线性方程组的解法与矩阵运算
矩阵与线性代数方程组

解出:
Y
y1 y2
yn
其中
y1 yi
b1 bi
i 1
mij
j 1
yj
,( i
2,3,
,n)
X
x1 x2
其中
xn
yn unn
i1
yi uij x j
,( i
2,3,
xn
xi
jn
uii
,n)
三角分解的要求
LU 分解法需要系数矩阵的各阶顺序主子式都大于零。 设 A 为一个 n 阶矩阵,假设高斯消去法可求解经过行变 换的一般线性方程组 AX b ,则存在一个置换矩阵 P ,使 得 PA 可分解为一个下三角阵 L 和一个上三角阵U : PA LU ,
▪ Aug(j+p-1,:)=C;
▪ if Aug(p,p)==0
程
▪ 'A是奇异阵,方程无惟一解'
序
▪ break ▪ end
:
MATLAB
▪ for k=p+1:N
▪ m=Aug(k,p)/Aug(p,p);
▪ Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);
0
n2
0
0
mnn
nn
x1
x2
xn
高斯消去法的计算量
归一化
n
n k 1
k 1
消元
n
n k 1n k
k 1
回代
n
n k
k 1
1 n n2 3n 1 1 n3
3
3
计算中的稳定性问题
▪ |akk|计算时作分母 ▪ 当|akk|等于0时,运算中断 ▪ 当|akk|很接近0时,商损失精度或太大产生
线性方程组的解法与矩阵的秩

线性方程组的解法与矩阵的秩线性方程组是数学中常见的问题,研究线性方程组的解法有助于我们理解和解决复杂的线性关系。
而矩阵的秩是评估矩阵性质与解决方程组的重要指标之一。
本文将介绍线性方程组的几种解法,并深入探讨矩阵的秩对于解方程组的作用。
一、高斯消元法高斯消元法是求解线性方程组的传统方法之一。
通过初等行变换将线性方程组转化为简化的行阶梯形式,再倒推得到未知数的特定解。
根据高斯消元法的步骤,我们可以将线性方程组的解逐步求得。
二、矩阵的秩在讨论矩阵的秩之前,先介绍一下矩阵的概念。
矩阵是由数按照一定规则排列组成的矩形阵列。
在矩阵中,行和列是基本的组成单位。
而矩阵的秩是指线性无关的行(列)的最大数目。
矩阵的秩与线性方程组之间有重要的联系。
当我们将线性方程组写成矩阵形式Ax=b时,如果矩阵A的秩与方程组的未知数个数相等,那么该方程组有唯一解。
当矩阵A的秩小于未知数个数,方程组无解;当矩阵A的秩等于未知数个数,方程组有无穷多个解。
三、矩阵的初等行变换矩阵的初等行变换是指通过三种基本操作改变矩阵的行,从而得到一个新的矩阵的过程。
这三种基本操作分别是:交换两行,其中一行乘以一个非零数后加到另一行,以及一行乘以一个非零数。
通过这些基本操作,我们可以将矩阵转化为行阶梯形式,便于求解线性方程组。
四、矩阵的秩与线性无关矩阵的秩与线性无关性质有密切关系。
对于一个矩阵,其行(列)向量组中的各向量之间的线性关系与矩阵的秩有直接联系。
当矩阵的秩等于向量个数时,它们是线性无关的;当矩阵的秩小于向量个数时,它们是线性相关的。
通过判断矩阵的秩,我们可以得知向量组的线性关系。
五、矩阵的秩与解方程组矩阵的秩在解决线性方程组时发挥重要作用。
当矩阵A的秩等于未知数个数时,方程组有唯一解。
我们可以利用高斯消元法或矩阵的求逆等方法求解。
当矩阵A的秩小于未知数个数时,方程组无解。
这时我们可以通过矩阵的列空间和行空间来分析方程组的性质。
当矩阵A的秩小于列数,并且行空间中包含自由变量时,方程组有无穷多个解。
线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。
解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。
本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。
一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。
它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。
首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。
然后,通过行变换将增广矩阵化为阶梯形或行最简形。
最后,通过回代法求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现。
但是,当方程组的规模较大时,计算量会很大,效率较低。
二、矩阵法矩阵法是求解线性方程组的另一种常见方法。
它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,通过矩阵运算将方程组化为矩阵的乘法形式。
最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。
矩阵法的优点是计算效率高,适用于方程组规模较大的情况。
但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。
三、迭代法迭代法是求解线性方程组的一种近似解法。
它的基本思想是通过迭代计算逐步逼近方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。
最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。
迭代法的优点是计算过程简单,适用于方程组规模较大的情况。
但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。
综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。
在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。
线性微分方程组的解法

线性微分方程组的解法线性微分方程组是由多个关于未知函数及其导数的线性方程组成的,可以用矩阵形式来表示。
解这类方程组的方法有很多种,例如矩阵法、特征方程法等。
下面将介绍线性微分方程组的解法。
一、线性微分方程组的矩阵法考虑一个n个未知函数的线性微分方程组:$\frac{d}{dt}\mathbf{y}=A\mathbf{y}$其中$\mathbf{y}=\begin{pmatrix}y_1 \\ y_2 \\ \vdots \\ y_n\end{pmatrix}$,A是一个$n \times n$的矩阵。
解法:1. 将线性微分方程组写成矩阵形式:$\frac{d}{dt}\mathbf{y}=A\mathbf{y}$2. 求出矩阵A的特征值和特征向量。
设特征值为$\lambda$,对应的特征向量为$\mathbf{v}$。
3. 根据特征值和特征向量,构造矩阵的对角形式:$D=\begin{pmatrix}\lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 &\cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\lambda_n \end{pmatrix}$4. 求出初值条件的向量$\mathbf{c}$,使得$\mathbf{y}(t=0) =\mathbf{c}$。
5. 利用变量分离法求出解向量$\mathbf{y}$:$\mathbf{y}=e^{At}\mathbf{c}$其中$e^{At}$表示矩阵的指数函数,它可以通过特征值和特征向量来计算,即:$e^{At}=P e^{Dt}P^{-1}$其中P是一个由特征向量组成的矩阵,$P^{-1}$是P的逆矩阵,$e^{Dt}$是一个由特征值构成的对角矩阵的指数函数:$e^{Dt}=\begin{pmatrix}e^{\lambda_1 t} & 0 & \cdots & 0\\ 0 &e^{\lambda_2 t} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{pmatrix}$6. 将解向量$\mathbf{y}$代入初值条件$\mathbf{y}(t=0) =\mathbf{c}$,求出常数向量$\mathbf{c}$的值。
线性方程组的解法知识点总结

线性方程组的解法知识点总结在数学中,线性方程组是一类常见且重要的数学问题。
解线性方程组可以帮助我们找到变量之间的关系,从而求出满足一组条件的未知数值。
本文将总结线性方程组的解法知识点,包括高斯消元法、矩阵法、克莱姆法则以及向量法等。
一、高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它通过一系列的行变换将线性方程组转化为行简化阶梯形,从而求解方程组的解。
高斯消元法的基本步骤如下:1. 转换为增广矩阵将线性方程组转换为增广矩阵,其中矩阵的最右侧一列是常数项。
2. 主元选择选择合适的主元,使得消元过程更加简化。
通常选择系数绝对值最大的元素作为主元。
3. 消元操作通过行变换的方式,将主元所在的列下面的元素全部消为零。
这一步需要注意保持增广矩阵的形式,并且避免除0操作。
4. 回代求解将简化后的增广矩阵转化为线性方程组,根据系数矩阵的特殊形式,我们可以通过回代的方式求解出未知量。
二、矩阵法矩阵法是另一种常用的求解线性方程组的方法,它利用矩阵的运算性质,将方程组转化为矩阵的乘法运算。
其基本步骤如下:1. 构建系数矩阵将线性方程组的系数写成矩阵的形式,形成系数矩阵A。
2. 构建常数矩阵将线性方程组的常数项写成矩阵的形式,形成常数矩阵B。
3. 求解逆矩阵判断系数矩阵的逆矩阵是否存在,若存在,则通过乘法运算求得未知量矩阵X。
4. 检验解将求解得到的未知量矩阵代入原方程组中,验证解的正确性。
三、克莱姆法则克莱姆法则是一种分别求解线性方程组未知量的方法,它利用行列式的性质,将方程组转化为行列式的运算。
其基本原理如下:1. 构建系数矩阵将线性方程组的系数写成矩阵的形式,形成系数矩阵A。
2. 计算行列式计算系数矩阵A的行列式值D。
3. 构建代数余子式矩阵将系数矩阵A中的某一列替换为常数矩阵B,形成代数余子式矩阵。
4. 求解未知量将代数余子式矩阵的行列式值除以系数矩阵的行列式值D,得到每个未知量的值。
四、向量法向量法是一种几何解法,通过向量的线性组合关系,求解线性方程组的未知量。
常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算董治军(巢湖学院 数学系,安徽 巢湖 238000)摘 要:微分方程组在工程技术中的应用时非常广泛的,很多问题都归结于它的求解问题,基解矩阵的存在和具体寻求是分歧的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过 方法求出基解矩阵,这时可利用矩阵指数exp A t ,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant CoefficientsZhijun Dong(Department of Mathematics,Chaohu CollegeAnhui,Chaohu)Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method.Keyword:linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent引言:线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X’=AX ★的基解矩阵的计算问题,这里A 是n n ⨯常数矩阵.一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ⨯矩阵A =ij a ⎡⎤⎣⎦n×n 和n 维向量X =()1,...,Tn X X 定义A 的范数为A =,1niji j a=∑ ,X =1nii x=∑设A ,B 是n×n 矩阵,x ,y 是n 维向量,易得下面两个性质: (1)AB ≤A B ,AX ≤A X ; (2)A B +≤A +B ,X Y +≤X +Y .2.矩阵指数exp A 的定义和性质:(!)定义:如果A 是一个n×n 常数矩阵,我们定义矩阵指数exp A 为下面的矩阵级数的和:exp A =!kA k k ∞=∑=E+A+22!A +…+!m A m +… (1.0)其中E 为n 阶单位矩阵,m A 是A 的m 次幂,这里我们规定0A =E ,0!=1 这个级数对于所有的A 都是收敛的.因次exp A 是一个确定的非负矩阵,特此外,对所有元均为0的零矩阵0,有exp0=E.事实上,由上面范数的性质(1),易知对于一切正整数k ,有!kA k ≤!k Ak ,又因对于任一矩阵A ,A 是一个确定的实数,所以数值级数E +A +22!A +…+!mA m +… 是收敛的.进一步指出,级数exp A t=!0kkA k k t ∞=∑在t 的任何有限区间上是一致收敛的. 事实上,对于一切正整数k ,当t ≤c (c是某一整数)时,有!k k A k t ≤!k kA k t ≤!k A k k c ,而数值级数()!kA c k k ∞=∑是收敛的,因而exp A t=!k kA k k t ∞=∑是一致收敛的.(2)矩阵指数exp A 的性质:①若矩阵A ,B 是可交换的,即AB=BA ,则exp A (A+B )=exp A exp B ;②对于任何矩阵A ,()1exp A -存在,且()1exp A -=exp (-A ); ③如果T 是非奇异矩阵,则 exp (1T -AT )=1T -(exp A )T . 3.有关常系数奇次线性微分方程组★的基本问题 定理1:矩阵Φ(t )=exp A t (1.1) 是★的基解矩阵,且Φ(0)=E.证明:由定义易知Φ(0)=E ,将(1.1)对t 求导,得'Φ(t )=()'exp At =A+21!A t+322!A t +…+1(1)!kk A k t --+… =A exp A t = A Φ(t ) 这就标明,Φ(t )是★的解矩阵,又det Φ(0)=det E =1 因此φ(t )是★的解矩阵. 证毕.注1:由定理1,我们可以利用这个基解矩阵推知★的任一解ϕ(t )=(exp A t )C 这里C 打、是一个常数向量.例1:如果A 是一个对角矩阵A=12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中未写出的元均为零) 试找出x '=Ax 的基解矩阵.解:由( 1.0)可得exp A t=E+12n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1!t +221222!2t n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+12!k kk t k k n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦+…=12n a t a ta t e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦根据定理1,这就是一个基解矩阵. 例2:试求x '=2102⎡⎤⎢⎥⎣⎦x 的基解矩阵. 解:因为A=2102⎡⎤⎢⎥⎣⎦=2002⎡⎤⎢⎥⎣⎦+0100⎡⎤⎢⎥⎣⎦而且后面的两个矩阵是可交换的,得到 exp A =exp 2002⎡⎤⎢⎥⎣⎦t ⋅exp 0100⎡⎤⎢⎥⎣⎦t=2200tt e e ⎡⎤⎢⎥⎣⎦222!01010000t E t ⎧⎫⎡⎤⎡⎤⎪⎪+++⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎩⎭但是20100⎡⎤⎢⎥⎣⎦=0000⎡⎤⎢⎥⎣⎦所以 级数只要两项,因此 基解矩阵是exp A t= 2101t t e ⎡⎤⎢⎥⎣⎦. 二.基解矩阵的计算1.基于特征值和特征向量型计算基解矩阵类似于一阶齐次线性微分方程,希望方程组★有形如()t t e C λϕ=的解,其中λ为待定的参数,C 为待定的n 维非零向量,将之代入方程组,得到 tte C Ae C λλλ=,即有 ()0E A C λ-= (1.2)要使齐次线性代数方程组(1.2)有非零解向量,应有det()0E A λ-= (1.3)称式(1.3)为方程组★的特征方程,称λ为A 的特征值.称非零向量C 为A 的对应于特征值λ的特征向量.于是有如下结论:()t t e C λϕ=为方程组★的充分需要条件是λ为A 的特征值,且C 为对应于λ的特征向量.这样就提供了用代数方法求解的平台.(1)设A 具有n 个线性无关的特征向量12,,n v v v ,它们对应的特征向量分别为12,n λλλ(不必各不相同)易知矩阵1212()(,,)nt t t n t e v e v e v λλλΦ=t R ∀∈是常系数齐次线性微分方程组★的一个基解矩阵.事实上,由上面讨论知道向量函数i ti e v λ(1≤i ≤n ) 都是方程组★的一个解,因此()t Φ是方程★的解矩阵.计算12det (0)det(,,)0n v v v Φ=≠ 于是()t Φ是方程组★的基解矩阵.注2:当A 是n 个分歧的特征值时,就满足上述性质.注3:此处()t Φ纷歧定是尺度基解矩阵exp A t ,但由线性微分方程组的一般理论知:存在一个n 个非奇异矩阵C ,有exp A =()t C Φ⋅ 令t=0,得C=1(0)-Φ 即exp A t=1()(0)t -Φ⋅Φ于是当A 是实矩阵时,则exp A t 为实的,这样上式就给出了一个构造实基解矩阵的方法.例3:利用特征值与特征向量求基解矩阵的方法,求解例1中的一个基解矩阵.解:显然A 是对角矩阵,它有n 个特征值(1)i i a i n λ=≤≤对于每个特征值i λ易知其对应的特征向量为(0,1,0)T i C =即有()0i i E A C λ-=而这些特征向量12,n C C C 线性无关,由注2,于是方程组有基解矩阵()121212(),,n n a ta ta ta t a tna t e e t e C e C e C e ⎡⎤⎢⎥⎢⎥Φ==⎢⎥⎢⎥⎣⎦这与例1 的计算结论一样.例4:试求方程组x Ax '=,其中3553A ⎡⎤=⎢⎥-⎣⎦的一个基解矩阵. 解:A 的特征值就是特征方程235det()634053E A λλλλλ---==-+=-的根,解之得1,235i λ=± 对应与特征值135i λ=+的特征向量,计算齐次线性代数方程11255()055u i E A u u i λ-⎡⎤⎡⎤-==⎢⎥⎢⎥⎣⎦⎣⎦ 因此1u i α⎡⎤=⎢⎥⎣⎦是对应于1λ的特征向量,类似的,可以求得对应于2λ的特征向量1i v β⎡⎤=⎢⎥⎣⎦ 其中,0αβ≠为任意常数,而121,1i v v i ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦是对应于12,λλ的两个线性无关的特征向量.根据注2,于是矩阵()()()()()123535123535(),i ti tt ti t i te ie t e v e v ie e λλ+-+-⎡⎤Φ==⎢⎥⎢⎥⎣⎦就是方程组的一个基解矩阵. 再由注3,实基解矩阵为()()()()()()()()13535353513123535353511cos5sin 5exp ()(0)11sin 5cos5i ti ti ti tt i ti ti t i te ie i e ie i t t At t e i i t t iee iee -+-+--+-+-⎡⎤⎡⎤-⎡⎤⎡⎤⎡⎤=ΦΦ===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(2)设A 有k 个分歧的特征值12,k λλλ它们的重数分别为12,,k n n n 其中12k n n n n +++=那么如何计算exp At ?回忆高等代数理论,对应于j n 重特征值j λ的如下线性代数方程组()0j nj E A u λ-= (1.4)的解全体构成n 维欧几里得空间的一个j n 维子空间()j U i j k ≤≤而且n 维欧几里得空间可暗示成12,k U U U 的直和,由此对于n 维欧几里得空间的每一个向量u ,存在唯一组向量12,ku u u 其中(1)j j u U j k ∈≤≤使得分解式为12k u u u u =+++(1.5)因此,一方面 对于★的初始值0(0)x x =,应用式(1.5)知存在j j v U ∈有012kx v v v =+++注意到空间j U 的构造,即知j v 是式(1.4)的解,即有()0j nj j E A v λ-=因而有()0l j j E A v λ-=,1j l n j k ≥≤≤ (1.6)另一方面,j E λ-为对角矩阵,因此由例1知exp()j j j ttj t e eEt e λλλλ---⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎣⎦故有()j t j e Et E λλ-= 计算(exp )(exp )j j At v At Ev =(exp )exp()j tj jAt e Et v λλ=-=(exp())j tj je A E t v λλ-=(()j tj e E t A E λλ+-+12122!(1)!()())n jj j n t t j j j n A E A E v λλ----++-所以方程组★满足初始条件()00x x =的解()t ϕ为()()()()012exp exp k t At x At v v v ϕ==+++=()()1!110exp i i j in kkttj j j i j j i At v e A E v λλ-===⎛⎫=- ⎪ ⎪⎝⎭∑∑∑ (1.7) 同时注意到()()()()()()12exp exp exp ,exp ,exp nAt At E At e At e At e ==其中[][][]121,0,0,0,1,00,0,1TTTn e e e ===即在上面初始条件中分别令01020,,n x e x e x e ===应用式(1.7)求得n 个解,然后以这n 个解作为列即得exp At .注4:当A 只有一个特征值时,即λ为n 重的,因此nv R ∀∈都有()0E A v λ-=这标明()nE A λ-为零矩阵.则()()exp exp exp exp tAt AtE At e Et λλ⎡⎤==-=⎣⎦()()1!0exp in itt i i e A E t A E λλλ-=-=-∑(1.8)注5:式(1.7)标明方程组的任一解都可以经过有限次代数运算求出.例5:若A 是例2中的矩阵,求初值问题()0,0x Ax x x '==的解和exp At . 解:本题用两种方法计算exp At 和()t ϕ方法一:易知1,22λ=是A 的二重特征值,此时,A 只有一个特征值,根据式(1.8)计算有exp At =()()()1222!12201i itttt i i t eA E e E t A E e =⎡⎤-=+-=⎢⎥⎣⎦∑和特解()t ϕ=(exp At )0x .方法二:1,22λ=是A 的二重特征值,这时212,n R =只有一个子空间1U ,0x =12x x ⎡⎤⎢⎥⎣⎦不需要分解,根据式(1.7)有()t ϕ=()1222022t tx tx e E t A E x e x +⎡⎤+-=⎡⎤⎢⎥⎣⎦⎣⎦. 分别取010210,01x e x e ⎡⎤⎡⎤====⎢⎥⎢⎥⎣⎦⎣⎦代入上式中的()t ϕ中,则()()22121,01tt t t e t e ϕϕ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦所以()()()2121exp ,01t t At t t e ϕϕ⎡⎤==⎢⎥⎣⎦和特解()t ϕ=()0exp At x . 例6:考虑方程组x Ax '=,其中311201112A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦试求满足初始条件()[]01230Tx x x x x ==的解,并求exp At .解:A 的特征方程为()()()2311det 21120112E A λλλλλλ--⎡⎤⎢⎥-=--=--=⎢⎥⎢⎥--⎣⎦121,2λλ==分别为121,2n n ==重特征根,为了确定3R 的子空间12,U U 由式(1.4) 首先考虑齐次线性代数方程组()1232112110111u A E u u u λ-⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦解得[]1011T u α=,其中α为任意常数. 因此1U 是由1u 构成的一维子空间,其次考虑齐次线性方程组()122300021100110u A E u u u ⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦解得2101001u βγ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中,βγ为任意常数.因此2U 是由2u 构成的二维子空间.下面对初值()00x x =进行分解,有012x u u =+ 即123010110101x x x αβγ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦于是112121213210,x v x x v x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦根据式( 1.7) 有()()2122t t t e Ev e E t A E v ϕ=++-⎡⎤⎣⎦=()()13212211321213210t t x t x x x e x x e x t x x x x x x x x +-+⎡⎤⎡⎤⎢⎥⎢⎥-++-+⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦最后为了得到exp At ,依次分别令0001000,1,0001x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦代入上式得到3个线性无关解()()()123,,t t t ϕϕϕ 于是()()()()()2222221232221exp 1tt t t tt t t t t t tt t e te te At t t t e t ee te te e e e e e ϕϕϕ⎡⎤+-⎢⎥==-++-⎡⎤⎣⎦⎢⎥⎢⎥-+-⎣⎦2:“哈密顿-凯莱”法:设A 是方程组★的n n ⨯实系数矩阵,()p λ是A 的特征多项式,()()111det n n n n p A E a a a λλλλλ--=-=++++特征方程为A 的()111nn n n p a a a λλλλ--=++++=0 (1.9)方程( 1.9)的根12,n λλλ是矩阵A 的特征多项式,且有()()()()11n n p λλλλλλλ-=---哈密顿-凯莱定理:设()p λ是矩阵A 的特征多项式,则()1110n n n n p A A a A a A a E --=++++=亦即()()()()110n n p A A E A E A E λλλ-=---=定理:设12,n λλλ是矩阵A 的n 个特征值(它们纷歧定不相等)则()()110exp n i i i At r t p -+==∑(2.0)其中()()()011,i i i p E p A E A E A E λλλ-==---()1,2,i n =并有()()()12,n r t r t r t 是初值问题()()1111101,00j j j j j r r r r r r r λλ-⎧'=⎪⎪'=+⎨⎪==⎪⎩()2,3j n = (2.1)的解.推论:若A 只有一个特征值λ,则()1!exp exp in it i i At tA E λλ-==-∑上述定理将计算exp At 的问题转化为求方程组(2.1)满足初始条件的解的问题,由于方程组(2.1)是一个特殊的一阶常系数齐次线性方程组,容易直接求解.因而由公式(2.0)就可以直接求出方程组★的基解矩阵exp At .例7:求常系数齐次线性方程组x Ax '=,其中233453442A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦的解. 解:A 的特征方程为()()()()233det 453122442A E λλλλλλλ--⎡⎤⎢⎥-=--=-++-⎢⎥⎢⎥--⎣⎦=0 解得特征值为1231,2,2λλλ=-=-=求解初值问题:()()()112123231232201,00,00r r r r r r r r r r r ⎧'=-⎪⎪'=-⎪⎨'⎪=+⎪===⎪⎩ 得()()()2221111233412,,t t t t tr t e r t e e t r t e e e-----==-=-++又因()()11212333121212443,121212443121212p A E p A E A E λλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-=-=--=-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦则由公式:得()2222222221022222exp tt t t t t tt t tt t i i i t t t tt e e e e e At r t p e e e e e e e e e e e e -----+=--⎡⎤--+⎢⎥==-++--+⎢⎥⎢⎥---⎣⎦∑. 3:算子构造法: 其构造步调是:① 利用已引入的微分算子dD dx=写出★的微分算子暗示; ② 用算子法求解★的微分算子暗示的方程组得其通解:()()()()11221212,,,,,n n n n y x c c c y x c c c y x y x c c c ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ③ 依次令12100010,,001n c c c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 代入上述通解,则得★得n 个线性无关的特解()()()12,,n y x y x y x ;④ 以()()()12,,n y x y x y x 为列作成的矩阵()()()()12n Y x y x y x y x =⎡⎤⎣⎦就是★的基解矩阵,且★夫人矩阵指数函数形式的基解矩阵为:()()10Axe Y x Y -=.例8:试求方程组1211,13y y y y y -⎡⎤⎡⎤'==⎢⎥⎢⎥⎣⎦⎣⎦(2.2) 的基解矩阵,并求11.13Ax e A ⎛-⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭. 解:①(2.2)的算子暗示就是()()12121030D y y y D y -+=⎧⎪⎨-+-=⎪⎩ (2.3)②求解(2.3)111013D y D -⎡⎤=⎢⎥--⎣⎦即()2120D y -= (2.4) 于是(2.4)的通解为()2112xy C C x e=+12,C C 为任意常数 (2.5)(2.5)代入(2.3)的第一个方程得()()2221111221xx y D y Dy y C C x eC xe =--=-+=-+-故(2.3)的通解为()()2112222122x x xy C C x e y C C e C xe ⎧=+⎪⎨=-+-⎪⎩12(,C C 为任意常数) ③依次令1210,01C C ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得( 2.3)的两个线性无关解()()()221222,1x x x x xe e y x y x x e e ⎡⎤⎡⎤==⎢⎥⎢⎥-+-⎣⎦⎣⎦; ④ 以12,y y 作列而成的矩阵:()[]()()2221221111xx x x x e xe Y x y y e x ex e ⎡⎤⎡⎤===⎢⎥⎢⎥--+--+⎣⎦⎣⎦ 就是(2.2)的一个基解矩阵. ⑤求(2.2)的基解矩阵Axe 因()10011Y ⎡⎤=⎢⎥--⎣⎦,故()110011Y -⎡⎤=⎢⎥--⎣⎦于是Axe =()22110111111xx x x x e x x x e --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--+--+⎣⎦⎣⎦⎣⎦. 结束语:关于基解矩阵exp At 的计算,还可以利用矩阵的约当尺度型等有关线性代数知识进行计算,在此不作详述. 参考文献:[]1王高雄,周之铭,朱思铭,王寿松 常微分方程 高等教育出版社; []2西南师范大学数学与财经学院 常微分方程 西南师范大学出版社; []3肖箭,盛立人,宋国强 常微分方程简明教程 科学出版社; []4王翊,陶怡 常系数齐次线性微分方程组的解法 牡丹江大学学报.。
线性方程组的解法知识点总结

线性方程组的解法知识点总结在数学中,线性方程组是研究线性关系的重要工具。
解决线性方程组的问题有助于我们理解和应用线性代数的基本知识。
本文将总结线性方程组的解法,包括高斯消元法、矩阵的逆和克拉默法则。
一、高斯消元法高斯消元法是解决线性方程组的常见方法。
它通过逐步消去未知数,将方程组化简为上三角形式,并利用回代求解未知数的值。
步骤:1. 将线性方程组写成增广矩阵的形式,其中矩阵的最后一列是常数列。
2. 选取一个基准元素,通常选择矩阵的左上角元素或者第一列的首个非零元素。
3. 通过初等行变换,将基准元素下方的元素转化为零,从而将方程组化为上三角形式。
4. 从最后一行开始,通过回代求解未知数的值。
高斯消元法的优点是能够很好地处理大规模的线性方程组,但其缺点是计算量较大,并且可能需要进行主元交换。
二、矩阵的逆矩阵的逆也是解决线性方程组的重要方法。
对于一个非奇异方阵(可逆矩阵),我们可以通过求解逆矩阵来得到线性方程组的解。
步骤:1. 将线性方程组写成矩阵形式,其中系数矩阵为一个非奇异方阵。
2. 判断系数矩阵是否可逆。
如果可逆,则计算系数矩阵的逆矩阵。
3. 将方程组的常数列构成一个列矩阵,记为向量b。
4. 计算未知数向量x的值,即x = A^(-1) * b,其中A^(-1)为系数矩阵的逆矩阵。
矩阵的逆方法适用于已知系数矩阵可逆的情况,且计算矩阵的逆矩阵需要考虑到矩阵的性质和运算法则。
三、克拉默法则克拉默法则是一种解决线性方程组的特殊方法,适用于方程组的系数矩阵为方阵并且可逆的情况。
它利用行列式的性质来求解未知数的值。
步骤:1. 将线性方程组写成矩阵形式,并记为Ax = b,其中A为系数矩阵,x为未知数向量,b为常数向量。
2. 求解系数矩阵的行列式,记为det(A)。
3. 分别将系数矩阵每一列替换为常数向量b,得到新的矩阵A1到An。
4. 分别求解A1到An的行列式,得到d1到dn。
5. 根据克拉默法则,未知数向量x的值为x = (d1/det(A),d2/det(A), ..., dn/det(A))。
线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性方程组的解法与矩阵运算线性方程组是数学中的常见问题之一,它可以用来描述多个变量之间的线性关系。
解决线性方程组的常见方法是使用矩阵运算。
本文将介绍线性方程组的解法以及如何使用矩阵运算来求解。
一、线性方程组的基本概念
线性方程组是由多个线性方程组成的方程组,每个方程都是形如
a₁x₁ + a₂x₂ + ... + anxn = b的线性等式,其中a₁, a₂, ..., an为系数,x₁, x₂, ..., xn为变量,b为常数。
一个线性方程组可能有一个解、无穷多个解或者无解。
二、线性方程组的解法
1. 高斯消元法
高斯消元法是求解线性方程组的经典方法之一。
其步骤如下:
(1) 将线性方程组写成增广矩阵的形式;
(2) 通过矩阵的行变换,将增广矩阵化简为上三角矩阵;
(3) 回代求解未知数。
2. 矩阵求逆法
当线性方程组的系数矩阵可逆时,我们可以通过矩阵求逆的方法求解。
具体步骤如下:
(1) 将线性方程组的系数矩阵A和常数矩阵B写成增广矩阵的形式[A,B];
(2) 若A可逆,则通过矩阵的逆A⁻¹求得解矩阵X,其中X = [X₁, X₂, ..., Xn];
(3) 解矩阵X即为线性方程组的解。
三、矩阵运算和线性方程组的关系
矩阵运算在解决线性方程组时起着重要作用,它可以简化计算过程并提高求解效率。
以下是一些常用的矩阵运算与线性方程组的关系。
1. 矩阵加法和减法
矩阵加法和减法可以用于表示线性方程组的系数矩阵和常数矩阵之间的运算关系。
通过矩阵加法和减法,我们可以合并或拆分线性方程组,方便进行计算。
2. 矩阵乘法
矩阵乘法可应用于连立方程组和线性变换的计算过程。
通过定义两个矩阵的乘积,我们可以将线性方程组转化为矩阵运算的形式,从而简化求解过程。
3. 矩阵的转置和伴随矩阵
转置矩阵和伴随矩阵在解决线性方程组时有重要作用。
转置矩阵可以用于求解方程组的转置方程组,而伴随矩阵则可以用于求解方程组的伴随方程组。
四、总结
线性方程组的解法与矩阵运算密切相关。
通过高斯消元法和矩阵求逆法,可以有效求解线性方程组。
同时,通过矩阵加法、减法、乘法以及转置和伴随矩阵等运算,可以简化线性方程组的求解过程,并提高计算效率。
熟练掌握线性方程组的解法与矩阵运算的应用,对于数学问题的解决具有重要意义。