高考数学一轮复习 第九章 平面解析几何 第43课 直线的方程教师用书
高考数学一轮复习 第九章 平面解析几何 第1讲 直线的倾斜角与斜率、直线的方程课件 理

12/11/2021
第二十六页,共五十页。
(2)由题设知纵横截距不为 0,设直线方程为xa+12-y a=1, 又直线过点(-3,4),从而-a3+124-a=1,解得 a=-4 或 a=9. 故所求直线方程为 4x-y+16=0 或 x+3y-9=0. (3)当斜率不存在时,所求直线方程为 x-5=0 满足题意; 当斜率存在时,设其为 k,则所求直线方程为 y-10=k(x-5),即 kx-y+10-5k=0. 由点线距离公式,得|10k-2+5k1|=5,解得 k=34. 故所求直线方程为 3x-4y+25=0. 综上12,/11/2所021 求直线方程为 x-5=0 或 3x-4y+25=0.
12/11/2021
第十八页,共五十页。
【迁移探究 1】 (变条件)若将本例(2)中 P(1,0)改为 P(-1,0),其他条件不变,求直
线 l 斜率的取值范围. 解:因为 P(-1,0),A(2,1),B(0, 3),所以 kAP=2-(1--01)=13,
kBP=0-(3--01)= 3.
如图可知,直线 l 斜率的取值范围为13,
12/11/2021
第二十五页,共五十页。
【解】 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为 α,则 sin α= 1100(0≤α<π), 从而 cos α=±31010,则 k=tan α=±13. 故所求直线方程为 y=±13(x+4), 即 x+3y+4=0 或 x-3y+4=0.
3.
12/11/2021
第十九页,共五十页。
【迁移探究 2】 (变条件)若将本例(2)中的 B 点坐标改为(2,-1),其他条件不变,求 直线 l 倾斜角的范围. 解:如图,直线 PA 的倾斜角为 45°,直线 PB 的倾斜角为 135°,由图象知 l 的倾斜角 的范围为[0°,45°]∪[135°,180°).
高考数学一轮复习 第九章 平面解析几何 第1节 直线的方程教学案(含解析)新人教A版-新人教A版高三

第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②假设直线的方向向量为a =(x ,y )(x ≠0),那么直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件斜截式 纵截距、斜率 y =kx +b与x 轴不垂直的直线点斜式过一点、斜率y -y 0=k (x -x 0) 两点式 过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均不垂直的直线一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距〞是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离〞是一个非负数.诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,那么其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,那么其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)假设过两点A (-m ,6),B (1,3m )的直线的斜率为12,那么直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)假设方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),那么应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·西安调研)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,那么tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·昆明诊断)直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a=1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案4x-y+16=0考点一直线的倾斜角与斜率典例迁移[例1] (一题多解)(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,那么直线l斜率的取值范围为________.解析法一设PA与PB的倾斜角分别为α,β,直线PA的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,那么直线l的方程为y=k(x-1),即kx-y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值范围是(-∞,-3]∪[1,+∞).答案(-∞,-3]∪[1,+∞)[迁移1] 假设将例1中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围. 解设直线l的斜率为k,那么直线l的方程为y=k(x+1),即kx-y+k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1+k)(-3+k)≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3. [迁移2] 假设将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.[训练1] 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,那么( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法[例2] 求适合以下条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,那么tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 那么直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 那么可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.那么直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.那么直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(假设采用点斜式,应先考虑斜率不存在的情况;假设采用截距式,应判断截距是否为零).[训练2] (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,那么-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题[例3-1] k ∈R ,写出以下动直线所过的定点坐标: (1)假设直线方程为y =kx +3,那么直线过定点________; (2)假设直线方程为y =kx +3k ,那么直线过定点________; (3)假设直线方程为x =ky +3,那么直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定〞.角度2 与直线方程有关的多边形面积的最值问题[例3-2] 直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或范围.注意点在直线上,那么点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.[训练3] 直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)假设直线不经过第四象限,求k 的取值范围;(3)假设直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,那么必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·〔1+2k 〕2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=〞成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·安阳模拟)假设平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,那么a =( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0 解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·广东七校联考)假设过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值范围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1D.y =2解析 直线y =-x -1的倾斜角为3π4,那么所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,那么直线l 的方程为( )A.y =3x +2B.y =3x -2C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2. 答案 A6.(2020·湖北四地七校联考)函数f (x )=a sin x -b cos x (a ≠0,b ≠0),假设f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,那么直线ax -by +c =0的倾斜角为( )A.π4 B.π3C.2π3D.3π4解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,应选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,那么有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,那么点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),那么在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,那么0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,那么直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.三角形的三个顶点A (-5,0),B (3,-3),C (0,2),那么BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,那么b 的取值范围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案 [-2,2]12.假设经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,那么y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·湖南长郡中学月考)点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,那么直线l 的倾斜角的取值范围是( ) A.⎝⎛⎭⎪⎫π4,π3B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的范围是[0,π),所以直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫23π,34π,应选D.答案 D14.(2020·兰州模拟)假设直线ax +by +c =0同时要经过第一、二、四象限,那么a ,b ,c 应满足( ) A.ab >0,bc <0 B.ab >0,bc >0 C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,那么直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-a b <0,-cb >0,所以ab >0,bc <0.答案 A15.数列{a n }的通项公式为a n =1n 〔n +1〕(n ∈N *),其前n 项和S n =910,那么直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n 〔n +1〕可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),那么A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,那么S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2〔-18k 〕·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),直线l 的方程为ax +y +2=0,那么直线l 过定点________,假设直线l 与线段AB 没有交点,那么实数a 的取值范围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-〔-2〕-2-0=-52,k MB =2-〔-2〕3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝ ⎛⎭⎪⎫-43,52。
2020高考数学大一轮复习第九章平面解析几何9-2两条直线的位置关系教师用书

【2019最新】精选高考数学大一轮复习第九章平面解析几何9-2两条直线的位置关系教师用书1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2. (ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.(2)两条直线的交点直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解.2.几种距离(1)两点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=.(2)点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.(3)两条平行线Ax+By+C1=0与Ax+By+C2=0(其中C1≠C2)间的距离d=.【知识拓展】1.一般地,与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0(m≠C);与之垂直的直线方程可设为Bx-Ay+n=0.2.过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x +B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.3.点到直线与两平行线间的距离的使用条件:(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.(×)(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.( ×)(3)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.( √)(4)点P(x0,y0)到直线y=kx+b的距离为.( ×)(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √)(6)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-,且线段AB 的中点在直线l上.( √)1.(2016·天津模拟)过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0答案A解析直线x-2y-2=0可化为y=x-1,所以过点(1,0)且与直线x-2y-2=0平行的直线方程可设为y=x+b,将点(1,0)代入得b=-.所以所求直线方程为x-2y-1=0.2.(教材改编)已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于( ) A. B.2- 2C.-1D.+1答案C解析依题意得=1.解得a=-1+或a=-1-.∵a>0,∴a=-1+.3.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0 B.x-y+2=0C.x+y-3=0 D.x-y+3=0答案D解析圆x2+(y-3)2=4的圆心为点(0,3),又因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l:y-3=x-0,化简得x-y+3=0.4.(2017·绍兴柯桥区质检)设直线l1:(a+1)x+3y+2=0,直线l2:x+2y+1=0,若l1∥l2,则a=________,若l1⊥l2,则a=________.答案-7解析若l1∥l2,则a+1=,∴a=,若l1⊥l2,则(a+1)+6=0,∴a=-7.题型一两条直线的平行与垂直例1 (1)(2016·杭州质检二)设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0.则“m=2”是“l1∥l2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C解析当m=2时,代入两直线方程中,易知两直线平行,即充分性成立.当l1∥l2时,显然m≠0,从而有=m-1,解得m=2或m=-1,但当m=-1时,两直线重合,不合要求,故必要性成立,故选C.(2)已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0.①试判断l1与l2是否平行;②当l1⊥l2时,求a的值.解①方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2;当a=0时,l1:y=-3,l2:x-y-1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y=-x-3,l2:y=x-(a+1),l1∥l2⇔解得a=-1,综上可知,a=-1时,l1∥l2.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2⇔⎩⎪⎨⎪⎧--1×2=0,--1×6≠0,⇔⇒a =-1,故当a =-1时,l1∥l2.②方法一 当a =1时,l1:x +2y +6=0,l2:x =0,l1与l2不垂直,故a =1不成立;当a =0时,l1:y =-3,l2:x -y -1=0,l1不垂直于l2; 当a≠1且a≠0时,l1:y =-x -3,l2:y =x -(a +1),由(-)·=-1⇒a =.方法二 由A1A2+B1B2=0,得a +2(a -1)=0⇒a =.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l1:x +ysin α-1=0和l2:2x·sin α+y +1=0,求α的值,使得: (1)l1∥l2; (2)l1⊥l2.解 (1)方法一 当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k1=-,k2=-2sin α.要使l1∥l2,需-=-2sin α,即sin α=±. 所以α=k π±,k∈Z,此时两直线的斜率相等. 故当α=k π±,k∈Z 时,l1∥l2.方法二 由A1B2-A2B1=0,得2sin2α-1=0, 所以sin α=±,所以α=k π±,k∈Z.又B1C2-B2C1≠0,所以1+sin α≠0,即sin α≠-1. 故当α=k π±,k∈Z 时,l1∥l2.(2)因为A1A2+B1B2=0是l1⊥l2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k∈Z. 故当α=k π,k∈Z 时,l1⊥l2. 题型二 两条直线的交点与距离问题例2 (1)(2016·长沙模拟)求经过两条直线l1:x +y -4=0和l2:x -y +2=0的交点,且与直线2x -y -1=0垂直的直线方程为________________.(2)直线l 过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l 的方程为________________.答案 (1)x +2y -7=0 (2)x +3y -5=0或x =-1 解析(1)由得⎩⎪⎨⎪⎧x =1,y =3,∴l1与l2的交点坐标为(1,3).设与直线2x -y -1=0垂直的直线方程为x +2y +c =0, 则1+2×3+c =0,∴c=-7. ∴所求直线方程为x +2y -7=0.(2)方法一 当直线l 的斜率存在时,设直线l 的方程为y-2=k(x+1),即kx-y+k+2=0.由题意知=,即|3k-1|=|-3k-3|,∴k=-.∴直线l的方程为y-2=-(x+1),即x+3y-5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.故所求直线l的方程为x+3y-5=0或x=-1.方法二当AB∥l时,有k=kAB=-,直线l的方程为y-2=-(x+1),即x+3y-5=0.当l过AB的中点时,AB的中点为(-1,4).∴直线l的方程为x=-1.故所求直线l的方程为x+3y-5=0或x=-1.思维升华(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.(1)如图,设一直线过点(-1,1),它被两平行直线l1:x+2y-1=0,l2:x +2y-3=0所截的线段的中点在直线l3:x-y-1=0上,求其方程.解与l1、l2平行且距离相等的直线方程为x+2y-2=0.设所求直线方程为(x+2y-2)+λ(x-y-1)=0,即(1+λ)x+(2-λ)y-2-λ=0.又直线过(-1,1),∴(1+λ)(-1)+(2-λ)·1-2-λ=0.解得λ=-.∴所求直线方程为2x+7y-5=0.(2)(2016·济南模拟)若动点P1(x1,y1),P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,则P1P2的中点P到原点的距离的最小值是( )A. B.5 C. D.15 2答案B解析设P1P2的中点为P(x,y),则x=,y=.∵x1-y1-5=0,x2-y2-15=0.∴(x1+x2)-(y1+y2)=20,即x-y=10.∴y=x-10,∴P(x,x-10),∴P到原点的距离d=x2+-=≥=5.题型三对称问题命题点1 点关于点中心对称例3 (2016·苏州模拟)过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x -3y+10=0截得的线段被点P平分,则直线l的方程为________________.答案x+4y-4=0解析设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a -6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.命题点2 点关于直线对称例4 如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A .3 B .6 C .2 D .2 5答案 C解析 直线AB 的方程为x +y =4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0).则光线经过的路程为|CD|==2. 命题点3 直线关于直线的对称问题例5 (2016·泰安模拟)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程.解 在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上.设对称点M′(a,b),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M′.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N(4,3).又∵m′经过点N(4,3).∴由两点式得直线m′的方程为9x -46y +102=0.2019年思维升华 解决对称问题的方法 (1)中心对称①点P(x ,y)关于Q(a ,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧x′=2a -x ,y′=2b -y.②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A(a ,b)关于直线Ax +By +C =0(B≠0)的对称点A′(m ,n),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A·a +m 2+B·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.已知直线l :3x -y +3=0,求:(1)点P(4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 设P(x ,y)关于直线l :3x -y +3=0的对称点为P′(x′,y′), ∵kPP′·kl=-1,即×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×-+3=0.②由①②得⎩⎪⎨⎪⎧x′=-4x +3y -95,③y′=3x +4y +35. ④(1)把x =4,y =5代入③④得x′=-2,y′=7, ∴P(4,5)关于直线l 的对称点P′的坐标为(-2,7).(2)用③④分别代换x-y-2=0中的x,y,得关于l的对称直线方程为--2=0,化简得7x+y+22=0.(3)在直线l:3x-y+3=0上取点M(0,3)关于(1,2)的对称点M′(x′,y′),∴=1,x′=2,=2,y′=1,∴M′(2,1).l关于(1,2)的对称直线平行于l,∴k=3,∴对称直线方程为y-1=3×(x-2),即3x-y-5=0.22.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.思想方法指导因为所求直线与3x+4y+1=0平行,因此,可设该直线方程为3x+4y +c=0(c≠1).规范解答解依题意,设所求直线方程为3x+4y+c=0(c≠1),又因为直线过点(1,2),所以3×1+4×2+c=0,解得c=-11.因此,所求直线方程为3x+4y-11=0.二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0.因此,当两直线垂直时,它们的一次项系数有必要的关系.可以考虑用直线系方程求解.典例2 求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.思想方法指导依据两直线垂直的特征设出方程,再由待定系数法求解.规范解答解因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x-2y+C1=0,又直线过点(2,1),所以有2-2×1+C1=0,解得C1=0,即所求直线方程为x-2y=0.三、过直线交点的直线系典例3 求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.思想方法指导可分别求出直线l1与l2的交点及直线l的斜率k,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解.规范解答解方法一解方程组得P(0,2).因为l3的斜率为,且l⊥l3,所以直线l的斜率为-,由斜截式可知l的方程为y=-x+2,即4x+3y-6=0.方法二设直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0.又∵l⊥l3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l的方程为4x+3y-6=0.1.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A解析(1)充分性:当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0平行;(2)必要性:当直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行时有a=-2或1.所以“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件,故选A.2.(2016·台州模拟)已知两条直线l1:x+y-1=0,l2:3x+ay+2=0且l1⊥l2,则a等于( )A.- B. C.-3 D.3答案C解析由l1⊥l2,可得1×3+1×a=0,∴a=-3.3.(2016·山东省实验中学质检)从点(2,3)射出的光线沿与向量a=(8,4)平行的直线射到y轴上,则反射光线所在的直线方程为( )A.x+2y-4=0 B.2x+y-1=0C.x+6y-16=0 D.6x+y-8=0答案A解析由直线与向量a=(8,4)平行知:过点(2,3)的直线的斜率k=,所以直线的方程为y-3=(x-2),其与y轴的交点坐标为(0,2),又点(2,3)关于y轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A正确.4.(2016·兰州模拟)一只虫子从点O(0,0)出发,先爬行到直线l:x-y+1=0上的P 点,再从P点出发爬行到点A(1,1),则虫子爬行的最短路程是( )A. B.2 C.3 D.4答案B解析点O(0,0)关于直线x-y+1=0的对称点为O′(-1,1),则虫子爬行的最短路程为|O′A|==2.故选B.5.(2016·绵阳模拟)若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则|PQ|的最小值为( )A. B. C. D.295答案C解析因为=≠,所以两直线平行,由题意可知|PQ|的最小值为这两条平行直线间的距离,即=,所以|PQ|的最小值为,故选C.6.(2016·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n等于( )A. B. C. D.323答案A解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,于是⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n =,故选A.7.(2016·舟山训练)已知两直线l1:ax -by +4=0和l2:(a -1)x +y +b =0,若l1∥l2,且坐标原点到这两条直线的距离相等,则a +b =________.答案 0或83解析 由题意得⎩⎪⎨⎪⎧ a +-=0,4a2+-=|b|-+1.解得或经检验,两种情况均符合题意,∴a+b 的值为0或.8.已知直线l1:ax +y -1=0,直线l2:x -y -3=0,若直线l1的倾斜角为,则a =________;若l1⊥l2,则a =________;若l1∥l2,则两平行直线间的距离为________. 答案 -1 1 2 2解析 若直线l1的倾斜角为,则-a =k =tan =1,故a =-1;若l1⊥l2,则a×1+1×(-1)=0,故a =1;若l1∥l2,则a =-1,l1:x -y +1=0,两平行直线间的距离d ==2.9.点P(2,1)到直线l :mx -y -3=0(m∈R)的最大距离是________.答案 2 5解析 直线l 经过定点Q(0,-3),如图所示,由图知,当PQ⊥l 时,点P(2,1)到直线l 的距离取得最大值|PQ|==2,所以点P(2,1)到直线l的最大距离为2.10.(2016·重庆模拟)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.答案(2,4)解析如图,设平面直角坐标系中任一点P,P到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和为|PA|+|PB|+|PC|+|PD|=|PB|+|PD|+|PA|+|PC|≥|BD|+|AC|=|QA|+|QB|+|QC|+|QD|,故四边形ABCD对角线的交点Q即为所求距离之和最小的点.∵A(1,2),B(1,5),C(3,6),D(7,-1),∴直线AC的方程为y-2=2(x-1),直线BD的方程为y-5=-(x-1).由得Q(2,4).11.已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解(1)∵l1⊥l2,∴a(a-1)-b=0,又∵直线l1过点(-3,-1),∴-3a+b+4=0.故a=2,b=2.(2)∵直线l2的斜率存在,l1∥l2,∴直线l1的斜率存在.∴k1=k2,即=1-a.又∵坐标原点到这两条直线的距离相等,∴l1,l2在y轴上的截距互为相反数,即=b.故a=2,b=-2或a=,b=2.12.(2016·北京××区模拟)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.解依题意知:kAC=-2,A(5,1),∴lAC为2x+y-11=0,联立lAC、lCM得∴C(4,3).设B(x0,y0),AB的中点M为(,),代入2x-y-5=0,得2x0-y0-1=0,∴∴B(-1,-3),∴kBC=,∴直线BC的方程为y-3=(x-4),即6x-5y-9=0.*13.已知三条直线:l1:2x-y+a=0(a>0);l2:-4x+2y+1=0;l3:x+y-1=0,且l1与l2间的距离是.(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:①点P在第一象限;②点P到l1的距离是点P到l2的距离的;③点P到l1的距离与点P到l3的距离之比是∶.若能,求点P的坐标;若不能,说明理由.解(1)直线l2:2x-y-=0,所以两条平行线l1与l2间的距离为d==,所以=,即=,又a>0,解得a=3.(2)假设存在点P ,设点P(x0,y0).若点P 满足条件②,则点P 在与l1,l2平行的直线l′:2x -y +c =0上,且=×,即c =或,所以直线l′的方程为2x0-y0+=0或2x0-y0+=0; 若点P 满足条件③,由点到直线的距离公式,有=×,即|2x0-y0+3|=|x0+y0-1|,所以x0-2y0+4=0或3x0+2=0;由于点P 在第一象限,所以3x0+2=0不可能. 联立方程2x0-y0+=0和x0-2y0+4=0,解得(舍去);联立方程2x0-y0+=0和x0-2y0+4=0,解得⎩⎪⎨⎪⎧ x0=19,y0=3718.所以存在点P 同时满足三个条件.。
高考数学大一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书 理 新人教版(

2018版高考数学大一轮复习第九章平面解析几何9.4 直线与圆、圆与圆的位置关系教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.4 直线与圆、圆与圆的位置关系教师用书理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.4 直线与圆、圆与圆的位置关系教师用书理新人教版的全部内容。
第九章平面解析几何 9。
4 直线与圆、圆与圆的位置关系教师用书理新人教版1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:错误!错误!2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1>0),圆O2:(x-a2)2+(y-b2)2=r错误!(r2>0).方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|<d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d<|r1-r2|(r1≠r2)无解【知识拓展】1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2。
高考数学大一轮复习 第九章 平面解析几何 第1讲 直线的倾斜角与斜率、直线的方程课件

又高线经过点 A,所以其直线方程为 x-y+2=0.
12/11/2021
第三十二页,共四十六页。
2.过点 M(-1,-2)作一条直线 l,使得 l 夹在两坐标轴之间 的线段被点 M 平分,则直线 l 的方程为________. 解析:由题意,可设所求直线 l 的方程为 y+2=k(x+1)(k≠0), 直线 l 与 x 轴、y 轴分别交于 A、B 两点,则 A2k-1,0,B(0, k-2).因为 AB 的中点为 M,所以-2=2k-1,解得 k=-2.
12/11/2021
第二十六页,共四十六页。
【解析】 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为 α,则 sin α= 1100(0<α<π), 从而 cos α=±31010,则 k=tan α=±13. 故所求直线方程为 y=±13(x+4).即直线方程为 x+3y+4=0 或 x-3y+4=0.
椭 圆 性质.
会解决直线与椭圆的位置关系的问题.
12/11/2021
第三页,共四十六页。
第九章 平面(píngmiàn)解析几何
知识点
考纲下载
了解双曲线的定义、标准方程、几何图形及简单几何性 双曲线
质,了解直线与双曲线的位置关系.
掌握抛物线的定义、标准方程、几何图形及简单几
抛物线 何性质.
会解决直线与抛物线的位置关系的问题.
12/11/2021
第二十二页,共四十六页。
[提醒] 求倾斜角时要注意斜率是否存在. (2)斜率的求法 ①定义法:若已知直线的倾斜角 α 或 α 的某种三角函数值,一 般根据 k=tan α 求斜率. ②公式法:若已知直线上两点 A(x1,y1),B(x2,y2),一般根据 斜率公式 k=xy22--xy11(x1≠x2)求斜率.
高考数学大复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书(2021年整理)

圆、圆与圆的位置关系教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高考数学大一轮复习第九章平面解析几何9.4 直线与圆、圆与圆的位置关系教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高考数学大一轮复习第九章平面解析几何9.4 直线与圆、圆与圆的位置关系教师用书的全部内容。
线与圆、圆与圆的位置关系教师用书1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.d〈r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:错误!错误!2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1>0),圆O2:(x-a2)2+(y-b2)2=r错误!(r2〉0)。
错误!几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离d〉r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|〈d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d〈|r1-r2|(r1≠r2)无解【知识拓展】1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2。
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2。
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2。
2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×)(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)1.(教材改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是( )A.相切B.相交但直线不过圆心C.相交过圆心D.相离答案B解析由题意知圆心(1,-2)到直线2x+y-5=0的距离d=错误!=错误!〈错误!且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国甲卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a 等于()A.-错误! B.-错误! C。
新高考数学大一轮复习第九章平面解析几何9-2两条直线的位置关系教师用书
新高考数学大一轮复习第九章平面解析几何9-2两条直线的位置关系教师用书1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2.(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.(2)两条直线的交点直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1与l2的交点坐标就是方程组的解.2.几种距离(1)两点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=.(2)点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.(3)两条平行线Ax+By+C1=0与Ax+By+C2=0(其中C1≠C2)间的距离d=.【知识拓展】1.一般地,与直线Ax+By+C=0平行的直线方程可设为Ax+By+m =0(m≠C);与之垂直的直线方程可设为Bx-Ay+n=0.2.过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.3.点到直线与两平行线间的距离的使用条件:(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.(×)(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.( ×)(3)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.( √)(4)点P(x0,y0)到直线y=kx+b的距离为.( ×)(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( √)(6)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-,且线段AB的中点在直线l上.( √)1.(2016·天津模拟)过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=0答案A解析直线x-2y-2=0可化为y=x-1,所以过点(1,0)且与直线x-2y-2=0平行的直线方程可设为y=x+b,将点(1,0)代入得b=-.所以所求直线方程为x-2y-1=0.2.(教材改编)已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于( )A. B.2- 2C.-1D.+1答案C解析依题意得=1.解得a=-1+或a=-1-.∵a>0,∴a=-1+.3.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0 B.x-y+2=0C.x+y-3=0 D.x-y+3=0答案D解析圆x2+(y-3)2=4的圆心为点(0,3),又因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l:y-3=x-0,化简得x-y+3=0. 4.(2017·绍兴柯桥区质检)设直线l1:(a+1)x+3y+2=0,直线l2:x+2y+1=0,若l1∥l2,则a=________,若l1⊥l2,则a=________.答案-7解析若l1∥l2,则a+1=,∴a=,若l1⊥l2,则(a+1)+6=0,∴a=-7.题型一两条直线的平行与垂直例1 (1)(2016·杭州质检二)设不同直线l1:2x-my-1=0,l2:(m -1)x-y+1=0.则“m=2”是“l1∥l2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C解析当m=2时,代入两直线方程中,易知两直线平行,即充分性成立.当l1∥l2时,显然m≠0,从而有=m-1,解得m=2或m=-1,但当m=-1时,两直线重合,不合要求,故必要性成立,故选C.(2)已知直线l1:ax +2y +6=0和直线l2:x +(a -1)y +a2-1=0. ①试判断l1与l2是否平行;②当l1⊥l2时,求a 的值.解 ①方法一 当a =1时,l1:x +2y +6=0,l2:x =0,l1不平行于l2;当a =0时,l1:y =-3,l2:x -y -1=0,l1不平行于l2;当a≠1且a≠0时,两直线可化为l1:y =-x -3,l2:y =x -(a +1),l1∥l2⇔解得a =-1,综上可知,a =-1时,l1∥l2.方法二 由A1B2-A2B1=0,得a(a -1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2⇔⎩⎪⎨⎪⎧ --1×2=0,--1×6≠0,⇔⇒a =-1,故当a =-1时,l1∥l2.②方法一 当a =1时,l1:x +2y +6=0,l2:x =0,l1与l2不垂直,故a =1不成立;当a =0时,l1:y =-3,l2:x -y -1=0,l1不垂直于l2; 当a≠1且a≠0时,l1:y=-x-3,l2:y=x-(a+1),由(-)·=-1⇒a=.方法二由A1A2+B1B2=0,得a+2(a-1)=0⇒a=.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.已知两直线l1:x+ysin α-1=0和l2:2x·sin α+y +1=0,求α的值,使得:(1)l1∥l2;(2)l1⊥l2.解(1)方法一当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k1=-,k2=-2sin α.要使l1∥l2,需-=-2sin α,即sin α=±.所以α=kπ±,k∈Z,此时两直线的斜率相等.故当α=kπ±,k∈Z时,l1∥l2.方法二由A1B2-A2B1=0,得2sin2α-1=0,所以sin α=±,所以α=kπ±,k∈Z.又B1C2-B2C1≠0,所以1+sin α≠0,即sin α≠-1.故当α=kπ±,k∈Z时,l1∥l2.(2)因为A1A2+B1B2=0是l1⊥l2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k∈Z. 故当α=k π,k∈Z 时,l1⊥l2.题型二 两条直线的交点与距离问题例2 (1)(2016·长沙模拟)求经过两条直线l1:x +y -4=0和l2:x -y +2=0的交点,且与直线2x -y -1=0垂直的直线方程为________________.(2)直线l 过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l 的方程为________________.答案 (1)x +2y -7=0 (2)x +3y -5=0或x =-1解析 (1)由得⎩⎪⎨⎪⎧ x =1,y =3,∴l1与l2的交点坐标为(1,3).设与直线2x -y -1=0垂直的直线方程为x +2y +c =0,则1+2×3+c =0,∴c=-7.∴所求直线方程为x +2y -7=0.(2)方法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k(x +1),即kx -y +k +2=0.由题意知=,即|3k -1|=|-3k -3|,∴k=-.∴直线l 的方程为y -2=-(x +1),即x +3y -5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.故所求直线l的方程为x+3y-5=0或x=-1.方法二当AB∥l时,有k=kAB=-,直线l的方程为y-2=-(x+1),即x+3y-5=0.当l过AB的中点时,AB的中点为(-1,4).∴直线l的方程为x=-1.故所求直线l的方程为x+3y-5=0或x=-1.思维升华(1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.(1)如图,设一直线过点(-1,1),它被两平行直线l1:x +2y-1=0,l2:x+2y-3=0所截的线段的中点在直线l3:x-y-1=0上,求其方程.解与l1、l2平行且距离相等的直线方程为x+2y-2=0.设所求直线方程为(x+2y-2)+λ(x-y-1)=0,即(1+λ)x+(2-λ)y-2-λ=0.又直线过(-1,1),∴(1+λ)(-1)+(2-λ)·1-2-λ=0.解得λ=-.∴所求直线方程为2x+7y-5=0.(2)(2016·济南模拟)若动点P1(x1,y1),P2(x2,y2)分别在直线l1:x-y-5=0,l2:x-y-15=0上移动,则P1P2的中点P到原点的距离的最小值是( )A. B.5 C. D.15 2答案B解析设P1P2的中点为P(x,y),则x=,y=.∵x1-y1-5=0,x2-y2-15=0.∴(x1+x2)-(y1+y2)=20,即x-y=10.∴y=x-10,∴P(x,x-10),∴P到原点的距离d=x2+-=≥=5.题型三对称问题命题点1 点关于点中心对称例3 (2016·苏州模拟)过点P(0,1)作直线l,使它被直线l1:2x+y -8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.答案x+4y-4=0解析设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P 的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x +4y-4=0.命题点2 点关于直线对称例4 如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .3B .6C .2D .25 答案 C解析 直线AB 的方程为x +y =4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0).则光线经过的路程为|CD|==2.命题点3 直线关于直线的对称问题例5 (2016·泰安模拟)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m′的方程.解 在直线m 上任取一点,如M(2,0),则M(2,0)关于直线l 的对称点M′必在直线m′上.设对称点M′(a,b),则⎩⎪⎨⎪⎧ 2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧ a =613,b =3013,∴M′.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0,得N(4,3).又∵m′经过点N(4,3).∴由两点式得直线m′的方程为9x -46y +102=0.思维升华 解决对称问题的方法(1)中心对称①点P(x ,y)关于Q(a ,b)的对称点P′(x′,y′)满足⎩⎪⎨⎪⎧ x′=2a -x ,y′=2b -y.②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A(a ,b)关于直线Ax +By +C =0(B≠0)的对称点A′(m,n),则有⎩⎪⎨⎪⎧ n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A·a +m 2+B·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.已知直线l :3x -y +3=0,求:(1)点P(4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解 设P(x ,y)关于直线l :3x -y +3=0的对称点为P′(x′,y′), ∵kPP′·kl=-1,即×3=-1.①又PP′的中点在直线3x -y +3=0上,∴3×-+3=0.②由①②得⎩⎪⎨⎪⎧ x′=-4x +3y -95,③y′=3x +4y +35. ④(1)把x =4,y =5代入③④得x′=-2,y′=7,∴P(4,5)关于直线l 的对称点P′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为--2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M(0,3)关于(1,2)的对称点M′(x′,y′),∴=1,x′=2,=2,y′=1,∴M′(2,1).l 关于(1,2)的对称直线平行于l ,∴k=3,∴对称直线方程为y -1=3×(x-2),即3x -y -5=0.22.妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1 求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程. 思想方法指导 因为所求直线与3x +4y +1=0平行,因此,可设该直线方程为3x +4y +c =0(c≠1).规范解答解 依题意,设所求直线方程为3x +4y +c =0(c≠1),又因为直线过点(1,2),所以3×1+4×2+c=0,解得c=-11.因此,所求直线方程为3x+4y-11=0.二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0.因此,当两直线垂直时,它们的一次项系数有必要的关系.可以考虑用直线系方程求解.典例2 求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.思想方法指导依据两直线垂直的特征设出方程,再由待定系数法求解.规范解答解因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x -2y+C1=0,又直线过点(2,1),所以有2-2×1+C1=0,解得C1=0,即所求直线方程为x-2y=0.三、过直线交点的直线系典例3 求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.思想方法指导可分别求出直线l1与l2的交点及直线l的斜率k,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解.规范解答解方法一解方程组得P(0,2).因为l3的斜率为,且l⊥l3,所以直线l的斜率为-,由斜截式可知l的方程为y=-x+2,即4x+3y-6=0.方法二设直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0.又∵l⊥l3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l的方程为4x+3y-6=0.1.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A解析(1)充分性:当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0平行;(2)必要性:当直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行时有a=-2或1.所以“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件,故选A.2.(2016·台州模拟)已知两条直线l1:x+y-1=0,l2:3x+ay+2=0且l1⊥l2,则a等于( )A.- B. C.-3 D.3答案C解析由l1⊥l2,可得1×3+1×a=0,∴a=-3.3.(2016·实验中学质检)从点(2,3)射出的光线沿与向量a=(8,4)平行的直线射到y轴上,则反射光线所在的直线方程为( )A.x+2y-4=0 B.2x+y-1=0C.x+6y-16=0 D.6x+y-8=0答案A解析由直线与向量a=(8,4)平行知:过点(2,3)的直线的斜率k=,所以直线的方程为y-3=(x-2),其与y轴的交点坐标为(0,2),又点(2,3)关于y轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A正确.4.(2016·兰州模拟)一只虫子从点O(0,0)出发,先爬行到直线l:x -y+1=0上的P点,再从P点出发爬行到点A(1,1),则虫子爬行的最短路程是( )A. B.2 C.3 D.4答案B解析点O(0,0)关于直线x-y+1=0的对称点为O′(-1,1),则虫子爬行的最短路程为|O′A|==2.故选B.5.(2016·绵阳模拟)若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则|PQ|的最小值为( )A. B. C. D.295答案 C解析 因为=≠,所以两直线平行,由题意可知|PQ|的最小值为这两条平行直线间的距离,即=,所以|PQ|的最小值为,故选C.6.(2016·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n)重合,则m +n 等于( )A. B. C. D.323答案 A解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线, 即直线y =2x -3,它也是点(7,3)与点(m ,n)连线的中垂线,于是⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n =,故选A.7.(2016·舟山训练)已知两直线l1:ax -by +4=0和l2:(a -1)x +y +b =0,若l1∥l2,且坐标原点到这两条直线的距离相等,则a +b =________.答案 0或83解析 由题意得⎩⎪⎨⎪⎧ a +-=0,4a2+-=|b|-+1.解得或经检验,两种情况均符合题意,∴a+b 的值为0或.8.已知直线l1:ax +y -1=0,直线l2:x -y -3=0,若直线l1的倾斜角为,则a =________;若l1⊥l2,则a =________;若l1∥l2,则两平行直线间的距离为________.答案 -1 1 2 2解析 若直线l1的倾斜角为,则-a =k =tan =1,故a =-1;若l1⊥l2,则a×1+1×(-1)=0,故a =1;若l1∥l2,则a =-1,l1:x -y +1=0,两平行直线间的距离d ==2.9.点P(2,1)到直线l :mx -y -3=0(m∈R)的最大距离是________. 答案 2 5解析 直线l 经过定点Q(0,-3),如图所示,由图知,当PQ⊥l 时,点P(2,1)到直线l 的距离取得最大值|PQ|==2,所以点P(2,1)到直线l 的最大距离为2.10.(2016·重庆模拟)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________. 答案 (2,4)解析 如图,设平面直角坐标系中任一点P ,P 到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和为|PA|+|PB|+|PC|+|PD|=|PB|+|PD|+|PA|+|PC|≥|BD|+|AC|=|QA|+|QB|+|QC|+|QD|,故四边形ABCD对角线的交点Q即为所求距离之和最小的点.∵A(1,2),B(1,5),C(3,6),D(7,-1),∴直线AC的方程为y-2=2(x-1),直线BD的方程为y-5=-(x-1).由得Q(2,4).11.已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解(1)∵l1⊥l2,∴a(a-1)-b=0,又∵直线l1过点(-3,-1),∴-3a+b+4=0.故a=2,b=2.(2)∵直线l2的斜率存在,l1∥l2,∴直线l1的斜率存在.∴k1=k2,即=1-a.又∵坐标原点到这两条直线的距离相等,∴l1,l2在y轴上的截距互为相反数,即=b.故a=2,b=-2或a=,b=2.12.(2016·北京××区模拟)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.解依题意知:kAC=-2,A(5,1),∴lAC为2x+y-11=0,联立lAC、lCM得∴C(4,3).设B(x0,y0),AB的中点M为(,),代入2x-y-5=0,得2x0-y0-1=0,∴∴B(-1,-3),∴kBC=,∴直线BC的方程为y-3=(x-4),即6x-5y-9=0.*13.已知三条直线:l1:2x-y+a=0(a>0);l2:-4x+2y+1=0;l3:x+y-1=0,且l1与l2间的距离是.(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:①点P在第一象限;②点P到l1的距离是点P到l2的距离的;③点P到l1的距离与点P到l3的距离之比是∶.若能,求点P的坐标;若不能,说明理由.解(1)直线l2:2x-y-=0,所以两条平行线l1与l2间的距离为d ==,所以=,即=,又a>0,解得a=3.(2)假设存在点P ,设点P(x0,y0).若点P 满足条件②,则点P 在与l1,l2平行的直线l′:2x -y +c =0上,且=×,即c =或,所以直线l′的方程为2x0-y0+=0或2x0-y0+=0; 若点P 满足条件③,由点到直线的距离公式, 有=×,即|2x0-y0+3|=|x0+y0-1|,所以x0-2y0+4=0或3x0+2=0;由于点P 在第一象限,所以3x0+2=0不可能. 联立方程2x0-y0+=0和x0-2y0+4=0, 解得(舍去);联立方程2x0-y0+=0和x0-2y0+4=0,解得⎩⎪⎨⎪⎧ x0=19,y0=3718.所以存在点P 同时满足三个条件.。
高考数学大一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书 文 新人教版
2018版高考数学大一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书 文 新人教版1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34 C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a2=1,解之得a =-43. 3.(2016·西安模拟)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2,∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.4.圆C 1:x 2+y 2+2x -6y -26=0与圆C 2:(x -2)2+y 2=1的位置关系是________. 答案 内含解析 圆C 1的标准方程为(x +1)2+(y -3)2=36. 其圆心坐标为C 1(-1,3),半径r 1=6; 圆C 2的圆心坐标为C 2(2,0),半径r 2=1. |C 1C 2|=+2+32=3 2.∵32<5=r 1-r 2,∴圆C 2在圆C 1的内部.5.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1外切,则ab 的最大值为________. 答案 94解析 由两圆外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和, 即(a +b )2=(2+1)2,即9=a 2+b 2+2ab ≥4ab , 所以ab ≤94,当且仅当a =b 时取等号,即ab 的最大值是94.题型一 直线与圆的位置关系的判断例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离D .不确定(2)(2016·江西吉安月考)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切 C .相交 D .以上都有可能答案 (1)B (2)C解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)直线2tx -y -2-2t =0恒过点(1,-2), ∵12+(-2)2-2×1+4×(-2)=-5<0, ∴点(1,-2)在圆x 2+y 2-2x +4y =0内.直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交, 故选C.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.过点A (3,1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的斜率的取值范围是( ) A .[-1,1] B .[0,3] C .[0,1] D .[-3,3]答案 B解析 设直线l 的方程为y -1=k (x -3),则圆心到直线l 的距离d =|3k -1|1+k 2,因为直线l 与圆x 2+y 2=1有公共点,所以d ≤1,即|3k -1|1+k 2≤1,得0≤k ≤ 3. 题型二 圆与圆的位置关系例2 (1)(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离(2)(2017·重庆调研)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________. 答案 (1)B (2)(-22,0)∪(0,22) 解析 (1)∵圆M :x 2+(y -a )2=a 2(a >0), ∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=-2+-2=2,r1+r2=3,r1-r2=1.∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.(2)圆C的标准方程为(x-a)2+(y-a)2=4,圆心坐标为(a,a),半径为2.依题意得0<a2+a2<2+2,∴0<|a|<2 2.∴a∈(-22,0)∪(0,22).思维升华判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d,求r1+r2,|r1-r2|;(3)比较d,r1+r2,|r1-r2|的大小,写出结论.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切;(2)m取何值时两圆内切;(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为11和61-m.(1)当两圆外切时,-2+-2=11+61-m,解得m=25+1011.(2)当两圆内切时,因为定圆的半径11小于两圆圆心间距离5,故只有61-m-11=5,解得m=25-1011.(3)两圆的公共弦所在直线方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0,所以公共弦长为2112-|4×1+3×3-23|42+322=27.题型三直线与圆的综合问题命题点1 求弦长问题例3 (2016·全国丙卷)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=23,则|CD|=________.答案 4解析设AB的中点为M,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4.命题点2 直线与圆相交求参数范围例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2. 命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N两点,则|MN |等于( ) A .2 6 B .8 C .4 6 D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( ) A .-33 B .- 3 C.33D. 3 答案 (1)C (2)A解析 (1)由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC →=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0,得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.(2)依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32, 故该直线的斜率是-cos θsin θ=-33,故选A.7.高考中与圆交汇问题的求解考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 解析 (1)∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆的直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴当x =-1时有最大值49=7,故选B. (2)∵S △AOB =12|OA ||OB |sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 答案 (1)B (2)B 二、直线与圆的综合问题典例2 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)C (2)A1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A .21 B .19 C .9 D .-11 答案 C解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9.3.(2016·南昌二模)若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 2答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1, ∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2016·泰安模拟)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 答案 A解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.6.(2016·岳阳一模)已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点,若|PQ |=23,则直线l 的方程为( )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=0答案 B解析 当直线l 与x 轴垂直时,易知x =-1,符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由|PQ |=23,得圆心C 到直线l 的距离d =|-k +3|k 2+1=1,解得k =43, 此时直线l 的方程为y =43(x +1). 故所求直线l 的方程为x =-1或4x -3y +4=0.7.(2016·全国乙卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.8.(2016·天津四校联考)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.答案 22解析 ∵(1-2)2+(2)2=3<4,∴点(1,2)在圆(x -2)2+y 2=4的内部.当劣弧所对的圆心角最小时,圆心(2,0)与点(1,2)的连线垂直于直线l . ∵2-01-2=-2,∴所求直线l 的斜率k =22. 9.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________.答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3.∴△POA 为直角三角形,其中|OA |=1,|AP |=3,则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32. 10.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P 2∈[2,3]. 11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0. 综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|,∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴点P的轨迹方程为2x-4y+1=0.12.圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1)若圆O1与圆O2外切,求圆O2的方程;(2)若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.解(1)圆O1的圆心坐标为(0,-1),半径r1=2,圆O2的圆心坐标为(2,1),圆心距为|O1O2|=-2+1+2=22,由两圆外切知,所求圆的半径为r2=22-2,圆O2的方程为(x-2)2+(y-1)2=12-8 2.(2)由题意知,圆心O1到AB的距离为22-22=2,当圆心O2到AB的距离为22-2=2时,圆O2的半径r2=22+22=2,此时圆O2的方程为(x-2)2+(y-1)2=4.当圆心O2到AB的距离为22+2=32时,圆O2的半径r2′=22+22=25,此时圆O2的方程为(x-2)2+(y-1)2=20.综上知,圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.*13.(2016·湖南六校联考)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C 在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解(1)设圆心C(a,0)(a>-52 ),则|4a+10|5=2⇒a=0或a=-5(舍).所以圆C的方程为x2+y2=4.(2)当直线AB⊥x轴时,x轴平分∠ANB.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k x 1-x 1-t +k x 2-x 2-t=⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0 ⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。
高考数学大一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书 理 新人教版
第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教师用书理 新人教版1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34 C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a2=1,解之得a =-43. 3.(2016·西安模拟)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2,∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.4.(2016·黑龙江大庆实验中学检测)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A .6-2 2 B .52-4 C.17-1 D.17答案 B解析 圆C 1关于x 轴对称的圆C 1′的圆心为C 1′(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C 1′和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为-2++2-1-3=52-4.5.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1外切,则ab 的最大值为________. 答案 94解析 由两圆外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和, 即(a +b )2=(2+1)2,即9=a 2+b 2+2ab ≥4ab , 所以ab ≤94,当且仅当a =b 时取等号,即ab 的最大值是94.题型一 直线与圆的位置关系的判断例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离D .不确定(2)(2016·江西吉安月考)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切 C .相交 D .以上都有可能答案 (1)B (2)C解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)直线2tx -y -2-2t =0恒过点(1,-2), ∵12+(-2)2-2×1+4×(-2)=-5<0, ∴点(1,-2)在圆x 2+y 2-2x +4y =0内.直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交, 故选C.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 相切解析 由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切. 题型二 圆与圆的位置关系例2 (1)(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离(2)(2017·重庆调研)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________. 答案 (1)B (2)(-22,0)∪(0,22) 解析 (1)∵圆M :x 2+(y -a )2=a 2(a >0), ∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=-2+-2=2,r 1+r 2=3,r 1-r 2=1.∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.(2)圆C的标准方程为(x-a)2+(y-a)2=4,圆心坐标为(a,a),半径为2.依题意得0<a2+a2<2+2,∴0<|a|<2 2.∴a∈(-22,0)∪(0,22).思维升华判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d,求r1+r2,|r1-r2|;(3)比较d,r1+r2,|r1-r2|的大小,写出结论.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切;(2)m取何值时两圆内切;(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为11和61-m.(1)当两圆外切时,-2+-2=11+61-m,解得m=25+1011.(2)当两圆内切时,因为定圆的半径11小于两圆圆心间距离5,故只有61-m-11=5,解得m=25-1011.(3)两圆的公共弦所在直线方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0,所以公共弦长为2112-|4×1+3×3-23|42+322=27.题型三直线与圆的综合问题命题点1 求弦长问题例3 (2016·全国丙卷)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=23,则|CD|=________.答案 4解析设AB的中点为M,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x+3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4.命题点2 直线与圆相交求参数范围例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N两点,则|MN |等于( ) A .2 6 B .8 C .4 6 D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( ) A .-33 B .- 3 C.33D. 3 答案 (1)C (2)A解析 (1)由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC →=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25, 令x =0,得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.(2)依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32, 故该直线的斜率是-cos θsin θ=-33,故选A.7.高考中与圆交汇问题的求解考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 解析 (1)∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆的直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴当x =-1时有最大值49=7,故选B. (2)∵S △AOB =12|OA ||OB |sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 答案 (1)B (2)B 二、直线与圆的综合问题典例2 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)π D.54π解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |. 又|OD |=|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)C (2)A1.(2017·广州调研)若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条 答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.依题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A .21 B .19 C .9 D .-11 答案 C解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9.3.(2016·南昌二模)若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( ) A. 2 B .2 C .4 D .2 2答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1, ∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2016·泰安模拟)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0 答案 A解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.6.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,那么△PAB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6 答案 C解析 依题意得圆x 2+y 2+kx =0的圆心(-k 2,0)位于直线x -y -1=0上, 于是有-k 2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1. 由题意可得|AB |=22,直线AB 的方程是x -2+y 2=1, 即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322, 点P 到直线AB 的距离的最大值是322+1, ∴△PAB 面积的最大值为12×22×32+22=3+2,故选C. 7.(2016·全国乙卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.8.(2016·天津四校联考)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.答案 22解析 ∵(1-2)2+(2)2=3<4,∴点(1,2)在圆(x -2)2+y 2=4的内部.当劣弧所对的圆心角最小时,圆心(2,0)与点(1,2)的连线垂直于直线l . ∵2-01-2=-2,∴所求直线l 的斜率k =22. 9.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________.答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3.∴△POA 为直角三角形,其中|OA |=1,|AP |=3,则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32. 10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1, C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0,则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1), 即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2,∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分). N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆. 再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由|OO ′|=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由|OO ′|=2=2a -a ,求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2.*13.(2016·湖南六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解 (1)设圆心C (a,0)(a >-52),则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k x 1-x 1-t +k x 2-x 2-t=⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0 ⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。
高考数学一轮复习 第九章 平面解析几何 第1节 直线的方程教学案(含解析)新人教A版-新人教A版高三
第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)X 围:直线的倾斜角α的取值X 围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②假设直线的方向向量为a =(x ,y )(x ≠0),那么直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件斜截式 纵截距、斜率 y =kx +b与x 轴不垂直的直线点斜式过一点、斜率y -y 0=k (x -x 0) 两点式 过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均不垂直的直线一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距〞是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离〞是一个非负数.诊 断 自 测1.判断以下结论正误(在括号内打“√〞或“×〞) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,那么其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,那么其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)假设过两点A (-m ,6),B (1,3m )的直线的斜率为12,那么直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)假设方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),那么应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·某某调研)直线x -y +1=0的倾斜角为( ) A.30° B.45° C.120° D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,那么tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·某某诊断)直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值X 围是( )A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值X 围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·某某调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a=1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案4x-y+16=0考点一直线的倾斜角与斜率典例迁移[例1] (一题多解)(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,那么直线l斜率的取值X围为________.解析法一设PA与PB的倾斜角分别为α,β,直线PA的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值X围为[1,+∞).当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化X围是(-∞,-3].故斜率的取值X围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,那么直线l的方程为y=k(x-1),即kx-y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值X围是(-∞,-3]∪[1,+∞).答案(-∞,-3]∪[1,+∞)[迁移1] 假设将例1中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值X围. 解设直线l的斜率为k,那么直线l的方程为y=k(x+1),即kx-y+k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1+k)(-3+k)≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值X 围是⎣⎢⎡⎦⎥⎤13,3. [迁移2] 假设将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值X 围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值X 围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值X 围求斜率的取值X 围或由斜率的取值X 围求直线倾斜角的取值X 围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与线段相交,求直线斜率X 围时,应注意倾斜角为π2时,直线斜率不存在.[训练1] 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,那么( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法[例2] 求适合以下条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,那么tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 那么直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 那么可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.那么直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.那么直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(假设采用点斜式,应先考虑斜率不存在的情况;假设采用截距式,应判断截距是否为零).[训练2] (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,那么-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题[例3-1] k ∈R ,写出以下动直线所过的定点坐标: (1)假设直线方程为y =kx +3,那么直线过定点________; (2)假设直线方程为y =kx +3k ,那么直线过定点________; (3)假设直线方程为x =ky +3,那么直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定〞.角度2 与直线方程有关的多边形面积的最值问题[例3-2] 直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或X 围.注意点在直线上,那么点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.[训练3] 直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)假设直线不经过第四象限,求k 的取值X 围;(3)假设直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,那么必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值X 围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·〔1+2k 〕2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=〞成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·某某模拟)假设平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,那么a =( ) A.1±2或0 B.2-52或0C.2±52 D.2+52或0 解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·某某七校联考)假设过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值X 围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·某某六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·某某诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1 D.y =2解析 直线y =-x -1的倾斜角为3π4,那么所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,那么直线l 的方程为( )A.y =3x +2B.y =3x -2C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2. 答案 A6.(2020·某某四地七校联考)函数f (x )=a sin x -b cos x (a ≠0,b ≠0),假设f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,那么直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4 解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,应选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值X 围是( )A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,那么有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值X 围为⎣⎢⎡⎦⎥⎤0,π4,那么点P 横坐标的取值X 围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知,y ′=2x +2,设P (x 0,y 0),那么在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值X 围为⎣⎢⎡⎦⎥⎤0,π4,那么0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,那么直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.三角形的三个顶点A (-5,0),B (3,-3),C (0,2),那么BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,那么b 的取值X 围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值X 围是[-2,2].答案 [-2,2]12.假设经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,那么y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·某某长郡中学月考)点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,那么直线l 的倾斜角的取值X 围是( ) A.⎝⎛⎭⎪⎫π4,π3 B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的X 围是[0,π),所以直线l 的倾斜角的取值X 围为⎝ ⎛⎭⎪⎫23π,34π,应选D.答案 D14.(2020·某某模拟)假设直线ax +by +c =0同时要经过第一、二、四象限,那么a ,b ,c 应满足( )A.ab >0,bc <0B.ab >0,bc >0C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,那么直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-a b <0,-cb >0,所以ab >0,bc <0.答案 A15.数列{a n }的通项公式为a n =1n 〔n +1〕(n ∈N *),其前n 项和S n =910,那么直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n 〔n +1〕可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),那么A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,那么S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2〔-18k 〕·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),直线l 的方程为ax +y +2=0,那么直线l 过定点________,假设直线l 与线段AB 没有交点,那么实数a 的取值X 围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-〔-2〕-2-0=-52,k MB =2-〔-2〕3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝ ⎛⎭⎪⎫-43,52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 平面解析几何 第43课 直线的方程[最新考纲]1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( )(3)过定点P 0(x 0,y 0)的直线都可用方程y -y 0=k (x -x 0)表示.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )[答案] (1)√ (2)× (3)× (4)√2.(教材改编)直线3x -y +a =0(a 为常数)的倾斜角为________. 60° [直线的斜率为k =tan α=3, 又因为0°≤α<180°,则α=60°.]3.已知直线l 经过点P (-2,5),且斜率为-34.则直线l 的方程为________.3x +4y -14=0 [直线l 的方程为y -5=-34(x +2),即3x +4y -14=0.]4.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过第________象限. 三 [Ax +By +C =0可变形为y =-A B x -C B. 又A ·C <0,B ·C <0,故A ,B 同号. 所以-A B <0,-C B>0,所以Ax +By +C =0不通过第三象限.]5.过点P (2,3),并且在两坐标轴上的截距互为相反数的直线l 的方程为________. 3x -2y =0或x -y +1=0 [当直线过原点时,方程为y =32x ,即3x -2y =0.当直线l 不过原点时,设直线方程为x a -y a=1. 将P (2,3)代入方程,得a =-1, 所以直线l 的方程为x -y +1=0.综上,所求直线l 的方程为3x -2y =0或x -y +1=0.](1)直线x -y cos θ+1=0(θ∈R )的倾斜角α的取值范围是________.【导学号:62172235】(2)若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.(1)⎣⎢⎡⎦⎥⎤π4,3π4 (2)⎣⎢⎡⎦⎥⎤-5,-13 [(1)当θ=k π+π2(k ∈Z )时,cos θ=0,直线为x+1=0,其倾斜角为π2.当θ≠k π+π2(k ∈Z )时,直线l 的斜率为tan α=1cos θ∈(-∞,-1]∪[1,+∞),所以直线l 的倾斜角的取值范围是⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上,α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.(2)因为P (-3,2),A (-2,-3),B (3,0),则k PA =-3-2-2--=-5,k PB =0-23--=-13.如图所示,当直线l 与线段AB 相交时,直线l 的斜率的取值范围为⎣⎢⎡⎦⎥⎤-5,-13.][规律方法] 1.(1)任一直线都有倾斜角,但斜率不一定都存在;直线倾斜角的范围是[0,π),斜率的取值范围是R .(2)正切函数在[0,π)上不单调,借助图象或单位圆数形结合,确定倾斜角α的取值范围.2.第(2)问求解要注意两点: (1)斜率公式的正确计算;(2)数形结合写出斜率的范围,切莫误认为k ≤-5或k ≥-13.[变式训练1] (1)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是________.(2)直线l 经过点A (3,1),B (2,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是________.(1)k <-1或k >12 (2)⎣⎢⎡⎭⎪⎫π4,π2 [(1)设直线的斜率为k ,则直线方程为y -2=k (x-1),直线在x 轴上的截距为1-2k.令-3<1-2k <3,解不等式得k <-1或k >12.(2)直线l 的斜率k =1+m 23-2=1+m 2≥1,所以k =tan α≥1.又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.](1)过点A (1,3),斜率是直线y =-4x 的斜率的3的直线方程为________.(2)若A (1,-2),B (5,6),直线l 经过AB 的中点M 且在两坐标轴上的截距相等,求直线l 的方程.(1)4x +3y -13=0 [设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.](2)法一:设直线l 在x 轴,y 轴上的截距均为a . 由题意得M (3,2).若a =0,即l 过点(0,0)和(3,2), 所以直线l 的方程为y =23x ,即2x -3y =0.若a ≠0,设直线l 的方程为x a +y a=1, 因为直线l 过点M (3,2),所以3a +2a=1,所以a =5,此时直线l 的方程为x 5+y5=1,即x +y -5=0.综上,直线l 的方程为2x -3y =0或x +y -5=0.法二:易知M (3,2),由题意知所求直线l 的斜率k 存在且k ≠0,则直线l 的方程为y -2=k (x -3).令y =0,得x =3-2k;令x =0,得y =2-3k .所以3-2k =2-3k ,解得k =-1或k =23.所以直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0.[规律方法] 1.截距可正、可负、可为0,因此在解与截距有关的问题时,一定要注意“截距为0”的情况,以防漏解.2.求直线方程的方法主要有两种:直接法与待定系数法.运用待定系数法要先设出直线方程,再根据条件求出待定系数.利用此方法,注意各种形式的适用条件,选择适当的直线方程的形式至关重要.[变式训练2] 求过点A (-1,-3)且倾斜角等于直线y =3x 的倾斜角的2倍的直线方程.[解] 由已知设直线y =3x 的倾斜角为α, 则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.A ,B 两点,O为坐标原点.求:(1)当OA +OB 取得最小值时,直线l 的方程;(2)当MA 2+MB 2取得最小值时,直线l 的方程. 【导学号:62172236】 [解] (1)设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以OA +OB =a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝⎛⎭⎪⎫1-1k,0,B (0,1-k ),所以MA 2+MB 2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4.当且仅当k 2=1k2,即k =-1时,上式等号成立.∴当MA 2+MB 2取得最小值时,直线l 的方程为x +y -2=0.[规律方法] 1.求解本题的关键是找出OA +OB 与MA 2+MB 2取得最小值的求法,恰当设出方程的形式,利用均值不等式求解,但一定要注意等号成立的条件.2.利用直线方程解决问题,为简化运算可灵活选用直线方程的形式.一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距选择截距式.[变式训练3] 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴正半轴围成一个四边形,则当a 为何值时,四边形的面积最小?[解] 由⎩⎪⎨⎪⎧ax -2y =2a -4,2x +a 2y =2a 2+4,得x =y =2,∴直线l 1与l 2交于点A (2,2)(如图). 易知OB =a 2+2,OC =2-a , 则S 四边形OBAC =S △AOB +S △AOC =12×2(a 2+2)+12×2(2-a )=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,a ∈(0,2),∴当a =12时,四边形OBAC 的面积最小.[思想与方法]1.求直线方程的两种常见方法:(1)直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程.(2)待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组),求出待定系数,从而求出直线方程.2.5种形式的直线方程都有不同的适用条件,当条件不具备时,要注意分类讨论思想的应用.[易错与防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性. 3.应用截距式方程时要注意讨论直线是否过原点,截距是否为0.4.由一般式Ax +By +C =0确定斜率k 时,易忽视判定B 是否为0.当B =0时,k 不存在;当B ≠0时,k =-A B.课时分层训练(四十三)A 组 基础达标 (建议用时:30分钟)一、填空题1.倾斜角为135°,在y 轴上的截距为-1的直线方程是________.x +y +1=0 [直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.]2.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的等量关系式为________.a =b [由sin α+cos α=0,得sin αcos α=-1,即tan α=-1.又因为tan α=-a b,所以-a b=-1,则a =b .]3.直线l :x sin 30°+y cos 150°+1=0的斜率是________. 33[直线l 可化简为: 12x -32y +1=0. 即y =33x +233,故斜率k =33.]4.直线x +(a 2+1)y +1=0的倾斜角的取值范围是________.⎣⎢⎡⎭⎪⎫3π4,π [由x +(a 2+1)y +1=0得y =-1a 2+1x -1a 2+1. ∵a 2+1≥1,∴-1a 2+1∈[-1,0). 设直线的倾斜角为α,则-1≤tan α<0, 又α∈[0,π),故3π4≤α<π.]5.斜率为2的直线经过(3,5),(a,7),(-1,b )三点,则a +b =________.【导学号:62172237】1 [由题意可知7-5a -3=b -5-1-3=2,解得a =4,b =-3,∴a +b =1.]6.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.[-3,0)∪⎣⎢⎡⎦⎥⎤33,1 [∵k =tan α, ∴当α∈⎣⎢⎡⎦⎥⎤π6,π4时,tan π6≤k ≤tan π4,即33≤k ≤1;当α∈⎣⎢⎡⎭⎪⎫2π3,π时,tan 2π3≤k <tan π,即[-3,0).综上可知,k ∈[-3,0)∪⎣⎢⎡⎦⎥⎤33,1. 7.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.-23 [设P (m,1),则Q (2-m ,-3), ∴(2-m )+3-7=0,∴m =-2, ∴P (-2,1), ∴k =1+1-2-1=-23.]8.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 【导学号:62172238】[-2,2] [b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值,∴b 的取值范围是[-2,2].]9.直线l 过点(-3,4),且在两坐标轴上的截距之和为12,则直线l 的方程为________. 4x -y +16=0或x +3y -9=0 [由题意知,截距不为0,设直线l 的方程为x a +y12-a=1.又直线l 过点(-3,4), 从而-3a +412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.]10.(2017·苏州模拟)若直线l :x a +y b=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.3+2 2 [∵直线l 过定点(1,2), ∴1a +2b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b≥3+22,当且仅当b =2a 时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为3+2 2.] 二、解答题11.直线l 过点(-2,2)且与x 轴,y 轴分别交于点(a,0),(0,b ),若|a |=|b |,求l 的方程.[解] 若a =b =0,则直线l 过点(0,0)与(-2,2), 直线l 的斜率k =-1,直线l 的方程为y =-x ,即x +y =0. 若a ≠0,b ≠0,则直线l 的方程为x a +yb=1, 由题意知⎩⎪⎨⎪⎧-2a +2b=1,|a |=|b |,解得⎩⎪⎨⎪⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.综上,直线l 的方程为x +y =0或x -y +4=0. 12.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围. 【导学号:62172239】[解] (1)当直线过原点时,在x 轴和y 轴上的截距为零, ∴a =2,方程即为3x +y =0.当直线不过原点时,截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.∴直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-a +>0,a -2≤0或⎩⎪⎨⎪⎧-a +=0,a -2≤0,∴a ≤-1.综上可知,a 的取值范围是a ≤-1.B 组 能力提升 (建议用时:15分钟)1.设A ,B 是x 轴上的两点,点P 的横坐标为2且PA =PB ,若直线PA 的方程为x -y +1=0,则直线PB 的方程为________.x +y -5=0 [由条件得点A 的坐标为(-1,0),点P 的坐标为(2,3),因为PA =PB ,根据对称性可知,点B 的坐标为(5,0),从而直线PB 的方程为y -3-3=x -25-2,整理得x +y -5=0.]2.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 3 [直线AB 的方程为x 3+y4=1. ∵动点P (x ,y )在直线AB 上,则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[]-y -2+4≤3,即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取最大值3.] 3.已知曲线y =1e x +1,求曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积.[解] y ′=-e xx +2=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2⎝ ⎛⎭⎪⎫当且仅当e x =1e x ,即x =0时取等号,所以e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12. 4.已知直线l :kx -y +1+2k =0(k ∈R ).(1)若直线不经过第四象限,求k 的取值范围;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.[解] (1)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k ≥0. (2)由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧ -1+2k k <0,1+2k >0,解得k >0. ∵S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·+2k 2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.。