化学热力学基础
化学热力学的基本定律

化学热力学的基本定律化学热力学是研究化学反应中能量变化和热力学性质的科学。
它是化学的一个重要分支,通过研究物质在不同条件下的能量变化,揭示了化学反应的本质和规律。
在化学热力学中,有一些基本定律被广泛应用于实际问题的解决和理论模型的建立。
一、热力学第一定律热力学第一定律,也称为能量守恒定律,是热力学中最基本的定律之一。
它表明在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
换句话说,系统的内能变化等于系统所吸收或放出的热量与做功之和。
数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收或放出的热量,W表示系统所做的功。
二、热力学第二定律热力学第二定律是描述自然界中不可逆过程方向性的定律。
它指出自然界中热量只能从高温物体传递到低温物体,而不能反向传递。
这个定律还提出了一个重要的概念——熵。
熵是描述系统无序程度的物理量,它随着时间的推移而增加。
数学表达式为:ΔS ≥ 0其中,ΔS表示系统熵的变化。
三、热力学第三定律热力学第三定律是描述物质在绝对零度时的性质的定律。
它指出当温度趋近于绝对零度时,物质的熵趋近于零。
也就是说,在绝对零度下,物质的无序程度最小。
这个定律对于研究低温物理和凝聚态物理非常重要,它揭示了物质在极低温下的行为和性质。
四、吉布斯自由能定律吉布斯自由能是描述系统在恒温恒压条件下可用能量的一种函数。
它是判断化学反应是否可逆进行的重要指标。
根据吉布斯自由能定律,当系统的吉布斯自由能减小时,化学反应是可逆的;当系统的吉布斯自由能增大时,化学反应是不可逆的。
数学表达式为:ΔG = ΔH - TΔS其中,ΔG表示系统的吉布斯自由能变化,ΔH表示系统的焓变,T表示温度,ΔS表示系统的熵变。
五、平衡常数定律平衡常数是描述化学反应平衡程度的物理量。
根据平衡常数定律,对于一个化学反应:aA + bB ⇌ cC + dD其平衡常数K可以通过以下公式计算:K = [C]c[D]d / [A]a[B]b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度。
无机化学-第五章-化学热力学基础

注:①G为广度性质,与参与过程的物质的量成正 比。
②逆过程G与正过程的G数值相等,符号相反。 等于各③反如应果一G个之反总应和是。多个反应的和,总反应的rG
化学热力学的四个重要状态函数
判断一个反应进行的方向时,如果: rG<0反应自发进行 rG>0反应不自发进行 rG=0平衡状态 当rG<0时(产物的G<反应物的G)该反应就自动 向生成产物的方向进行,在反应中反应物不断减 小而产物不断增加,G为广度性质,当G反应物=G产 物即rG=0时反应就不再朝一个方向进行了,这就 是化学反应的限度,即化学平衡。
状态函数。
化学热力学的四个重要状态函数
二、焓(H) 设一封闭体系在变化中只做体积功,不做其它功, 则U=Q+W中W代表体积功:-pV(N/m2×m3)
W=Fl=pSl=-pV
V=V2-V1 若体系变化是恒容过程(体积不变),即没有体积功 则W=0,U=Qv Qv为恒容过程的热量,此式表示在不做体积功的 条件下体系在恒容过程中所吸收的热量全部用来增 加体系的内能。
我们可以从体系和环境间的热量传递来恒量体系 内部焓的变化。
如果化学反应的H为正值,表示体系从环境吸收 热能,称此反应为吸热反应。即:
∑H反应物<∑H生成物 ∑H(生成物-反应物)>0 如果化学反应的H为负值,则表示体系放热给环 境,称此反应为放热反应。即:
∑H反应物>∑H生成物 ∑H(生成物-反应物)<0
rG=-RTlnKa
此式只表示在等温下,rG与K平衡在数值上的关 系。
∴rG=-RTlnKa+RTlnJa
=RTln(Ja/Ka)
化学热力学基础PPT课件

§2.1 热力学第一定律
第2章 化学热力学基础
(Thermochemistry)
§2.1 热力学第一定律
§2.2 热化学
§2.3 化学反应的方向
1
第2章 化学热力学基础
§2.1 热力学第一定律
研究化学反应必须研究的四个问题:
1. 化学反应中能量是如何转化的?
(第3章)
2. 该反应能否自发进行?
(第3章)
(3)孤立系统(Isolated System) 系统和环境之间即无能量交换又无物质交换的 系统。
9
第2章 化学热力学基础
如:
§2.1 热力学第一定律
Zn + 2HCl → ZnCl2 + H2
系统
绝热
HCl
HCl
HCl
Zn
Zn
Zn
敞开系统
封闭系统
孤立系统
10
第2章 化学热力学基础
§2.1 热力学第一定律
1mol反应
表示消耗 0.5mol N2,1.5mol H2,生成 1mol NH3。
离开化学方程式谈反应进度是毫无意义的
36
第2章 化学热力学基础
νB
有一反应
N2(g) + 3H2(g)→ 2NH3(g)
t=0: n1(B)/mol 3.0 10.0
0.0
t=t´:n2(B)/mol 2.0 7.0
2.0
Δn(B)/mol -1.0 -3.0
2.0
33
第2章 化学热力学基础
§2.2 热化学
即消耗了 1.0 mol N2,3.0 mol H2,生成了 2.0 mol NH3,那么反应进度变化等于
定 压 过 程
第二章化学热力学基础

2.2 热力学第一定律
2.2.1 热和功:
1、热 Q:是体系与环境间存在温度差而引起的能量传 递。单位:J
规定:体系从环境吸热为正,Q 0;体系向环境放 热为负,Q 0 。 2、功W:在热力学中,除热以外的其他的能量传递形 式称为功。单位:J
规定:体系从环境得功为负, W 0 ;体系对环境 作功为正, W 0 。 体积功:是体系体积变化所对外作的功。W体= p外 V 非体积功W非:电功、机械功、表面功等。
3、热和功都不是体系的状态函数。
注意:不能说体系含有多少热和功,只能说体系在 变化过程中作了功或吸收了热。温度高的物体可说 具有较高能量,但不能说体系具有较高热量。
热和功都不是体系的状态函数,所以,若途经 不同,即使始、终态相同,热和功的值也不会相同 (与状函的区别);故不能设计途经计算热和功。
2.2.2 热力学第一定律
1、热力学能U(内能):体系内部一切能量的总和(分 子平动能、转动能、振动能、位能、核能、键能等)。
单位:J 特点: 热力学能U(内能)是体系的状态函数。
状态一定时,热力学能U有确定值(U不能测);热力学 能的改变值 U只与始、终态有关( U可计算)。 2、热力学第一定律:即能量守恒与转化定律。 3、热力学第一定律的数学表达式: U= Q -W
第二章 化学热力学基础
本章要求:
了解热力学能、焓、熵、吉布斯自由能四个热力学 函数的意义及相互关系,了解 H, rHm, rHm , fHm , CHm , S, rSm ,rSm,, rSm ,G, rGm ,, rGm , fGm 的意义。 了解热力学第一定律、第二定律和盖斯定律。 掌握化学反应在标准状态下的rHm 、rSm 、rGm 的计算。 熟练运用吉布斯-赫姆霍兹方程判断反应自发进行方 向。
大学基础化学第四章化学热力学基础_思维导图

化学热力学基础热力学系统和状态函数热力学概念系统与环境系统定义环境定义系统类型1.开放系统定义2.封闭系统定义3.隔离系统定义状态函数与过程状态定义平衡态定义状态函数定义取决于系统所处的状态,一旦状态确定,每个状态函数有唯一确定的值状态函数的变化值并不是系统状态,其变化值与中间环节无关分类广度性质定义例子:体积,物质的量,质量,自由能等强度性质定义例子:温度,密度,压力,浓度两者关系:强×广=广,广 广=强状态方程(物态方程)定义例子:PV=nRT过程定义分类等温过程等压过程等容过程绝热过程循环过程可逆过程自发过程特征单向性(不可逆过程)具有做功的能力具有一定的限度定义能量的转化热和功热定义符号表示正值和负值分别表示功定义符号表示正值和负值分别表示注意1:热和功都不是状态函数,不是系统的性质2:只存在于系统的变化过程中,其大小与途径密切相关以理想气体的等温膨胀为例体积功定义(We)公式公式中的单位Pa,m^3例子反抗外压的过程中非体积功定义(Wf)可逆过程(可逆功Wr)与最大功最大功公式可逆过程与不可逆过程的区别系统和环境能否同时恢复到原来的状态可逆过程是不可能实现,时间无限长每一微小步环境和系统都是平衡的能量守恒和化学反应热热力学能(内能)(广度性质)定义(系统内部)(状态函数)符号表示和单位理想气体的内能和焓只与温度有关热力学第一定律(能量守恒与转化定律)表述系统热力学变化公式(封闭系统)系统的焓定义(状态函数)(广度性质)符号表示与单位焓变的定义(后-前)正负分别表示H=U+pV等容反应的热效应dU=Qv(dV=0)(封闭系统无非体积功)(等容反应热等于系统内能的变化)热效应的概念:系统发生变化时,若无非体积功,且终与始态的温度相同,则系统放出或吸收的热量就称为该过程的热效应等压反应的热效应dU=Qp+W=Qp+p外×dVQp=(U2-U1)+p外(V2-V1)=(U2+p外V2)+(U1+p外V1)Qp=H2-H1=dH封闭系统无非体积功,等压反应热等于系统焓变等压与等容的关系反应物,产物均为气体dn=0——则Qp≈Qv反应物,产物都在溶液和固体中的反应可认为dV=0——则Qp≈Qv反应进度,热化学方程式与标准状态反应进度定义(对于反应物为负值,对于生成物为正值)式子表示单位摩尔反应热书写形式定义与方程式的写法有关标准状态(标准压强100KPa)对气体(理想气体,标准压强)(混合气体的每个气体的分压都是标准压强)对纯液体和纯固体(标准压强)对溶液(标准压力,溶质浓度1mol/L理想稀溶液)对溶剂(标准压力)对生物系统(37度,PH=7)参考温度:298.15K(25°C)热化学反应方程式热化学反应方程式中的热效应符号写法(4点)注意事项(3点)盖斯定律和反应热的计算盖斯定律的运用盖斯定律(不做非体积功和等压或等容以及恒温条件下)由标准摩尔生成焓计算反应热摩尔生成焓与标准摩尔生成焓定义符号单位C的稳定单质是石墨不是金刚石稳定物质的标准摩尔生成焓为零生成物质的化学计量数要为1式子(反应式产物-反应物)(化学计量数都取正值)同一种物质不同聚集状态的标准摩尔生成焓不同由标准摩尔燃烧焓计算反应热标准摩尔燃烧焓定义单位符号式子(反应物-产物)(化学计量数都带正号)理解完全燃烧和完全氧化(其标准摩尔燃烧焓为0)熵和Gibbs自由能熵(状态函数)(广度性质)定义单位符号等温可逆过程熵与反应热的关系式温度对熵的影响热力学第三定律定义规定熵(ST)与绝对熵(S0)标准摩尔熵定义单位符号稳定物质单质的标准摩尔熵不为0,因为不是绝对零度的完整晶体对于水溶液中离子的标准摩尔熵是....标准摩尔熵的规律(6个)标准摩尔熵变(后-前)熵增加原理(热力学第二定律)定义数学表达式熵变与0的比较的含义Gibbs自由能(广度性质)(状态函数)符号表示式子吉布斯自由能变化和非体积功用吉布斯自由能变化判定反应方向标准状态下标准摩尔自由能定义符号单位稳定物质单质标准摩尔自由能为0计算两个式子(一个只能在25度时,另一个任意)注意单位统一非标准状态下式子反应商对溶液对纯气体对混合相判断反应的依据。
化学热力学基础公式总结

化学热力学基础公式总结好嘞,以下是为您生成的化学热力学基础公式总结的文章:在咱们化学的世界里,化学热力学就像是一个神秘的大迷宫,而那些基础公式就是打开迷宫大门的钥匙。
今儿个,咱就来好好捋一捋这些关键的钥匙。
先来说说热力学第一定律,这可是个超级重要的家伙!它的表达式是△U = Q + W 。
这其中的△U 代表着系统内能的变化,Q 表示系统吸收或放出的热量,W 则是系统对外界做的功或者外界对系统做的功。
我记得有一次给学生们讲这个公式的时候,有个小家伙一脸迷茫地问我:“老师,这到底啥意思啊?”我就给他举了个例子。
比如说,咱们把一个气球当成一个系统。
往气球里吹气,就相当于对这个系统做功 W ,气球里的空气温度升高,这就是系统内能的变化△U 增加了。
而如果把气球放在太阳底下晒,气球里的空气吸收了热量 Q ,温度也会升高,同样会导致△U 的增加。
这么一解释,那小家伙恍然大悟,眼睛都亮了起来。
接下来是热力学第二定律,它有好几种表述方式。
其中克劳修斯表述是:热量不能自发地从低温物体传递到高温物体。
开尔文表述则是:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
这个定律听起来有点绕,我给您说个生活中的例子。
就好比夏天的时候,您要是把一杯热水放在室温下,它会自己慢慢变凉,可不会反过来自己变热,这就是热量不会自发地从低温环境传到高温环境。
再说说热力学第三定律,当系统的温度趋近于绝对零度时,系统的熵趋近于一个定值。
说到熵这个概念,好多同学一开始都觉得头疼。
但其实啊,您就把它想象成系统的混乱程度就行。
比如说一个乱糟糟的房间,东西到处乱放,这熵就大;要是收拾得整整齐齐,熵就小。
还有吉布斯自由能的公式△G = △H - T△S 。
这里的△G 是吉布斯自由能变化,△H 是焓变,T 是热力学温度,△S 是熵变。
当△G < 0 时,反应自发进行;当△G > 0 时,反应非自发进行;当△G = 0 时,反应达到平衡。
普通化学 第一章 化学热力学基础
1 1 (91.8kJ mol-1 ) 30.6 kJ mol-1 Δr H Δ H m,2 3 r m 3
(3)
NH3 ( g )
Δr H m,3
3 1 H2 ( g) N2 ( g ) 2 2 1 1 (91.8 kJ mol-1 ) 45.9 kJ mol-1 Δ r H m 2 2
体系由始态到终态,状态发生了变化,则称体系经历 了一个热力学过程,简称过程。 在状态发生了变化过程中,若体系的始态和终态温度
相等并且等于恒定的环境温度,称为“恒温过程”;同
样,若体系的始态和终态压力相等并且等于恒定的环境 压力,称为“恒压过程”;若体系的体积保持不变称为 “恒容过程”。若体系变化时和环境之间无热量交换, 则称之为“绝热过程”。
“生成”之意。例如:
1 H 2 ( g ) O 2 ( g ) H 2 O(l ) 2
1 Δr H ( 298 .15 K) 285.8 kJ mol m
普通化学
1.3.2 化学反应的标准摩尔焓变的计算
对任一个化学反应来说 dD eE gG hH 其反应物和生 成物的原子种类和个数是相同的,因此我们可以用同样 的单质来生成反应物和生成物,如图1.5所示。
与Q之和。
U Q W
(1.2)
式(1.2)为封闭体系中热力学第一定律的数学表达式。
普通化学
1.2.1 热力学第一定律
例1.1 设能量状态为U1的体系,体系输出200 J的热量,
Q 200 J
环境对体系做了350 J的功,求体系能量变化和终态能量U2。 解: 由题意
W 350 J
普通化学
普通化学
目 录
大学化学化学热力学基础
真实气体状态方程在科研和工程中的应用举例
石油工业
利用真实气体状态方程预测天然气在地下的分布和储量,指导油气 田的开发和生产。
化学工程
在化工过程中涉及气体的压缩、膨胀、冷却和加热等操作,需要利 用真实气体状态方程进行精确计算和控制。
航空航天工程
在飞机和火箭的发动机设计中,需要考虑高温高压下气体的性质和行 为,真实气体状态方程为相关计算提供了重要依据。
压条件。
混合气体中各组分性质变化规律探讨
道尔顿分压定律
混合气体的总压力等于各组分气 体分压之和,分压与各组分的摩 尔分数成正比。
阿马格分体积定律
混合气体的总体积等于各组分气 体分体积之和,分体积与各组分 的摩尔分数成正比。
亨利定律
在一定温度和平衡状态下,气体 在液体中的溶解度与液面上该气 体的平衡压力成正比。
04
相平衡与相图分析
相平衡条件及相律应用
相平衡条件
在恒温恒压下,当多相系统中各相的性质和数量均不随时间变化时,称系统处于相平衡状态。此时, 各相中的组元成分和物性均保持恒定,且各相间的宏观物质交换达到动态平衡。
相律应用
相律是描述相平衡系统中相数、组元数和自由度之间关系的定律。对于简单系统,相律可表示为F=CP+2,其中F为自由度,C为组元数,P为相数。利用相律可以判断系统可能存在的相数及自由度,进 而分析系统的相平衡状态。
大学化学化学热力学基础
目 录
• 热力学基本概念与定律 • 热力学在化学反应中的应用 • 热化学方程式及计算 • 相平衡与相图分析 • 化学平衡移动原理及影响因素探讨 • 非理想气体状态方程及混合气体性质研究
01
热力学基本概念与定律
热力学系统及其分类
大学化学热力学基础习题集答案
第一章2005-7-24无机热力学试题集一 . 选择题:1.(本题 1分) 3411体系对环境作 20 kJ 的功, 并失去 10 kJ 的热给环境, 则体系内能的变化是-------------------------------------------------------------( d )(A) +30 kJ (B) +10 kJ (C) -10 kJ (D) -30kJ2.(本题 1分) 3418在标准压力和 373 K下, 水蒸气凝聚为液态水时体系中应是-------( )(A) DH= 0 (B) DS = 0 (C) DG = 0 (D) DU = 03.(本题 1分) 3426某体系在失去 15 kJ 热给环境后, 体系的内能增加了 5 kJ, 则体系对环境所作的功是-----------------------------------------------------( )(A) 20 kJ (B) 10 kJ (C) -10 kJ (D) -20 kJ4.(本题 1分) 3458一个体系从一个特定的开始状态到终止状态总是有---------------( )(A) Q途径1 = Q途径2(B) W途径1 = W途径2(C) ( Q - W)途径1 = ( Q - W)途径2(D) DU = 0, 与途径无关5.(本题 1分) 3471H2O(l, 100℃, 101.3 kPa)→ H2O(g, 100℃, 101.3 kPa),设H2O(g)为理想气体, 则由始态到终态体系所吸收的热量 Q为---------------------( )(A) > DH (B) < DH (C) = DH (D) =DU6.(本题 1分) 3473对于任一过程, 下列叙述正确的是---------------------------( )(A) 体系所作的功与反应途径无关(B) 体系的内能变化与反应途径无关(C) 体系所吸收的热量与反应途径无关(D) 以上叙述均不正确7.(本题 2分) 0401H2(g)+1/2O2(g) H2O(l)的 Qp 与 Qv 之差(kJ·mol-1)是---( )(A) -3.7 (B) 3.7(C) 1.2 (D) -1.28.(本题 2分) 0402已知 HCN(aq) 与 NaOH(aq) 反应, 其中和热是 -12.1 kJ·mol-1,H+(aq) + OH-(aq) = H2O(l) DrHm° = -55.6 kJ·mol-1, 则 1 mol HCN 在溶液中电离的热效应(kJ·mol-1)是--------------------------------( )(A) -67.7 (B) -43.5(C) 43.5 (D) 99.19.(本题 2分) 0403已知 2PbS(s) + 3O2(g) =2PbO(s) + 2SO2(g) DrHm° =-843.4 kJ·mol-1则该反应的 Qv 值是--------------------------------------------( )(A) 840.9 (B) 845.9(C) -845.9 (D) -840.910.(本题 2分) 0404如果体系经过一系列变化,最后又变到初始状态,则体系的---------( )(A) Q= 0 W= 0 DU= 0 DH= 0(B) Q≠0W≠0 DU= 0 DH= Q(C) Q= W DU= Q- W DH= 0(D) Q≠ W DU= Q- W DH= 011.(本题 2分) 0408在一定温度下:(1) C(石墨) + O2(g) = CO2(g) DH1(2) C(金刚石) + O2(g) = CO2(g) DH2(3) C(石墨) = C(金刚石) DH3 =1.9 kJ·mol-1 其中 DH1 和 DH2 的关系是-------------------------------------( )(A) DH1 > DH2 (B) DH1 <DH2(C) DH1 = DH2 (D) 不能判断12.(本题 2分) 0409若两个液态组分混合形成理想溶液,则混合过程的----------------( )(A) DV= 0 DH= 0 DS= 0 DG= 0(B) DV> 0 DH< 0 DS< 0 DG> 0(C) DH= 0 DV= 0 DS> 0 DG< 0(D) DH> 0 DV< 0 DG< 0 DS> 013.(本题 2分) 0410某恒容绝热箱中有CH4和O2混合气体,通电火花使它们起反应(电火花的能可以不计),该变化过程的-------------------------------------------( )(A) DU= 0, DH= 0 (B) DU= 0, DH> 0(C) DU= 0, DH< 0 (D) DU< 0, DH> 014.(本题 2分) 0416已知 Zn(s) + 1/2O2(g) = ZnO(s) DrHm° 1 = -351.5 kJ·mol-1Hg(l) + 1/2O2(g) = HgO(s,红) DrHm° 2 = -90.8 kJ·mol-1则 Zn(s) + HgO(s,红) = ZnO(s) + Hg(l) 的DrHm° 为(kJ·mol-1)--( )(A) 442.3 (B) 260.7(C) -260.7 (D) -442.315.(本题 2分) 0493100℃,101.3 kPa 的H2O(l)在真空容器中蒸发为100℃,101.3 kPa H2O(g),则下述不正确的是-----------------------------------------------( )(A) DU = 0 (B) DG = 0 (C) DH = Q (D) DS= Q/37316.(本题 2分) 3409萘燃烧的化学反应方程式为:C10H8 (s) + 12 O2(g) == 10 CO2(g) + 4 H2O(l)则 298 K时, Qp 和 Qv 的差值(kJ·mol-1)为---------------------( )(A) -4.95 (B) 4.95 (C)-2.48 (D) 2.4817.(本题 1分) 3459相同的反应物转变成相同的产物时, 如果反应分两步进行, 那么要比一步进行时-----------------------------------------------------------( )(A) 放热多 (B) 熵增加多(C) 内能增加多 (D) 焓、熵、内能变化相同18.(本题 1分) 0411下列单质的DfHm° 不等于零的是-------------------------------( )(A) Fe(s) (B) C(石墨)(C) Ne(g) (D) Cl2(l)19.(本题 1分) 0415在下列反应中,焓变等于AgBr(s)的DfHm° 的反应是---------------( )(A) Ag+(aq) + Br-(aq) == AgBr(s)(B) 2Ag(s) + Br2(g) == 2AgBr(s)(C) Ag(s) + 1/2Br2(l) == AgBr(s)(D) Ag(s) + 1/2Br2(g) == AgBr(s)20.(本题 1分) 0418根据热力学知识,下列定义中不正确的是------------------------( )(A) H2(g)的DfGm° =0 (B) H+(aq)的DfGm° = 0(C) H(g)的DfHm° =0 (D) H2(g)的DfHm° = 021.(本题 2分) 0420由图可知下述描述正确的是-----------------------------------( )(A) 该反应为吸热反应 (B) 反应的焓变为- y(C) 反应的活化能= y (D) 反应的 DH= x+ y22.(本题 1分) 0427CO2(g)的生成焓等于-----------------------------------------( )(A) 金刚石的燃烧热 (B) 石墨的燃烧热(C) CO(g)的燃烧热 (C) 碳酸钙分解的焓变23.(本题 2分) 0428下列反应中释放能量最大的是---------------------------------( )(A) CH4(l)+2O2(g)→CO2(g)+2H2O(g)(B) CH4(g)+2O2(g)→CO2(g)+2H2O(g)(C) CH4(g)+2O2(g)→CO2(g)+2H2O(l)(D) CH4(g)+3/2O2(g)→CO(g)+2H2O(l)24.(本题 1分) 0491F2 ,Cl2,Br2 ,I2 的键能(kJ·mol-1)分别为155,243,193,151, 则最强键为---------------------------------------------------------( )(A) F─F 键(B) Cl─Cl 键(C) Br─Br 键(D) I─I 键25.(本题 2分) 0496反应Na2O(s) + I2 (g) → 2NaI(s) + 1/2O2(g) 的DrHm° 为------( )(A) 2DfHm° (NaI,s) - DfHm° (Na2O,s)(B) DfHm° (NaI,s)- DfHm° (Na2O,s)- DfHm° (I2,g)(C) 2DfHm° (NaI,s) - DfHm°(Na2O,s) - DfHm° (I2,g)(D) DfHm° (NaI,s) - DfHm° (Na2O,s)26.(本题 2分) 3412CuCl2(s) + Cu(s) == 2CuCl(s) DrHm° = 170 kJ·mol-1 Cu(s) + Cl2(g) == CuCl2(s) DrHm° = -206 kJ·mol-1 则 CuCl(s) 的DfHm°应为-------------------------------------( )(A) 36 kJ·mol-1 (B) 18 kJ·mol-1(C) -18 kJ·mol-1 (D) -36 kJ·mol-127.(本题 2分) 3417结晶硅和无定形硅的摩尔燃烧热分别为 -850.6 和 -867.3 kJ·mol-1 , 则由结晶硅转化为无定形硅的DrHm° 应为-----------------------------( )(A) +16.7 kJ·mol-1 (B) +16.7 kJ(C) -16.7 kJ·mol-1 (D) 不能确定28.(本题 1分) 34212NH3(g) + 3Cl2 (g) == N2(g) + 6HCl(g) DfHm° = -461.5 kJ·mol-1,温度升高 50 K, 则 DfH m°应为----------------------------------( )(A) 大> -461.5 kJ·mol-1 (B) 小< -461.5 kJ·mol-1(C) ≈ -461.5 kJ·mol-1 (D) = -461.5 kJ·mol-129.(本题 2分) 3428已知物质 C2H4(g) CO(g) H2O(g)DfHm°/kJ·mol-1 52.3 -110.5 -242.0则反应: C2H4 (g) + 2O2(g) == 2CO(g) + 2H2O(g) 的DrHm°为----( )(A) -300 kJ·mol-1 (B) -405 kJ·mol-1(C) -652 kJ·mol-1 (D) -757 kJ·mol-130.(本题 2分) 3429已知物质 C2H6(g) C2H4(g) HF(g)DfHm°/kJ·mol-1 -84.7 52.3 -271.0则反应: C2H6 (g) + F2 (g) == C2H4 (g) + 2HF(g) 的DrHm°为-------( )(A) 405 kJ·mol-1 (B) 134 kJ·mol-1(C) -134 kJ·mol-1 (D) -405 kJ·mol-131.(本题 2分) 3430已知化学键H─H Cl─ClH─Cl键焓/kJ·mol-1 436 239431则可估算出反应 H2(g) + Cl2(g) == 2HCl(g) 的DrHm°为----------( )(A) -224 kJ·mol-1 (B) -187 kJ·mol-1(C) +187 kJ·mol-1 (D) +224 kJ·mol-132.(本题 2分) 3431已知化学键C─H C─Cl Cl─Cl C=C C─C键焓/kJ·mol-1 413 326 239 619348则可估算出反应 H2C=CH2 + Cl2 == H2C─CH2 的DrHm° 为-----------( )││Cl Cl(A) -381 kJ·mol-1 (B) -142 kJ·mol-1(C) +142 kJ·mol-1 (D) +381 kJ·mol-133.(本题 1分) 3439下列物质的DfHm° 不等于零的是-------------------------------( )(A) Fe(s) (B) O(g)(C) C (石墨) (D) Ne(g)34.(本题 1分) 3456下列两个反应在某温度、101 kPa时都能生成 C6H6 (g)① 2 C(石) + 3H2(g) → C6H6 (g)② C2H4(g) + H2(g) → C6H6 (g)则代表 C6H6 (g)标准摩尔生成焓的反应是--------------------------( )(A) 反应① (B) 反应①的逆反应(C) 反应② (D) 反应②的逆反应35.(本题 2分) 0412在标准条件下石墨燃烧反应的焓变为 -393.7 kJ·mol-1,金刚石燃烧反应的焓变为-395.6kJ·mol-1,则石墨转变成金刚石反应的焓变为-----------( )(A) -789.3 kJ·mol-1 (B) 0(C) +1.9kJ·mol-1 (D) -1.9kJ·mol-136.(本题 2分) 0413已知在标准条件下石墨的燃烧焓为-393.7kJ·mol-1,石墨转变为金刚石反应的焓变为+1.9kJ·mol-1,则金刚石的燃烧焓(kJ·mol-1)应为----------( )(A) +395.6 (B) +391.8(C) -395.6 (D) -391.837.(本题 2分) 0414已知NH3(g)的DfHm° =-46 kJ·mol-1,H-H键能为435 kJ·mol-1,N≡N键能为941 kJ·mol-1, 则N-H键的平均键能(kJ·mol-1)为------------------( )(A)-390 (B) 1169(C) 390 (D)-116938.(本题 2分) 0419下述叙述中正确的是-----------------------------------------( )(A) 在恒压下,凡是自发的过程一定是放热的。
化学热力学的基本定律
化学热力学的基本定律化学热力学是研究物质在化学反应中能量变化以及与热的关系的科学。
它为理解反应的性质、平衡条件及反应进行的方向提供了重要的理论基础。
以下将详细探讨化学热力学的基本定律,包括其定义、意义和应用。
第一法则:能量守恒定律能量守恒定律是热力学中最基本的定律之一,表明在封闭系统内,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
在化学反应过程中,反应物的化学能可以转化为热能、光能或其他形式的能量。
例如,在燃烧反应中,化学能转化为热量和光,而这部分热量可以用来加热周围环境或用于做功。
内能和功在实践中,重点关注的是系统的内能(U),这是系统内所有分子动能和势能的总和。
对于一个封闭系统,其内能变化等于系统吸收的热量(Q)与做功(W)的代数和:[ U = Q - W ]这个公式告诉我们,在进行任何物理或化学过程时,如果系统吸热,则内能增加;如果系统放热,则内能减少。
同时,如果系统对外界做功,内能会减少;如果外界对系统做功,内能会增加。
实际上,这一法则在许多领域都发挥着重要作用。
例如,在发动机内部燃料燃烧过程中,燃料的化学能释放出大量热量,使得发动机工作的转子做功,从而推动汽车前进。
这充分体现了第一法则在日常生活中的应用。
第二法则:熵增定律第二法则描述了自然界中过程的方向性,并引入了熵(S)这一概念。
熵被视为是系统无序程度的度量。
在一个孤立系统中,熵总是有增无减,即:[ S_{} ]这一原理意味着自发过程总是伴随熵增,比如冰块在室温下融化,在此过程中,分子的无序程度增加,导致整体熵值上升。
自发过程与非自发过程自发过程是指在没有外部功引入的情况下可以自动进行的过程。
反之,非自发过程需要外部条件或功的支持才能发生。
在标准状态下,若一个反应的 Gibbs 自由能(G)下降,则该反应为自发反应,可以通过以下公式来描述:[ G = H - TS ]其中, ΔH代表焓变化, T代表绝对温度。
在高温条件下,熵增对 Gibbs 自由能的影响更加显著,这意味着高温环境下,自发过程更容易发生。