二叉树的节点数为2^h-1,其中h为完全二叉树的高度。
叶子节点的数量为2^(h-1),也就是说,完全二叉树的叶子节点占据了整个树的一半以上。
完全二叉树的节点和叶子节点之间还有一个重要的性质,就是叶子节点的编号从1到2^(h-1)连续排列,而非叶子节点的编号从2^(h-1)+1到2^h-1连续排列。
这个性质在完全二叉树的应用中非常重要,可以用来快速定位节点和叶子节点的位置。
三、应用完全二叉树的节点和叶子节点关系在算法和数据结构中有着广泛的应用。
其中最常见的应用是堆,堆是一种特殊的完全二叉树,它有两种形式:最大堆和最小堆。
最大堆的每个节点都大于等于它的子节点,最小堆的每个节点都小于等于它的子节点。
堆的应用非常广泛,比如在排序算法中,堆排序是一种高效的排序算法,它的时间复杂度为O(nlogn)。
除了堆之外,完全二叉树的节点和叶子节点关系还可以用来实现哈夫曼树,哈夫曼树是一种用于数据压缩的树形结构,它的叶子节点代表着数据中的字符,而非叶子节点代表着字符出现的频率。
哈夫曼树的构建过程中需要用到完全二叉树的节点和叶子节点关系,可以快速定位叶子节点的位置,从而实现高效的数据压缩。
树与二叉树h

SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:
根
A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:
根
A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。
详解平衡二叉树

一、平衡二叉树的概念平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:(1)左右子树深度之差的绝对值不超过1;(2)左右子树仍然为平衡二叉树.平衡因子BF=左子树深度-右子树深度.平衡二叉树每个结点的平衡因子只能是1,0,-1。
若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:二、平衡二叉树算法思想若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。
首先要找出插入新结点后失去平衡的最小子树根结点的指针。
然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。
当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。
假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
1)LL型平衡旋转法由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行一次顺时针旋转操作。
即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。
而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。
故需进行一次逆时针旋转操作。
即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。
而原来C的左子树则变成A的右子树。
(3)LR型平衡旋转法由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。
故需进行两次旋转操作(先逆时针,后顺时针)。
即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。
二叉树

我们也可以把递归过程改成用栈实现的非递归过程,下面给出先序 遍历的非递归过程: procedure inorder(bt:tree); var stack:array[1..n] of tree; {栈} top:integer; {栈顶指针} p:tree; begin top:=0; while not ((bt=nil)and(top=0)) do begin
• ⑴如果i=1,则结点i为根,无父结点;如果i>1,则其 父结点编号为trunc(i/2)。 • ⑵如果2*i>n,则结点i为叶结点;否则左孩子编号为 2*i。 • ⑶如果2*i+1>n,则结点i无右孩子;否则右孩子编号 为2*i+1。
存储结构
• 二叉树的存储结构和普通树的存储结构基本相同,有链 式和顺序存储两种方法。 • ⑴链式存储结构:有单链表结构或双链表结构,基本数 据结构定义如下: type tree=^node;{单链表结构} node=record data:char;{数据域} lchild,rchild:tree;{指针域:分别指向左、右孩子} end; var bt:tree;
• 输入: • 其中第一行一个整数n,表示树的结点数。接下来的n行 每行描述了一个结点的状况,包含了三个整数,整数之 间用空格分隔,其中:第一个数为居民人口数;第二个 数为左链接,为0表示无链接;第三个数为右链接。 • 输出: • 只有一个整数,表示最小距离和。
• • • • • • • •
样例 输入: 5 13 2 3 4 0 0 12 4 5 20 0 0 40 0 0
2、删除二叉树 procedure dis(var bt:tree); begin if bt<>nil then begin dis(bt^.lchild); dis(bt^.rchild); dispose(bt); end; end;
第7章树和二叉树(2)-数据结构教程(Java语言描述)-李春葆-清华大学出版社

二叉树也称为二分树,它是有限的结点集合,这个集合或者是空,或者由 一个根结点和两棵互不相交的称为左子树和右子树的二叉树组成。 二叉树中许多概念与树中的概念相同。 在含n个结点的二叉树中,所有结点的度小于等于2,通常用n0表示叶子结 点个数,n1表示单分支结点个数,n2表示双分支结与度为2的树是不同的。
度为2的树至少有3个结点,而二叉树的结点数可以为0。 度为2的树不区分子树的次序,而二叉树中的每个结点最多有 两个孩子结点,且必须要区分左右子树,即使在结点只有一棵 子树的情况下也要明确指出该子树是左子树还是右子树。
2/35
归纳起来,二叉树的5种形态:
Ø
4/35
3. 满二叉树和完全二叉树
在一棵二叉树中,如果所有分支结点都有左孩子结点和右孩子结点,并且 叶子结点都集中在二叉树的最下一层,这样的二叉树称为满二叉树。
可以对满二叉树的结点进行层序编号,约定编号从树根为1开始,按照层 数从小到大、同一层从左到右的次序进行。
满二叉树也可以从结点个数和树高度之间的关系来定义,即一棵高度为h 且有2h-1个结点的二叉树称为满二叉树。
R={r} r={<ai,aj> | ai,aj∈D, 1≤i,j≤n,当n=0时,称为空二叉树;否则其中
有一个根结点,其他结点构成根结点的互不相交的左、右子树,该 左、右两棵子树也是二叉树 } 基本运算: void CreateBTree(string str):根据二叉树的括号表示串建立其存储结构。 String toString():返回由二叉树树转换的括号表示串。 BTNode FindNode(x):在二叉树中查找值为x的结点。 int Height():求二叉树的高度。 … }
5
E
树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树的概念
二叉树的概念
二叉树是一种数据结构,它由节点和边组成,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。
这些子节点可以为空或者被填充。
二叉树的特点是每个节点最多有两个子节点,并且每个子节点都是唯一的。
1. 基本概念
1.1 节点
一个二叉树中的每个元素称为一个节点。
每个节点都具有一个值和两个指针,分别指向其左子树和右子树。
1.2 根节点
二叉树中最顶层的节点被称为根。
它没有父亲,但它可以有零、一个或两个孩子。
1.3 叶子结点
没有任何孩子的结点被称为叶子结点。
1.4 父亲结点
如果一个结点有孩子,则该结点被称为其孩子的父亲结点。
1.5 子结点
如果一个结点有父亲,则该结点被称为其父亲的孩子。
2. 二叉树分类
2.1 完全二叉树
完全二叉树是指除了最后一层外,其他所有层都必须填满,并且所有元素都尽可能地向左靠拢。
最后一层可以填充到左侧或右侧。
2.2 满二叉树
满二叉树是指每个节点都有两个子节点,除了最后一层外,其他所有层都必须填满,并且所有元素都尽可能地向左靠拢。
最后一层必须填充到左侧。
2.3 平衡二叉树
平衡二叉树是指任意节点的两个子树的高度差不超过1的二叉树。
2.4 二叉查找树
二叉查找树是一种特殊的二叉树,它具有以下特点:
- 左子树中的所有节点小于父节点。
- 右子树中的所有节点大于父节点。
- 左右子树也分别为二叉查找树。
3. 二叉树遍历
3.1 前序遍历
前序遍历是指先访问当前节点,然后访问其左子树和右子树。
具体步骤如下:
- 访问当前节点。
- 前序遍历左子树。
- 前序遍历右子树。
3.2 中序遍历
中序遍历是指先访问当前节点的左子树,然后访问当前节点,最后访
问其右子树。
具体步骤如下:
- 中序遍历左子树。
- 访问当前节点。
- 中序遍历右子树。
3.3 后序遍历
后序遍历是指先访问当前节点的左子树和右子树,最后访问当前节点。
具体步骤如下:
- 后序遍历左子树。
- 后序遍历右子树。
- 访问当前节点。
4. 二叉树的应用
4.1 排序
二叉查找树可以用来进行排序操作。
将数据插入到二叉查找树中,并
按照中序遍历输出,即可得到有序的结果。
4.2 表达式求值
表达式可以转换成二叉表达式树,然后通过后续遍历计算表达式的值。
4.3 路径查找
二叉查找树可以用来进行路径查找操作。
在二叉查找树中搜索特定值时,从父节点到目标节点的路径可以被记录下来。
5. 总结
二叉树是一种重要的数据结构,在计算机科学中有广泛的应用。
它具
有简单、高效、灵活等优点,在各种算法和数据处理任务中都有着广
泛的应用前景。
掌握二叉树相关知识,对于计算机科学领域的从业者
和学习者来说都是非常重要的。