矩阵的各种运算详解
线性代数的矩阵运算

线性代数的矩阵运算矩阵是线性代数中一种重要的数学工具,矩阵运算是线性代数的核心内容之一。
通过矩阵运算,我们可以解决各种线性方程组,研究向量空间的性质,以及进行线性变换等。
本文将介绍线性代数中的矩阵运算,包括矩阵的加法、减法、乘法、转置以及求逆运算等。
1. 矩阵的加法和减法矩阵的加法和减法是相似的运算。
对于两个具有相同维度的矩阵A 和B,它们的加法运算定义为将相同位置的元素相加得到一个新的矩阵C,即C = A + B。
而矩阵的减法运算定义为将相同位置的元素相减得到一个新的矩阵D,即D = A - B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5 6][7 8 9] [10 11 12]它们的加法运算结果为:C = A + B = [1+4 2+5 3+6] = [5 7 9][7+10 8+11 9+12] [17 19 21]而减法运算结果为:D = A - B = [1-4 2-5 3-6] = [-3 -3 -3][7-10 8-11 9-12] [-3 -3 -3]这样,我们可以通过矩阵的加法和减法运算来对矩阵进行融合、分解和控制等操作。
2. 矩阵的乘法矩阵的乘法是矩阵运算中的关键操作,它可以将两个矩阵相乘得到一个新的矩阵。
对于两个矩阵A和B,若A的列数等于B的行数,则它们可以进行乘法运算。
设A是一个m×n的矩阵,B是一个n×p的矩阵,它们的乘法运算定义为两个矩阵对应元素的乘积之和。
新的矩阵C的行数等于A的行数,列数等于B的列数。
记作C = A × B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5][6 7 8] [9 10][11 12]它们的乘法运算结果为:C = A × B = [1×4+2×9+3×11 1×5+2×10+3×12][6×4+7×9+8×11 6×5+7×10+8×12]= [59 64][149 163]矩阵的乘法可以应用于很多实际的问题中,比如线性方程组的求解、向量空间的转换等。
矩阵的运算及其运算规则

矩阵的运算及其运算规则矩阵是代数中一种重要的数学工具,它由数个数按照规定的行列顺序排列而成。
矩阵的运算包括加法、减法、数乘、乘法以及转置等,这些运算规则在代数中有着重要的应用。
一、矩阵的加法和减法矩阵的加法和减法规则相同,对应位置的元素进行相加或相减。
具体来说,如果有两个m×n(m行n列)的矩阵A和B,它们的和为C,则A和B之间的加法运算可以表示为:C = A + B。
其中,C的元素cij就是A和B相对应位置元素之和。
同样,矩阵的减法也是对应位置的元素进行相减操作。
例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的和、差分别为:A+B=[[1+5,2+6],[3+7,4+8]]=[[6,8],[10,12]]A-B=[[1-5,2-6],[3-7,4-8]]=[[-4,-4],[-4,-4]]二、矩阵的数乘矩阵的数乘是指将矩阵的每个元素都与一个常数k相乘。
具体来说,如果有一个m×n的矩阵A和一个实数k,则矩阵A乘以k的结果为B,可表示为:B = kA。
其中,B的元素bij等于k与A相对应位置元素的乘积。
例如,对于如下矩阵:A=[[1,2],[3,4]]k=2则A乘以k的结果为:B=kA=2A=[[2,4],[6,8]]三、矩阵的乘法矩阵的乘法是指给定两个矩阵A和B,如果A的列数等于B的行数,则可以将它们相乘得到一个新的矩阵C。
具体来说,如果A是一个m×n 的矩阵,B是一个n×p的矩阵,则矩阵C的大小为m×p。
C的元素cij 可以通过计算A的第i行与B的第j列对应位置元素的乘积之和得到。
例如,对于如下两个矩阵:A=[[1,2],[3,4]]B=[[5,6],[7,8]]则A和B的乘积为:C=AB=[[1×5+2×7,1×6+2×8],[3×5+4×7,3×6+4×8]]=[[19,22], [43,50]]注意,在矩阵乘法中,矩阵的位置很重要,即AB一般不等于BA。
矩阵及运算

矩阵及运算
矩阵是由数个数排成矩形并按一定顺序排列而成的一种数学结构。
矩阵一般用大写字母表示,矩阵中的一个数用小写字母表示。
例如,一个m行n列的矩阵可表示为A=[aij]mxn,其中i
表示行数,j表示列数,aij表示矩阵中第i行第j列的元素。
矩阵可以进行加、减、乘、转置等运算,以下是各种运算的定义:
1.矩阵加法:两个相同大小的矩阵A和B相加得到矩阵C,其中C的每个元素都是A和B对应位置元素的和,即C= A+B。
2.矩阵减法:两个相同大小的矩阵A和B相减得到矩阵C,其中C的每个元素都是A和B对应位置元素的差,即C= A-B。
3.矩阵乘法:两个矩阵A和B相乘得到矩阵C,其中C的大
小为A的行数和B的列数,即C=m×p,其中m为A的行数,p为B的列数。
C中的每个元素cij都可以表示为cij = ai1b1j + ai2b2j + … + aimb mj。
4.矩阵转置:将矩阵A的行和列互换得到矩阵AT,即AT
=[aij]nxm,其中n为A的列数,m为A的行数,AT的第i行
第j列的元素等于A的第j行第i列的元素。
5.矩阵求逆:如果矩阵A存在逆矩阵A-1,则矩阵A可逆,即
A×A-1= A-1×A=I。
其中,I为单位矩阵,它的对角线元素为1,其他元素为0。
矩阵的运算广泛应用于线性代数、微积分、统计学等领域,是数学中非常重要的概念之一。
矩阵的简单运算公式

矩阵的简单运算公式矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机等各个领域。
矩阵的运算涉及到加法、减法、数乘和乘法等操作,下面将介绍一些简单的矩阵运算公式。
1. 矩阵加法矩阵加法是指两个矩阵按照相同位置的元素进行相加的运算。
设矩阵A和矩阵B分别为m行n列的矩阵,其加法公式为:C = A + B其中C为相加后的结果矩阵,C的每个元素等于A和B对应位置元素的和。
2. 矩阵减法矩阵减法是指两个矩阵按照相同位置的元素进行相减的运算。
设矩阵A和矩阵B分别为m行n列的矩阵,其减法公式为:C = A - B其中C为相减后的结果矩阵,C的每个元素等于A和B对应位置元素的差。
3. 数乘数乘是指将矩阵的每个元素乘以一个常数。
设矩阵A为m行n列的矩阵,k为常数,其数乘公式为:C = kA其中C为数乘后的结果矩阵,C的每个元素等于k乘以A相应位置的元素。
4. 矩阵乘法矩阵乘法是指两个矩阵按照一定规律进行的乘法运算。
设矩阵A为m行p列的矩阵,矩阵B为p行n列的矩阵,其乘法公式为:C = AB其中C为乘法的结果矩阵,C的第i行第j列的元素等于矩阵A的第i行与矩阵B的第j列的对应元素的乘积之和。
以上是矩阵的几种简单运算公式,在实际运用中可以通过这些公式进行各种复杂的矩阵运算。
矩阵运算在线性代数、图像处理、数据分析等领域具有广泛的应用,依靠这些运算公式可以很方便地对矩阵进行操作和计算。
需要注意的是,在进行矩阵运算时,要确保参与运算的矩阵具有相同的行列数,否则运算无法进行。
此外,矩阵运算具有交换律、结合律和分配律等基本性质,可以根据需要灵活运用。
总之,矩阵的简单运算公式包括加法、减法、数乘和乘法等操作,这些公式可以帮助我们对矩阵进行各种运算和计算。
掌握这些运算公式,并善于应用,将会对求解复杂问题起到很大的帮助作用。
矩阵的基本运算与性质

矩阵的基本运算与性质矩阵是线性代数中重要的数学结构,它广泛应用于统计学、物理学、计算机科学等领域。
本文将介绍矩阵的基本运算和性质,包括矩阵的加法、减法、数乘、乘法以及转置等运算。
一、矩阵的加法和减法矩阵的加法和减法是指将两个矩阵进行逐元素地相加或相减的运算。
假设我们有两个矩阵A和B,它们的维度相同,即有相同的行数和列数。
矩阵的加法运算可以表示为C = A + B,其中C的每个元素等于A和B对应元素的和。
同理,矩阵的减法运算可以表示为D = A - B,其中D的每个元素等于A和B对应元素的差。
二、矩阵的数乘运算矩阵的数乘运算是指将一个实数或复数与矩阵的每个元素相乘的运算。
假设我们有一个矩阵A和一个实数k,矩阵A的数乘运算可以表示为B = kA,其中B的每个元素等于k乘以A对应元素的值。
三、矩阵的乘法运算矩阵的乘法运算是指将两个矩阵相乘得到一个新的矩阵的运算。
矩阵乘法的定义要求第一个矩阵的列数等于第二个矩阵的行数。
假设我们有两个矩阵A和B,A的维度为m×n,B的维度为n×p,那么矩阵的乘法运算可以表示为C = AB,其中C的维度为m×p。
矩阵乘法的元素计算方式为C的第i行第j列元素等于A的第i行与B的第j列对应元素乘积的和。
四、矩阵的转置运算矩阵的转置运算是指将矩阵的行转换为列,将列转换为行的操作。
假设我们有一个矩阵A,A的转置可以表示为A^T。
A^T的第i行第j 列元素等于A的第j行第i列元素,即A^T的维度为n×m,其中A的维度为m×n。
矩阵的基本性质:1. 矩阵的加法和减法满足交换律和结合律,即A + B = B + A,(A +B) + C = A + (B + C)。
2. 矩阵的乘法满足结合律,即(A × B) × C = A × (B × C)。
3. 矩阵的加法和数乘运算满足分配律,即k(A + B) = kA + kB,(k + l)A = kA + lA。
矩阵的各种运算详解

一、矩阵的线性运算定义1 设有两个矩阵和,矩阵与的和记作, 规定为注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵.设矩阵记,称为矩阵的负矩阵, 显然有.由此规定矩阵的减法为.定义2 数与矩阵A的乘积记作或, 规定为数与矩阵的乘积运算称为数乘运算.矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则(1)(2) ;(3)(4)(5)(6)(7)(8)注:在数学中,把满足上述八条规律的运算称为线性运算.二、矩阵的相乘定义3设矩阵与矩阵的乘积记作, 规定为其中,(记号常读作左乘或右乘.注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算.若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即.矩阵的乘法满足下列运算规律(假定运算都是可行的):(1)(2)(3)(4)注: 矩阵的乘法一般不满足交换律, 即例如, 设则而于是且从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出或此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设则但定义4如果两矩阵相乘, 有则称矩阵A与矩阵B可交换.简称A与B可换.注:对于单位矩阵, 容易证明或简写成可见单位矩阵在矩阵的乘法中的作用类似于数1.更进一步我们有命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。
命题2设均为n阶矩阵,则下列命题等价:(1)(2)(3)(4)三、线性方程组的矩阵表示设有线性方程组若记则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:(2)其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程.如果是方程组(1)的解, 记列矩阵则,这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.四、矩阵的转置定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或). 即若则.矩阵的转置满足以下运算规律(假设运算都是可行的):(1)(2)(3)(4)五、方阵的幂定义5设方阵, 规定称为的次幂.方阵的幂满足以下运算规律(假设运算都是可行的):(1)(2)注: 一般地,为自然数命题3 设均为n阶矩阵,则有为自然数,反之不成立。
矩阵运算公式大全
矩阵运算公式大全矩阵运算是线性代数中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
矩阵运算包括加法、减法、乘法等多种运算,掌握这些矩阵运算公式对于理解和解决实际问题至关重要。
本文将为您详细介绍矩阵运算的各种公式,帮助您更好地掌握矩阵运算的知识。
1. 矩阵加法。
矩阵加法是指两个矩阵相加的运算。
如果两个矩阵的行数和列数相等,那么它们可以相加。
具体公式如下:\[ A + B = \begin{bmatrix}。
a_{11} & a_{12} \\。
a_{21} & a_{22}。
\end{bmatrix} + \begin{bmatrix}。
b_{11} & b_{12} \\。
b_{21} & b_{22}。
\end{bmatrix} = \begin{bmatrix}。
a_{11}+b_{11} & a_{12}+b_{12} \\。
a_{21}+b_{21} & a_{22}+b_{22}。
\end{bmatrix} \]2. 矩阵减法。
矩阵减法和矩阵加法类似,也是针对两个行数和列数相等的矩阵进行的运算。
具体公式如下:\[ A B = \begin{bmatrix}。
a_{11} & a_{12} \\。
a_{21} & a_{22}。
\end{bmatrix} \begin{bmatrix}。
b_{11} & b_{12} \\。
b_{21} & b_{22}。
\end{bmatrix} = \begin{bmatrix}。
a_{11}-b_{11} & a_{12}-b_{12} \\。
a_{21}-b_{21} & a_{22}-b_{22}。
\end{bmatrix} \]3. 矩阵乘法。
矩阵乘法是矩阵运算中最常用的一种运算。
两个矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。
矩阵的计算方式
矩阵的计算方式矩阵在数学和计算领域中起着重要的作用。
它们是由一组数值排列成的矩形阵列,用于表示和处理数据。
矩阵的计算方式包括加法、减法、乘法和求逆等操作,下面将逐一介绍这些计算方式。
一、矩阵的加法矩阵的加法是指将两个相同维度的矩阵按元素进行相加。
具体而言,对应位置的元素相加得到的结果组成了一个新的矩阵。
例如,给定矩阵A和矩阵B,它们的加法运算可以表示为:C = A + B二、矩阵的减法矩阵的减法与加法类似,也是按元素进行操作。
即对应位置的元素相减得到的结果组成了一个新的矩阵。
例如,给定矩阵A和矩阵B,它们的减法运算可以表示为:C = A - B三、矩阵的乘法矩阵的乘法是指将两个不同维度的矩阵进行运算。
具体而言,乘法是通过将矩阵的行与另一个矩阵的列相乘并求和得到结果的。
例如,给定矩阵A和矩阵B,它们的乘法运算可以表示为:C = A * B四、矩阵的求逆矩阵的求逆是指找到一个与原矩阵相乘等于单位矩阵的逆矩阵。
逆矩阵可以用来解线性方程组和求解矩阵方程等。
例如,给定矩阵A,它的逆矩阵可以表示为:A^-1矩阵的计算方式在数学和计算机领域中广泛应用。
它们在线性代数、图像处理、机器学习和人工智能等领域都有重要的应用。
通过矩阵的计算方式,我们可以对数据进行处理、分析和建模,从而得到有用的信息和结论。
除了基本的矩阵计算方式,还有一些特殊的矩阵计算方式,如转置、特征值和特征向量、奇异值分解等。
转置是将矩阵的行和列进行互换的操作,特征值和特征向量是矩阵在线性变换中的重要概念,奇异值分解是将矩阵分解为三个矩阵的乘积的操作。
总结起来,矩阵的计算方式包括加法、减法、乘法和求逆等操作。
它们在数学和计算领域中具有重要的应用价值。
通过矩阵的计算方式,我们可以对数据进行处理和分析,从而得到有用的信息和结论。
矩阵的计算方式是现代数学和计算机科学的基础,对于解决各种实际问题具有重要的作用。
矩阵的运算的所有公式
矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。
以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。
2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。
3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。
4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。
5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。
6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。
7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。
8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。
9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。
10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。
11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。
12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。
13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。
14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。
矩阵及其运算详解
矩阵及其运算详解矩阵是线性代数中重要的概念之一,它不仅在数学理论中有广泛应用,也在各个领域的实际问题中发挥着重要作用。
本文将详细介绍矩阵的概念、性质以及常见的运算法则,以帮助读者深入了解和掌握矩阵相关的知识。
一、矩阵的定义和基本性质矩阵是一个按照矩形排列的数集,通常用方括号表示。
一个 m×n的矩阵包含 m 行和 n 列,并用 aij 表示第 i 行、第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [ a11 a12 a13a21 a22 a23 ]其中,a11、a12 等分别表示矩阵中不同位置的元素。
对于一个 m×n 的矩阵 A,当且仅当存在 m×n 的矩阵 B,满足 A = B,我们称 B 是 A 的转置矩阵。
转置矩阵中的每个元素是原矩阵对应位置元素的转置。
二、矩阵的运算法则1. 矩阵的加法和减法矩阵的加法和减法规则使其成为一个线性空间。
对于同型矩阵 A 和B,它们的和 A + B 的结果是一个与 A、B 同型的矩阵,其每个元素等于对应位置元素的和。
减法规则类似,也是对应元素相减。
矩阵的数乘指的是将一个矩阵的每个元素乘以一个标量。
即对于矩阵 A 和一个实数 k,kA 的结果是一个与 A 同型的矩阵,其每个元素等于对应位置元素乘以 k。
3. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的一种运算。
对于矩阵 A 和 B,若A 的列数等于B 的行数,则可以进行乘法运算 AB。
结果矩阵C 是一个 m×p 的矩阵,其中的元素 cij 是通过计算矩阵 A 的第 i 行和矩阵 B的第 j 列对应位置元素的乘积,并将结果相加得到的。
4. 方阵和单位矩阵方阵是指行数和列数相等的矩阵,也称为正方形矩阵。
单位矩阵是一种特殊的方阵,它的主对角线上的元素全为1,其它位置元素均为0。
单位矩阵通常用 I 表示。
三、矩阵的性质和应用1. 矩阵的转置性质矩阵的转置运算具有以下性质:- (A^T)^T = A,即两次转置后得到原矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、矩阵的线性运算
定义1 设有两个矩阵和,矩阵与的和记作, 规定为
注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵.
设矩阵记
,
称为矩阵的负矩阵, 显然有
.
由此规定矩阵的减法为
.
定义2 数与矩阵A的乘积记作或, 规定为
数与矩阵的乘积运算称为数乘运算.
矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:
设都是同型矩阵,是常数,则
(1)
(2) ;
(3)
(4)
(5)
(6)
(7)
(8)
注:在数学中,把满足上述八条规律的运算称为线性运算.
二、矩阵的相乘
定义3设
矩阵与矩阵的乘积记作, 规定为
其中,(
记号常读作左乘或右乘.
注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算.
若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即
.
矩阵的乘法满足下列运算规律(假定运算都是可行的):
(1)
(2)
(3)
(4)
注: 矩阵的乘法一般不满足交换律, 即
例如, 设则
而
于是且
从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出
或
此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设
则
但
定义4如果两矩阵相乘, 有
则称矩阵A与矩阵B可交换.简称A与B可换.
注:对于单位矩阵, 容易证明
或简写成
可见单位矩阵在矩阵的乘法中的作用类似于数1.
更进一步我们有
命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。
命题2设均为n阶矩阵,则下列命题等价:
(1)
(2)
(3)
(4)
三、线性方程组的矩阵表示
设有线性方程组
若记
则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:
(2)
其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程.
如果是方程组(1)的解, 记列矩阵
则
,
这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式
成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为
将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.
四、矩阵的转置
定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或
). 即若
则
.
矩阵的转置满足以下运算规律(假设运算都是可行的):
(1)
(2)
(3)
(4)
五、方阵的幂
定义5设方阵, 规定
称为的次幂.
方阵的幂满足以下运算规律(假设运算都是可行的):
(1)
(2)
注: 一般地,为自然数
命题3 设均为n阶矩阵,则有为自然数,反之不成立。
六、方阵的行列式
定义7由阶方阵的元素所构成的行列式(各元素的位置不变),称为方阵的行列式,记作或
注: 方阵与行列式是两个不同的概念, 阶方阵是个数按一定方式排成的数表,而阶行列式则是这些数按一定的运算法则所确定的一个数值(实数或复数).
方阵的行列式满足以下运算规律(设为阶方阵, 为常数):
(1)
(2)
(3) 进一步
七、对称矩阵
定义8设为阶方阵, 如果即
则称为对称矩阵.
显然,对称矩阵的元素关于主对角线对称. 例如
,均为对称矩阵.
如果则称为反对称矩阵.
八、共轭矩阵
定义9 设为复(数)矩阵, 记
其中表示的共轭复数, 称为A的共轭矩阵.
共轭矩阵满足以下运算规律(设为复矩阵,为复数, 且运算都是可行的):
(1)
(2)
(3)
例题选讲:
矩阵的线性运算
例1 (讲义例1)已知, 求
例2(讲义例2) 已知且求
注:n阶数量矩阵=
例3(讲义例3)若求
例4设,。
A是一个矩阵,B是矩阵,因此AB有意义,BA也有意义;但。
例5设,B=。
(这种记法表示主对角线以外没有注明的元素均为零),则
(1);
(2);
(3)
例6(讲义例4) 某地区有四个工厂Ⅰ、Ⅱ、Ⅲ、Ⅳ,生产甲、乙、丙三种产品, 矩阵A 表示一年中各工厂生产各种产品的数量, 矩阵B表示各种产品的单位价格(元)及单位利润(元), 矩阵C表示各工厂的总收入及总利润.
其中, 是第个工厂生产第种产品的数量, 及分别
是第种产品的单位价格及单位利润, 及分别是第个工厂生产三种产品
的总收入及总利润. 则矩阵的元素之间有下列关系:
其中,即
例7(讲义例5) 求与矩阵可交换的一切矩阵.
例8(讲义例6)证明: 如果则有
例9(讲义例7)解矩阵方程为二阶矩阵
例10(1)设,则。
(2)设,则。
例11(讲义例8)已知求
例12(讲义例9)设求
例13设,,则
,
又
,
因此地
例14 (讲义例10) 设A与B是两个n阶反对称矩阵, 证明: 当且仅当时,
是反对称矩阵.
例15(讲义例11) 设列矩阵满足E为n阶单位矩阵, 证明H是对称矩阵, 且
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。