数列极限习题及答案

合集下载

高考第一轮复习数学:132数列的极限-教案(含习题及答案).

高考第一轮复习数学:132数列的极限-教案(含习题及答案).

13.2 数列的极限●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a|无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C=C (C 为常数);②∞→n limn1=0;③∞→n lim q n=0(|q|<1).3.数列极限的四则运算法则:设数列{a n }、{b n },当∞→n lim a n =a, ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b;∞→n lim (a n ·b n )=a ·b; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. ●点击双基1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n=0 ③∞→n lim n n nn 3232+-=-1 ④∞→n lim C=C (C 为常数) A.2 B.3C.4D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C 3.下列四个A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21【例1】 求下列极限:(1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n+…+22n n ).剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++=52. (2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim 22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n+7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n lim n n +2-∞→n lim n=∞-∞=0;②原式=∞→n limn n +2-∞→n lim n=∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lga n =lga n -1+lgc ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n nn a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c c c c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c=2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l:x -ny=0(n ∈N *),圆M:(x+1)2+(y+1)2=1,抛物线ϕ:y=(x-1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d,则d 2=1)1(22+-n n .又r=1,∴|AB|2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2), 由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n+1)x+n=0, ∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD|2=(x 1-x 2)2+(y 1-y 2)2=41n(4n+1)(n 2+1).∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2. 评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N*,a n 与a n+1恰为方程x 2-b n x+c n=0的两根,其中0<|c|<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N*,a n ·a n+1=c n恒成立. ∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c.又a 1·a 2=a 2=c.∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c,公比为c 的等比数列.其次,由于对任意n ∈N*,a n +a n+1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c.又b 1=a 1+a 2=1+c,b 2=a 2+a 3=2c,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c|<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6解析:由∞→n lim c bn can ++=2,得a=2b.由∞→n lim b cn c bn --22=3,得b=3c,∴c=31b. ∴ca=6. ∴∞→n lim a cn c an ++22=∞→n lim 22nac n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n=1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn n n n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419 答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim 2)1(+n a n=__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n. ∴a n =3n 2.∴∞→n lim 2)1(+n a n =∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q=-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n+1=156+n ,n ∈N*,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n+1=156+n ,∴∞→n lim a n +∞→n lim a n+1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n+1=(n+1)(a n -1)且a 2=6,设b n =a n +n (n ∈N*). (1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n=1时,由(n -1)a n+1=(n+1)(a n -1),得a 1=1.n=2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n.①当n=1时,a 1=2×12-1=1成立.②假设当n=k 时,a k =2k 2-k 成立.那么当n=k+1时,由(k -1)a k+1=(k+1)(a k -1),得a k+1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k+1)(k -1)=(k+1)(2k+1)=2(k+1)2-(k+1). ∴当n=k+1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n lim n n b a =21,求极限∞→n lim (111b a +221b a +…+n n b a 1)的值. 解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.又∞→n lim n n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n+1,b n =b 1+(n -1)d 2=4n -2.∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q,其中p >q 且p≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a qq b p p a S S n n n n n n --+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111q p q pb p p a qpq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim 1-n n S S=p. 当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qb p a qbp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点: (1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞→n lim C=C (C 为常数);(2) ∞→n lim (n1)p=0(p >0);(3) ∞→n lim d cn b an k k ++=ca(k ∈N *,a 、b 、c 、d ∈R 且c ≠0);(4) ∞→n lim q n=0(|q|<1).●教师下载中心 教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q,且有∞→n lim (q a +11-q n)=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n)=21, ∴∞→n lim q n一定存在.∴0<|q|<1或q=1.当q=1时,21a -1=21,∴a 1=3.当0<|q|<1时,由∞→n lim (q a +11-q n)=21得q a +11=21,∴2a 1-1=q.∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21.综上,得0<a 1<1且a 1≠21或a 1=3.。

数列的极限例题及详解

数列的极限例题及详解

数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。

我们本文将讨论数列的极限问题,包括定义和几个例子。

一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。

另外,数列的极限也称为极限点或极限值。

当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。

二.例题
1.设a_n=(-1)^n/n,求a_n的极限。

解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。

考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。

解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。

解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。

希望本文对读者有所帮助。

数列的极限

数列的极限

数列的极限年级__________ 班级_________ 学号_________ 姓名__________ 分数____总分 一 二 三一、选择题(共40题,题分合计200分)1.无穷数列⎭⎬⎫⎩⎨⎧-1412n 各项的和等于 A.1 B. 21 C. 41 D.232.无穷等比数列{a n }中,a 1=21,q =43设T n =a 22+a 24+a 26+…+a 22n ,则∞→n lim T n 等于 A.289 B.76C.2D.13.已知等比数列{a n }中,a 1+a 2+a 3=9,a 4+a 5+a 6=-3,S n =a 1+a 2+a 3+…+a n ,则∞→n limS n 等于A.427B.17548C.6D.124.在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =→∝,那么a 1的取值范围是A.(1,+∞)B.(1,4)C.(1,2)D.(1,2)5.1222n lim++∞→n n n nC C 等于A.0B.2C.21D.416.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是A.4B.2C.1D.67.Aa n n =∞→lim 的含义是A.n 越大,Aa n -越小B.对任给,0>ε存在N +∈Z ,当n >N 时,εε+<<-A a A nC.对任给,0>ε和任给的自然数N ,当n >N 时,有A a n -<εD.对于数列{}n a ,存在自然数N ,对任给,0>ε当n >N 时,有A a n -<ε8.在等差数列{a n }, a 1+3a 3+ a 15=120,则2a 9- a 13的值为A.24B.22C.20D.-89.在等差数列{a n }中,3(a 3 + a 5) +2(a 7 + a 10+ a 13) =24则此数列前13项和为A.26B.13C.52D.15610.如果0)21(lim =-∞→nn a a ,求实数a 的取值范围是A.a >31或a <-1B.a >31C.a >31或a <0D.a ≥31或a <011.已知:等比数列{a n }的前三项为a ,,3131,2121++a a 且S n = a 1+ a 2+ a 3+ …+ a n ,则nn S ∞→lim 等于 A.3 B.29C.6D.912.记数列{}n a 的前n 项和为S n ,若S 12-n =(2n -1)(2n +1),则S n 等于A.)12(2+n nB.n (n +2)C.)32(2+n nD.n (2n +3)13.下列命题中正确的是A.若lim()n n n a b A B→∞⋅=⋅,则lim lim n n n n a A b B→∞→∞==,B.若lim lim n n n n a A b B →∞→∞==,,则limn n n a b A B →∞= C.若)(lim lim N ∈==∞→∞→t A a A a t tn n n n ,则 D.若lim n n a A→∞=,则lim()n n n a n A→∞⋅=⋅14.已知2123lim-=-+∞→n a n n (a 为常数),则a 等于A. -4B. -2C.1D.415.)]211()411)(311([lim n n n +---∞→…的值等于A.0B.1C.2D.316.若b b a b a n n n n n 1lim 11-=+-++∞→,且+∈R b a ,,则b a 、的大小关系是 A.b a < B.b a = C.b a > D.不确定17.无穷数列{a n }的根限是A,指的是对任意预先指定多么小的正数ε,都能在{a n }中找到一项a n ,使A.a N 以后至少有一项满足||a A n -<εB.a N 以后有有限项满足||a A n -<εC.a N 以后有无穷多项满足||a A n -<εD.a N 以后的所有项满足||a A n -<ε18.对无穷数列的极限是否存在,下面四种判断正确的是A.无穷数列一定有极限B.当且仅当公差d =0时,等差数列才有极限C.当且仅当公比q <1时,等比数列才有极限D.如果一个数列有极限,则这个数列必为递增或递减数列19.下列各无穷数列中,极限不存在的是A.,,,,,,n n 1)1(41312111⋅---+ B. ,,,,3333C.,,,,,,]1012)1(1[)1(001.1001.001.101.011+++-+---n n nD. ,,,,,,1294735231+n n20.已知数列{}n n +1,给定ε=001.,若存在自然数N ,且当n N >时,总有||n n +-<11ε,则N 的最小值是A.100B.101C.102D.20021.已知数列{}2n ,取ε=001.,若此数列从第N 项开始,及以后所有的项与0的差都小于ε,则N 应取A.20B.199C.200D.大于200的任一自然数均可22.212lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→n n r r ,则r 的取值范围是A.2121<<-r B.21->r C.21>r D.1-<r 23.])13)(23(11071741411[lim +-++⋅+⋅+⋅∞→n n n 等于A.41B.31C.32D.124.已知a 、b 是不相等的正数,若2lim 11=+-++∞→nn n n n b a b a ,则b 的取值范围是A.0<b ≤2B.0<b <2C.b ≥2D.b >225.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,对一切自然数n ,都有n n T S =132+n n,则55b a 等于 A.32 B.149 C.3120 D.171126.已知{a n }是等比数列,如果a 1+a 2+a 3=18,a 2+a 3+a 4=-9,S n =a 1+a 2+……+a n ,那么→∝n limS n 的值等于A.8B.16C.32D.4827.)]211()511)(411)(311([lim +----→∝n n n 的值等于A.0B.1C.2D.328.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若nnn n n b a n n T S →∝+=lim ,132则,等于A.1B.36C.32D.9429.等比数列a n 的首项a 1=-1,前n 项和为S n ,已知3231510=S S ,则nS ∞→n lim 等于A.32B.32-C.2D.-230.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量S n (万件)近似地满足S n =90n(21n -n 2-5)(n =1,2,……,12),按此预测,在本年度内,需求量超过1.5万件的月份是A.5月、6月B.6月、7月C.7月、8月D.8月、9月31.等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若122+=n n T S n n ,则n n n b a ∞→lim等于A.1B.23C.32D. -132.已知||a <1,那么lim[()()()()]n n a a a a →∞++++1111242…的值等于A.1B.1a C.11-a D.a a 1-33.设无穷等比数列{a n }的前n 项和为S n ,而nn S S ∞→=lim ,且S =a n +S n ,则数列{a n }的公比q 是A.21B.31-C.21-D.3134.下面各无穷数列中,极限存在的是A. ,,,,,,010101B.,,,,,,,,1161181141121 C. ,,,,,,,,0410******* D.,,,,+,,414113*********++35.1312lim 22--+∞→n n n n 的值为 A.-21 B.-32 C.21 D.3236.⎪⎭⎫ ⎝⎛++++∞→2221374lim n n n n n 的值为 A.65 B.43 C.21 D.2337.一个等比数列的前n 项和S n =a n)21(-,则该数列各项和为 A.21 B.1 C.-21D.任意实数38.设(1+2x ) n的展开式中,奇数项的二项式系数之和为a n ,数列{a n }的前n 项和记为S n ,则n n n S a ∞→lim等于A.0B.21C.1D.239.已知a n =nn7(n ∈N ),S n 是数列{a n }的前n 项和,则n n S ∞→lim 等于A.1B.61C.71D.36740.等比数列{a n }满足121,21)(lim a a a a n n 则=+++∞→ 的取值范围是A.(-1,1)B.(0,1)C.(0,21)D.(0,21)∪(21,1)二、填空题(共24题,题分合计104分)1.在无穷等比数列{a n }中,a 1=33,a 3=2,则→∝n lim (a 1+a 3+a 5+……+a 2n -1)=______.2.→∝n lim 13124-⋅+⋅n n n n =___________. 3.若数列{a n }的前n 项和S n =2 n -1,则数列⎭⎬⎫⎩⎨⎧n a 1的所有项和是_________. 4.对于无穷数列}21{22n n -,(1)=+|2|n a ________;(2)从第________项起,这一项后面的所有项与-2的差的绝对值都小于210-;(3)对任意给定的正数ε,要使N n >时,ε<+|2|n a 恒成立,则N 的最小值为________.5.已知一无穷数列的通项公式421+-=n n a n(1)化简|21|-n a 得_________;(2)对于下表中的ε,分别找出一个最小的自然数N ,使得当N n >时,ε<-|21|n a 恒成立(3)这个数列的极限是__________.6.已知Aa n n =∞→lim ,则在区间()εε+-A A ,外(ε为任意小的正常数)这数列{}n a 的项数为 .(填"有限项"或"无穷项")7.nn n 31913112141211lim ++++++∞→ 的值为 . 8.一个无穷递减等比数列的首项为1,且每一项都等于它以后所有项的和的k 倍,则k 的取值范围是________________________.9.11)2(3)2(3lim +-→∝-+-+n nnn n =____________.10.)121211(lim 222+++++→∝n nn n n =______.11.→∝n lim ])13)(23(1741411[+-++⨯+⨯n n =________.12.已知等比数列{a n }(a n ∈R),a 1+a 2=9,a 1a 2a 3=27。

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解数列收敛,换言之就是数列极限存在,此类问题历来都是高数考试的重点和难点,也是倍受命题老师青睐的“宠儿”。

数列收敛题型大致可分为两大类:第一类,数列的一般项(也称“通项”)已知;第二类,数列的一般项(通项)未知,尤其是由递推公式60道数列收敛典型例题,每道题都给出了详细的解题步骤。

网友们请注意,本文60个例题中如果用方括号标明年份的,均为当年考研真题。

第一类数列的一般项(通项)已知1.【2008真题】设解:原式. 具体求解过程如下(运用“两边夹”定理):2.✧解法(一)原式✧解法(二)原式=3.✧解法(一)分子有理化(分母视为“1”)原式✧解法(二)利用等价无穷小替换原式【注:】4.✧解法(一)✧解法(二)原式【注:, 】5.解:本题求极限,推荐“两边夹定理”。

解题过程如下:令显然可知,当因此,根据“两边夹定理”得到6.解:本题求极限推荐“两边夹定理”.令7.解原式=8.解原式=】9.解法(一)利用公式原式】==1✧.原式=】==110.解:原式。

正确的解法如下:原式==【注:】==11.✧解法(一)利用等价无穷小替换原式=】==✧解法(二)利用中值定理,注意求导公式原式【注:】=12.【2002真题】,✧解法(一)利用等无穷小替换✧原式===✧解法(二)利用“两边夹定理”,【注意:】原式=13.✧原式=【注:】=✧解法(二)利用等价无穷小替换原式=】14.解:此数列求极限推荐等价无穷小替换。

解法如下:原式==】=】15.✧解法(一)利用等价无穷小替换原式【注:】=【注:归结原则】✧【注:】16.解:本题求极限,“两边夹”定理、单调有界准则、定积分定义等方法似乎均不太“给力”,需将变量连续化,也就是将离散变量n替换为连续变量x,再运用包括洛必达法则在内的求解函数极限的方法.详细过程如下:17.✧解法(一)利用导数定义原式===【注:的指数部分,正是按定义所求的函数在处的导数.】【】=✧解法(二)拉格郎日中值定理,注意求导公式原式=====【注:=【注:本题推荐中值定理。

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作l i m n n a a →∞=.(注:a 不一定是{a n }中的项)2几个重要极限:(1)01lim=∞→nn (2)C C n =∞→lim (C 是常数)(3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a nn 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3.数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→0(lim≠=∞→B B Ab a nn n4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,0等形式,必须先化简成可求极限的类型再用四则运算求极限 题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2)∞→n lim (n n +2-n );(3)∞→n lim (22n +24n +…+22n n ) 例2()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 11 B 17 C 19 D 256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn c an ++=2,∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++ 点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52 (2)∞→n lim (n n +2-n )=∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim(2n 2+n +7),∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )=∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(limd d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解:∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2)∞→n lim1122+-+-n nn n a a =∞→n lim n n n n c 3211--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nnn n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ) ∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0答案:C7解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nnn ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析:∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析:答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴c a =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=ca =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a 38∴a 1=2 11 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。

2023年浙教版数学数列极限练习题及答案

2023年浙教版数学数列极限练习题及答案

2023年浙教版数学数列极限练习题及答案【提示】以下是2023年浙教版数学数列极限的练习题及答案。

希望对你的学习有所帮助!一、选择题1. 设数列{an}满足an=3n^2+4n-2,求{an}的通项公式。

A. an = n^2 + 2n + 1B. an = 2n^2 + 3n - 2C. an = 3n^2 + 4n - 2D. an = 4n^2 + 5n - 1答案:C2. 已知数列{an}的通项公式为an=n/(2^n),则数列{an}的极限为:A. 0B. 1/2C. 1/∞D. ∞答案:A3. 数列{an}满足an+1=an/2,若a1=8,则数列{an}的极限为:A. 0B. 1/2C. 1D. 2答案:A4. 设数列{an}满足an+1=an+2,若a1=1,求an的通项公式。

A. an = 1 + 2nB. an = 2 + 2nC. an = 1 + 3nD. an = 2 + 3n答案:A5. 数列{an}满足an+1=an/(n+1),若a1=1,则数列{an}的极限为:A. 0B. 1C. 1/2D. ∞答案:A二、填空题1. 设{an}是等差数列,已知a1=3,d=2,an=17,求n的值。

答案:n=82. 设{an}是等比数列,已知a1=2,r=3/2,an=27,求n的值。

答案:n=43. 已知{an}是数列,an+1=3an,且a1=2,求a5的值。

答案:a5=484. 设{an}是数列,an+1=an-2,已知a1=5,求a7的值。

答案:a7=-95. 已知{an}是数列,an+1=an+1/n,且a1=1,求a4的值。

答案:a4=19/6三、解答题1. 求数列{an} = √n 的极限。

答案:由于√n随着n的增大趋近于无穷大,所以数列{an}的极限为正无穷。

2. 求数列{an} = 1/n 的极限。

答案:随着n的增大,1/n趋近于零,所以数列{an}的极限为0。

高中数学 数列及数列的极限试题及答案

高中数学 数列及数列的极限试题及答案

数列一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)在数列2,5,22,11,…中,如果52是这个数列中的一项,那么它的项数是( ).A .6B .7C .10D .11(2)数列0,2,0,2,…的通项为n a ,下列公式不能作为已知数列的通项公式的是( ).A .nn a )1(1-+= B .2π)1(sin 22-=n a nC .π)1cos(1+-=n a nD .1)1(1--+=n n a(3)已知数列{n a }中,11=a ,32=a ,且*)()1(1221N ∈-=--++n a a a n n n n ,那么4a 等于( ).A .365B .21C .17D .10(4)n S 是数列}{n a 的前n 项和,且),3,2,1(log 3 ==n n S n ,那么数列}{n a ( ). A .是公比为3的等比数列 B .是公差为3的等差数列C .是公比为31的等比数列 D .既非等差数列也非等比数列(5)等差数列}{n a 中,81073=-+a a a ,4411=-a a ,那么它的前13项和为( ). A .168 B .156 C .78 D .152(6)等比数列}{n a 中,0>n a ,且362867564=+++a a a a a a ,则75a a +等于( ). A .6 B .12 C .18 D .24 (7)数列}{n a 中,n n a n ++=11,若其前n 项和9=n S ,则n 等于( ).A .9B .10C .99D .100(8)若a ,b ,c 成等比数列,a ,m ,b 成等差数列,n 是b ,c 的等差中项,则n cm a +的值为( ).A .4B .3C .2D .1 (9)数列}{n a 中,已知n a n 211-=,记||||||||321n n a a a a S ++++= ,那么等于( ).A .25B .50C .100D .150(10)等比数列}{n a 中,其前n 项和为n S ,且14=S ,38=S ,则20191817a a a a +++的值为( ).A .14B .16C .18D .20 (11)在50到350之间的所有个位数字是1的整数的和为( ). A .5 880 B .5 539 C .5 208 D .4 877(12)现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余钢管尽可能少,那么剩余钢管的根数为( ).二、填空题:(13)n S 是等差数列}{n a 的前n 项和,且05=S ,729=S ,则++++13121110a a a a20a + =__________.(14)在10到2000之间形如*)(2N ∈n n 的各数的和为__________.(15)数列}{n a 中,1)97(+⋅=n n n a ,则此数列的最大项为__________.(16)已知数列}{n a 满足)2)(1(32321++=++++n n n na a a a n ,那么数列}{n a 的前n 项和的公式为n S =__________.三、解答题:(17)在4与64之间插入三个正数a 、b 、c ,使4,a ,b 与b ,c ,64都成等比数列,且使a ,b ,c 成等差数列,求a 、b 、c 的值.(18)已知等差数列前三项为a ,4,3a ,前n 项和为n S ,5502=k S . (Ⅰ)求a 和k 的值;(Ⅱ)求数列}1{n S 的前n 项和n T .(19)数列}{n a 为正项的等比数列,它的前n 项和为80,前2n 项和为6 560,且在前n 项中数值最大的项为54.求这等比数列的首项1a 与公比q .(20)已知α 、β 、γ 都是锐角,2tan 2tan3γα=,且2tan β =tan γ ,求证:α ,β ,γ 成等差数列.(21)在等比数列}{n a 中,1531=+a a ,前4项和为45.设3log )5(122+-=n n a n C ,试问数列}{n C 中有没有最小值?若有,求出这最小项,并指明项数;若没有,说明理由. (22)假设A 型进口汽车关税税率在2001年是100%,在2006年是25%,2001年A 型进口车每辆价格为64万元(其中含32万元关税税款).(Ⅰ)已知与A 型进口车性能相近的B 型国产车,2001年每辆价格为46万元.若A 型车的价格只受关税降低的影响,为了保证2006年B 型车的价格不高于A 型车价格的90%,B 型车价格要逐年降低,问平均每年至少下降多少万元?(Ⅱ)某人在2001年将33万元存入银行,假设该银行扣利息税后的年利率为1.8%(五年内不变),且每年按复利计算(例如,第一年的利息计入第二年的本金),那么五年到期时这笔钱连本带息是否一定够买一辆按(Ⅰ)中所述降价后的B 型汽车?参考答案一、选择题:(1)B (2)D (3)A (4)D (5)B (6)A (7)C (8)C (9)B (10)B (11)A (12)B 提示:(1)给出数列的一个通项公式是13-=n a n .令5213=-n ,得n =7.(3)在已知递推公式中令n =1,可得83=a .再令n =2得3654=a .(4)nn S 3=故31=a ,当n ≥2时,132-⋅=n n a .(5)由已知可求得74=d ,7601=a .(6)由已知可得36)1(22821=+q q a .故6)1(241=+q q a ,而)1(24175q q a a a -=+. (7)n n a n -+=1,故11-+=n S n .(8)由已知有⎪⎩⎪⎨⎧+=+==.2,2,2c b n b a m ac b 消b 得(2m -a )(2n -c )=ac .(9)由2110211≤⇔≥-n n .故当n =1,2,3,4,5时0>n a ,n ≥6时0<n a .(10)由11)1(41=--q q a 、31)1(81=--q q a 可得31148=--q q .故24=q ,11-=q a .因此)1)(1)(1()1)(1(216216120191817q q q q q q q a a a a a ++-=++=+++ =16)1()()1)(1()(4442244=-=+-q q q q q . (11)这些数可组成51为首项,341为末项的等差数列,且共有30个数.(12)n 层的正三角钢管垛总共用钢管数为2)1(+n n ,这里求使1002)1(≤+n n ,*N n ∈,且n 尽量大,经估算知n =19.二、填空题:(13)528 (14)2032 (15)54)97(4=a (16))3(232n n +.提示:(13)n n S n 1022-=.所求为920S S -. (14)这些数组成以42为首项,2为公比,共7项的等比数列.(15)927)97(11n a a n n n -⋅=-++,故n =1,2,3时,n n a a >+1;n ≥4时,n n a a <+1. (16)由)2)(1(32321++=++++n n n na a a a n ,则1321)1(32--++++n a n a a a = (n -1)n (n +1)(n ≥2).两式相减得()233≥+=n n a n ,且61=a .于是)(33*Ν∈+=n n a n . 三、解答题:(17)设a =b -d 、c =b +d .则⎪⎩⎪⎨⎧=+=-.64)(,4)(22b d b b d b 解得d =15. 代入可得0225342=+-b b ,故b =25,b =9(舍去).于是a =10,b =25,c =40. (18)(1)依题意有3a +a =8,故a =2.于是等差数列前三项为2,4,6,其首项为2,公差为2.又由5502=k S ,得550222)1(2=⋅-+k k k .解得k =50.(2)由(1))1(22)1(2+=⋅-+=n n n n n S n .111)1(11+-=+=n n n n S n .1111)111()3121()211(+=+-=+-++-+-=n nn n n T n .(19)若q =1,则有n n S S 22=与题意不符,故q ≠1.于是依题意有⎪⎪⎩⎪⎪⎨⎧=--=--.56061)1(,801)1(211qq a q q a nn 两式相除,并化简可得081822=+-n n q q .故81=n q 或1=n q (舍去).由81=nq ,故q >1,所以数列}{n a 前n 项中,n a 最大,即54=n a . 由5411==-n n q a a ,得q q a n 541=,即q a 54811=. 再把81=nq 代入801)1(1=--q q a n 中可得11-=q a .由此解得21=a ,q =3.(20)βγγγγγγγαγαγαtan tan 212tan 12tan2tan 12tan2tan 2tan2tan12tan2tan 2tan243==-=-+=-+=+.且α 、β 、γ 均为锐角,故2π20<+<γα,2π0<<β,于是βγα=+2,即α ,β ,γ 成等差数列.(21)设等比数列}{n a 的公比为q ,依题意有⎪⎩⎪⎨⎧=+++=+.45)1(,15)1(32121q q q a q a 解得⎩⎨⎧==.2,31q a ∴ 123-⋅=n n a ,nn a 21223⋅=+,225)25(21022log )5(22222--=-=-=n n n n C n n .又*Ν∈n ,于是当n =2或3时,n C 最小,为-12.(22)(Ⅰ)因为2006年关税税款为2001年的41,故所减少的关税税款为244332=⨯(万元).所以2006年A 型车价格64-24=40(万元).因为5年后B 型车价格应不高于A 型车价格的90%,故B 型车价格≤40×90%=36(万元).又2001年B 型车价格为46万元,故5年中至少要降10万元,所以平均每年至少降价2万元.(Ⅱ)依题意,2001年存入33万元,5年到期时连本带息可得5)811(33%.+⨯(万元).而5)811(33%.+⨯>33(1+5×0.018+10×0.000324)=36.07692(万元).因此,能买一辆依(Ⅰ)中所述5年后降价为36万元以下的B型车.数列的极限【教学目标】⒈认知目标①使学生加深对数列极限概念的理解.②掌握数列极限的四则运算法则及运用条件.③掌握求数列极限的一些常用方法.⒉能力目标①培养学生观察抽象能力与严谨推理的能力.②培养学生分析问题解决问题的能力.⒊情感目标①激发学生勇于克服困难勤于探索的精神.②培养学生严谨的学习态度,通过对问题转化培养辩证唯物主义观点. 【教学重点】运用数列的四则运算法则求数列的极限.【教学难点】求含参数的式子的极限时,要注意对参数值的分类讨论.【教学课型】复习课【教学过程】(一)数列极限概念的理解.学生课前练习:⑴已知Aann=∞→lim,则在区间()εε+-AA,外(ε为任意小的正常数)这数列{}n a的项数为(填“有限项”或“无穷项”)⑵下列命题正确的是()①数列(){}31n-没有极限②数列()⎭⎬⎫⎩⎨⎧-nn21的极限为0③数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-+n233的极限为3 ④ 数列()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n 32没有极限 A ①② B ②③④ C ①②③ D ①②③④ ⑶()BA b aB b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件⑷ 212lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-∞→n n r r ,则r 的取值范围是( ) A -2121<<r B 21->r C 21>r D 1-<r (5)1312lim 22--+∞→n n n n 的值为( ) A -21 B -32 C 21 D 32知识归纳:1) 数列{}n a 的极限定义:任给0>ε,存在N >0,当n>N 时,ε<-A a n 恒成立.记作Aa n n =∞→lim . 注意:①N 与ε有关.②Aa n n =∞→lim 的几何意义是当n>N 时,n a 对应的点全部落在区间()εε+-A A ,之内.2) 数列极限的运算法则:如果A a n n =∞→lim ,Bb n n =∞→lim .则① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .③ ()0,0lim≠≠=∞→B b B Ab a n n n n .注意:和与积必须是有限的。

第十三章 第二节 数列的极限(理)

第十三章  第二节  数列的极限(理)

2.若 . A.|a|< . < C.a> . > 解析: 解析: 答案: 答案: C
= 0,则a的取值范围是 ( , 的取值范围是 B.a<1 . < D.a=1 . = <1,解得 > ,解得a>
)
3. A. B.
= C.1 . D.2 .
(
)
解析:解析:原式= 解析:解析:原式= 答案: 答案: B
三、常用的几个极限 1.若C为常数,则 . 为常数, 为常数 2. C为常数 2.若C为常数,则 为常数, 3.若|a|<1,则 . < , C= C ; = =0; an= 0 ;
4.如果等比数列{an}的首项为 1,公比满足 <1且q≠0, .如果等比数列 的首项为a 公比满足|q|< 且 的首项为 , Sn为其前n项和,则 项和, 为其前 项和 Sn=
求下列极限: 求下列极限: (1) (2) (3)
(4)
【解】 (1)
(2)
(3)
(4)
1.计算下列极限: .计算下列极限:
原式= 解:(1)原式= 原式
(2)原式= 原式= 原式
(3)原式= 原式= 原式

(1-0)= - =
高考对数列极限考查的落脚点是求数列的极限. 高考对数列极限考查的落脚点是求数列的极限.求数列的
2.(1)若 . 若 (2)
的值; =0,求a和b的值; , 和 的值 的取值范围. 求a的取值范围. 的取值范围
解:(1)∵ ∵
-an-b -

= ( -an-b)=0, - = , =-1. 即a=1,b=- = , =-
由已知

(2)∵ ∵

=0, ,

<1,∴-4<a<2. , < <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列极限习题及答案
数列极限习题及答案
数列是数学中的重要概念,它在许多领域中都有广泛的应用。

数列的极限是数
学分析中的基本概念之一,它描述了数列随着项数的增加趋向于某个确定的值。

在这篇文章中,我们将讨论一些关于数列极限的习题,并给出相应的答案。

1. 习题一:考虑数列{an},其中an = 1/n。

求该数列的极限。

解答:要求该数列的极限,我们需要计算当n趋向于无穷大时,数列的值趋向
于的值。

对于这个数列,当n趋向于无穷大时,an的值趋向于0。

因此,该数
列的极限为0。

2. 习题二:考虑数列{bn},其中bn = (-1)^n/n。

求该数列的极限。

解答:对于这个数列,当n为奇数时,bn = -1/n;当n为偶数时,bn = 1/n。

当n趋向于无穷大时,奇数项和偶数项的绝对值都趋向于无穷大。

但是,由于
数列中的负号交替出现,所以数列的极限不存在。

3. 习题三:考虑数列{cn},其中cn = (n+1)/n。

求该数列的极限。

解答:对于这个数列,当n趋向于无穷大时,cn的值趋向于1。

因此,该数列
的极限为1。

4. 习题四:考虑数列{dn},其中dn = 2^n/n!。

求该数列的极限。

解答:要求该数列的极限,可以尝试计算数列的前几项并观察规律。

当n取1时,d1 = 2/1 = 2;当n取2时,d2 = 4/2 = 2;当n取3时,d3 = 8/6 = 4/3;当n取4时,d4 = 16/24 = 2/3。

观察可以发现,当n趋向于无穷大时,数列的值趋向于0。

因此,该数列的极限为0。

5. 习题五:考虑数列{en},其中en = (1+1/n)^n。

求该数列的极限。

解答:对于这个数列,当n趋向于无穷大时,(1+1/n)^n的值趋向于自然对数e 的值。

因此,该数列的极限为e。

通过以上习题的讨论,我们可以看到数列的极限与数列的定义和表达式有着密切的关系。

在计算数列的极限时,我们需要观察数列的规律,并利用数学知识进行推导和计算。

数列极限的概念在数学分析中有着广泛的应用,例如在微积分、实分析等领域中都会涉及到。

总结起来,数列极限是数学中的重要概念,通过习题的讨论和解答,我们可以更好地理解和应用这一概念。

希望通过本文的介绍,读者对数列极限有更深入的了解,并能够在解决相关问题时运用自如。

数学是一门充满魅力的学科,通过不断学习和探索,我们可以发现其中的美妙之处。

相关文档
最新文档