解一元一次不等式专项训练 (255)
2022年沪科版七年级数学下册第7章一元一次不等式与不等式组章节训练试题(含解析)

七年级数学下册第7章一元一次不等式与不等式组章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x 折销售,则下列符合题意的不等式是( )A .30x ﹣20≥20×5%B .30x ﹣20≤20×5%C .30×10x ﹣20≥20×5%D .30×10x ﹣20≤20×5% 2、已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 3、如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >04、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <05、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣46、若x +2022>y +2022,则( )A .x +2<y +2B .x -2<y -2C .-2x <-2yD .2x <2y7、解集在数轴上表示为如图所示的不等式的是( )A .2x <B .2x ≤C .2x >D .2x ≥8、若m >n ,则下列不等式成立的是( )A .m ﹣5<n ﹣5B .55m n <C .﹣5m >﹣5nD .55m n -<- 9、已知x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,则a 的取值范围是( )A .a <﹣2B .a ≤1C .﹣2<a ≤1D .﹣2≤a ≤110、若a >b >0,c >d >0,则下列式子不一定成立的是( )A .a ﹣c >b ﹣dB .cd b a > C .ac >bc D .ac >bd第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.2、不等式组0123x a x -≥⎧⎨->-⎩的整数解共有4个,则a 的取值范围是 __________. 3、若x >y ,试比较大小:﹣3x +5 ______﹣3y +5.(填“>”、“<”或“=”)4、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______. 5、不等式组121a a a-<⎧⎨>-⎩的解集为____________. 三、解答题(5小题,每小题10分,共计50分)1、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 2、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.3、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x ﹣6=0的解为x =3,不等式组205x x -⎧⎨⎩><的解集为2<x <5.因为2<3<5.所以称方程2x ﹣6=0为不等式组205x x -⎧⎨⎩><的相伴方程. (1)若关于x 的方程2x ﹣k =2是不等式组3641410x x x x --⎧⎨-≥-⎩>的相伴方程,求k 的取值范围; (2)若方程2x +4=0,213x -=-1都是关于x 的不等式组()225m x m x m ⎧--⎨+≥⎩<的相伴方程,求m 的取值范围;(3)若关于x 的不等式组2122x x x n --+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n 的取值范围.4、已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?5、解不等式(组):(1)3x ﹣2<x +10;(2)2(3)831214x x x x -+>⎧⎪⎨+≥-⎪⎩.-参考答案-一、单选题1、C【分析】根据题意易得这种商品的利润为30×10x ﹣20,然后根据“其利润率不能少于5%”可列出不等式. 【详解】解:设这种商品打x 折销售,由题意得:30×10x ﹣20≥20×5%; 故选C .【点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题.2、D【分析】先分别求得每个一元一次不等式的解集,再根据题意得出2a 的取值范围即可解答.【详解】解:解不等式组得:22x x a ≤⎧⎨>⎩, ∵该不等式组恰有4个整数解,∴-2≤2a <-1,解得:﹣1≤a <﹣12,故选:D .【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,得出2a 的取值范围是解答的关键.3、B【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断.【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意;C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意;D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意;故选:B .【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101<-<<<<.a b c4、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.5、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.6、C【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x +2022>y +2022,∴x >y ,∴x +2>y +2,x -2>y -2,-2x <-2y ,2x >2y .故答案为:C .【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.7、C【分析】根据数轴可以得到不等式的解集.【详解】解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x >2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键8、D【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解:A 、在不等式m >n 的两边同时减去5,不等式仍然成立,即m ﹣5>n ﹣5,原变形错误,故此选项不符合题意;B 、在不等式m >n 的两边同时除以5,不等式仍然成立,即55m n >,原变形错误,故此选项不符合题意; C 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即﹣5m <﹣5n ,原变形错误,故此选项不符合题意;D 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即55m n -<-,原变形正确,故此选项符合题意.故选:D .【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a 的范围.【详解】解:∵x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,∴()()15320a a --+≤ 且()()454320a a --+> ,即﹣4(﹣2a +2)≤0且﹣(a +2)>0,解得:a <﹣2.故选:A .【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.10、A【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A .当2a =,1b =,4c =,3d =时,a c b d -=-,故本选项符合题意;B .若0a b >>,0c d >>,则c d b a>,故本选项不合题意;C .若0a b >>,0c d >>,则ac bc >,故本选项不合题意;D .若0a b >>,0c d >>,则ac bd >,故本选项不合题意;故选:A .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.2、32a -<≤-【分析】解不等式组得到2a x ≤<,再根据不等式组有4个整数解,写出符合条件的整数解,据此解出a 的取值范围.【详解】解:解不等式组0123x a x -≥⎧⎨->-⎩得,2a x ≤< 不等式组的整数解共有4个,∴不等式组的整数解分别为:-2,-1,0,1,32a ∴-<≤-故答案为:32a -<≤-.【点睛】本题考查一元一次不等式组的整数解,正确得出不等式组的整数解是解题关键.3、<【分析】利用不等式的性质进行判断.【详解】解:∵x >y ,∴﹣3x <﹣3y ,∴﹣3x +5<﹣3y +5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.5、132a <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a > ∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.三、解答题1、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.2、a >0【分析】先解方程得出x =44a +,根据方程的解大于1得出关于a 的不等式,解之即可. 【详解】解:解不等式6x +a −4=2x +2a ,得x =44a +, 根据题意,得:44a +>1, 解得a >0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.4、147【分析】由12和8的最小公倍数为24,可设该校六年级学生有(24x+3)人,根据“该校六年级学生超过130人,而不足150人”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可确定x的值,再将其代入(24x+3)中即可得出结论.【详解】解:∵12和8的最小公倍数为24,∴设该校六年级学生有(24x+3)人.依题意,得:243130 243150xx+>⎧⎨+<⎩,解得:5724<x <618. 又∵x 为正整数,∴x =6,∴24x +3=147(人).答:该校六年级学生有147人.【点睛】本题考查了一元一次不等式组.解题的关键在于通过确定两数的最小公倍数得到数量关系,正确的列不等式组.5、(1)x <6(2)﹣2<x ≤1【分析】(1)根据解不等式的步骤:移项,合并同类项,系数化为1进行计算.(2)分别解出不等式的解集,然后找出公共部分.(1)解: 3x ﹣2<x +10,移项得,3x ﹣x <10+2,合并同类项得,2x <12,系数化为1得,x <6.(2)2(3)8?31214x x x x -+>⎧⎪⎨+≥-⎪⎩①②,解不等式①得,x>﹣2,解不等式②得,x≤1,所以原不等式的解集为:﹣2<x≤1.【点睛】本题考查的是解一元一次不等式,以及解一元一次不等式组,正确求出每一个不等式解集是基础,“熟知同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
专题8.6 一元一次不等式(组)中的含参问题专项训练(60道)(举一反三)(华东师大版)(解析版)

专题8.6一元一次不等式(组)中的含参问题专项训练(60道)【华东师大版】考卷信息:本套训练卷共60题,题型针对性较高,覆盖面广,选题有深度,可深化学生对一元一次不等式(组)中的含参问题的理解!一、单选题(共30小题)1.(2022·山东济宁·七年级期末)已知关于的不等式1−<2的解集为<21−,则的取值范围为()A.>0B.>1C.<0D.<1【答案】D【分析】根据不等式的性质,当不等式左右两边除以同一个正数时,不等号方向不改变,可得1−>0,解不等式可得a的取值范围.【详解】解:由题意可得,1−>0,解得<1,故选D【点睛】本题考查不等式的性质、解一元一次不等式,准确掌握不等式的性质是解题的关键.2.(2022·四川乐山·七年级期末)若关于的不等式组{2K43≤−1−>0的整数解恰有5个,则取值范围为()A.2<≤3B.2≤<3C.3<≤4D.3≤<4【答案】C【分析】分别解出两个一元一次不等式的解集,再根据已知条件,原一元一次不等式组的整数解恰有5个,确定该不等式组解集的公共解集,进而求得的取值范围.【详解】解:不等式整理得{O−1<,∵关于的不等式组{2K43⩽−1−>0的整数解恰有5个,∴3<N4.故选:C.【点睛】本题考查一元一次不等式组的整数解、不等式的解集等知识,解题的关键是熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.3.(2022·河南新乡·七年级期末)若关于x<0的解集为2<<5,则多项式A可以是()A.−5B.2−5C.−10D.3−12【答案】A【分析】根据题意A<0解集为x<5,据此可得答案.【详解】解:∵8−3<∴>2∵若关于x<0的解集为2<<5,∴<0的解集为<5A.−5<0,解得<5,符合题意;B.2−5<0,解得<52,不合题意;C.−10<0,解得<10,不合题意;D.3−12<0,解得<4,不合题意;故选:A【点睛】本题考查的是解一元一次不等式组,根据题意得到A<0解集为x<5是解答此题的关键.4.(2022·云南临沧·八年级期末)若整数a使关于x的不等式组K12≤6+34−>+1,有且只有19个整数解,且使关于y的方程2rr31++10r1=1的解为非正数,则a的值是()A.−13或−12B.−13C.−12D.−12或−11【答案】C【分析】解不等式组,根据有且只有19个整数解求出a的范围,再解方程,根据方程的解为非正数,求出a的范围,找出公共部分的整数a值即可.【详解】解:解K12≤6+34−>+1,得r13<≤15,∵不等式组有且只有19个整数解,∴−4≤r13<−3,解得:-13≤a<-10,解2rr31++10r1=1得y=-12-a,∵方程的解为非正数,∴-12-a≤0,∴a≥-12.∴≥−12−13≤<−10,∴-12≤a<-10.∵a为整数,∴a=-12或-11.当a=-11时,y+1=0,应舍去,故a=-12,故选:C.【点睛】本题主要考查了解一元一次不等式组,解分式方程,一元一次不等式组的整数解,正确求得不等式组的解集是解题的关键.5.(2022·重庆秀山·七年级期末)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x 的不等式组−2(−1)≤32r3≥有解,符合条件的整数k的值的和为()A.3B.4C.5D.6【答案】C【分析】求出每个不等式的解集,根据不等式组有解得出k≥-1,解方程得出x=-k+3,由方程的解为非负数知-k+3≥0,据此得k≤3,从而知-1≤k≤3,继而可得答案.【详解】解:−2(−1)≤32r3≥解不等式x-2(x-1)≤3,得:x≥-1,解不等式2r3≥,得:x≤k,∵不等式组有解,∴k≥-1,解方程k-2x=3(k-2),得:x=-k+3,∵方程的解为非负数,∴-k+3≥0,解得k≤3,则-1≤k≤3,∴符合条件的整数k的值的和为-1+0+1+2+3=5,故C正确.故选:C.【点睛】本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集和一元一次方程的解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2022·重庆涪陵·七年级期末)若关于x的一元一次不等式组−5−≤13(−p3+1>4+2有解,则符合条件的所有正整数a的和为()A.50B.55C.66D.70【答案】B【分析】先解不等式组得OK154<−1,根据关于的一元一次不等式组−5−N 13(−p 3+1>4+2有解可得K154<−1,从而得出正整数,再求和即可得解.【详解】解:解不等式组−5−N 13(−p 3+1>4+2,得OK154<−1,∵关于的一元一次不等式组−5−N 13(−p 3+1>4+2有解,∴K154<−1,∴<11,∴正整数的和为1+2+3+4+5+6+7+8+9+10=55,故选:B .【点睛】本题主要考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解此题的关键.7.(2022·福建漳州·七年级期末)若不等式组−4<0≥有解,则m 的取值范围为()A .m <4B .m >4C .≤4D .≥4【答案】A【分析】先求出不等式−4<0的解集,再根据已知不等式组有解即可得出m 的范围.【详解】解:解不等式−4<0得:<4,∵不等式组−4<0≥有解,∴m <4,故选:A .【点睛】本题考查了解一元一次不等式组,能根据不等式组的解的情况得出m 的不等式是解此题的关键.8.(2022·广东广州·七年级期末)若不等式组+9<5+1>的解集为>2,则m 的取值范围是()A .≤2B .<2C .≥2D .>2【答案】A【分析】先解不等式组,再根据不等式组的解集为>2,可得答案.【详解】解:+9<5+1①>t 由①得:>2,∵不等式组+9<5+1>的解集为>2,∴≤2.故选:A【点睛】本题考查的是一元一次不等式的解法,根据不等式组的解集求解参数的取值范围,理解“同大取大”是解本题的关键.9.(2022·重庆·巴川初级中学校八年级期中)若关于x的一元一次不等式组−44−2≤123K12<+3的解集是≤,且关于y的方程2−−3=0有非负整数解,则符合条件的所有整数a的个数为()个A.5B.4C.3D.2【答案】A【分析】先解不等式组,根据不等式组的解集可得<7,再解一元一次方程可得=r32,然后根据r32为非负整数即可得.【详解】解:−44−2≤12①3K12<+3②,解不等式①得:≤,解不等式②得:<7,∵这个不等式组的解集是≤,∴<7,解方程2−−3=0得:=r32,∵关于的方程2−−3=0有非负整数解,∴r32≥0,且为非负整数,解得≥−3,在−3≤<7内,当整数取−3,−1,1,3,5时,r32为非负整数,则符合条件的所有整数的个数为5个,故选:A.【点睛】本题考查了解一元一次不等式组和一元一次方程,熟练掌握不等式组的解法是解题关键.10.(2022·广东云浮·七年级期末)若关于的一元一次不等式组−4<0+≥6有解,则的取值范围为()A.>−2B.≤2C.>2D.<−2【答案】C【分析】分别求出每一个不等式的解集,根据不等式组的解集得出关于m的不等式,解之即可.【详解】解:解不等式x﹣4<0,得:x<4,解不等式x+m≥6,得:x≥6﹣m,∵不等式组有解,∴6﹣m<4,解得m>2,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.(2022·重庆·四川外国语大学附属外国语学校七年级期末)若实数使关于的不等式组3−2+3≤r322K2≤−1有解且至多有3个整数解,且使关于的方程2=4K3+2的解为非负整数解,则满足条件的所有整数的和为()A.15B.11C.10D.6【答案】C【分析】先解一元一次不等式组,根据题意可得1⩽K22<4,再解一元一次方程,根据题意可得6−2⩾0且6−2为整数,从而可得4⩽N6且6−2为整数,然后进行计算即可解答.【详解】解:3−2+3⩽r32①2K2⩽−1②,解不等式①得:O1,解不等式②得:N K22,∵不等式组有解且至多有3个整数解,∴1⩽K22<4,∴4⩽<10,2=4K3+2,解得:=6−2,∵方程的解为非负整数解,∴6−2⩾0且6−2为整数,∴N6且6−2为整数,∴4⩽N6且6−2为整数,∴=4或6,∴满足条件的所有整数的和为4+6=10,【点睛】本题考查了一元一次方程的解,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.12.(2022·山东烟台·七年级期末)已知关于的不等式−<0,5−2≤1的整数解共有2个,则m的取值范围为()A.>3B.≤4C.3<<4D.3<≤4【答案】D【分析】先解出不等式组的解集,再根据不等式−<0,5−2≤1的整数解共有2个,即可得到m的取值范围.【详解】解:−<0①5−2≤1②,解不等式①,得<,解不等式②,得≥2,由题意可知,不等式组有解集,∴原不等式组的解集是2≤<,∵不等式−<0,5−2≤1的整数解共有2个,∴这两个整数解是2,3,∴3<m≤4,故选:D.【点睛】此题考查了由一元一次不等式组解集的情况求参数,解题的关键是明确解一元一次不等式组的方法,知道求不等式组的解集应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.(2022·福建·泉州市城东中学七年级期中)若关于x的方程42−+=B的解为正整数,且关于x2>2≤0有解,则满足条件的所有整数a的值有()个.A.1B.2C.3D.4【答案】B【分析】先求出方程的解x=8r3,根据方程的解为正整数求出a的值,再根据不等式组有解得出a<1,得出a的值,即可得出选项.【详解】解:4(2﹣x)+x=ax,ax﹣x+4x=8,(a+3)x=8,x=8r3,∵关于x的方程4(2﹣x)+x=ax的解为正整数,∴a+3=1或a+3=2或a+3=4或a+3=8,解得:a=﹣2或a=﹣1或a=1或a=5;2>2s≤0②解不等式①得:x<1,解不等式②得:x≥a,∵关于x2>2≤0有解,∴a<1,∴a只能为﹣1和﹣2,故选B.【点睛】考查了解一元一次方程、解一元一次不等式和解一元一次不等式组等知识点,能得出a的取值范围和a的值是解此题的关键.14.(2022·重庆荣昌·七年级期末)若关于x的方程B+32−2K13=1的解为正数,且a使得关于y的不等式组+3>13−<1恰有两个整数解,则所有满足条件的整数a的值的和是()A.0B.1C.2D.3【答案】B【分析】解方程B+32−2K13=1得=54−3,根据解为正数,得<43,根据关于y的不等式组+3>13−<1恰有两个整数解,得−1<<2,进而根据为整数,即可求解.【详解】解:B+32−2K13=13B+3−22−1=6解得=54−3∵关于x的方程B+32−2K13=1的解为正数,∴54−3>0∴4−3>0解得<43+3>1①3−<1②解不等式①得:>−2解不等式②得:<r13关于y的不等式组+3>13−<1有解,∴不等式组的解集为:−2<<r13∵关于y的不等式组+3>13−<1恰有两个整数解,∴0<r13≤1,解得−1<≤2,∵<43,∵−1<<43,∵为整数,则=0,1,其和为1.故选B【点睛】本题考查了解一元一次方程,求一元一次不等式组的解集,求不等式组的整数解,正确的计算是解题的关键.15.(2022·江苏镇江·七年级期末)关于x的不等式组≤−1>的整数解只有2个,则m的取值范围为()A.>−3B.<−2C.−3≤<−2D.−3<≤−2【答案】C【分析】先求出两个不等式的解,再根据“不等式组的整数解只有2个”即可得.【详解】解:不等式组的解集为:<≤−1,∵不等式组的整数解只有2个,∴不等式的整数解为-2,-1,∴−3≤<−2,故选:C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.(2022·黑龙江佳木斯·七年级期末)已知不等式组+>1,2−<2解集为−2<<3,则−2022的值为()A.1B.2022C.−1D.−2022【答案】A【分析】按照解一元一次不等式组的步骤进行计算,可得1-a=-2,2+2=3,即可求出a,b的值,最后再代入式子中进行计算即可解答.【详解】解:+>1①2−<2②,解不等式①得:x>1-a,解不等式②得:x<2+2,∴原不等式组的解集为:1-a<x<2+2,∵该不等式组的解集为-2<x<3,∴1-a=-2,2+2=3,∴a=3,b=4,∴(a-b)2022=(3-4)2022=(-1)2022=1,故选:A.【点睛】本题考查了一元一次不等式组、有理数的乘方,熟练掌握解一元一次不等式组是解题的关键.17.(2022·重庆丰都·七年级期末)若关于x的不等式组K24<K133−≤3−恰有2个整数解,且关于x、y的方程组B+=43−=0也有整数解,则所有符合条件的整数m的乘积为()A.−6B.−2C.2D.0【答案】C【分析】先求出不等式组的解集,根据一元一次不等式组的整数解得出关于m的不等式组,求出m的取值范围,根据m为整数得出m为-3,-2,-1,0,求出方程组的解,再根据方程组有整数解得出答案即可.【详解】解:不等式组K24<K133−≤3−整理得>−2≤r3 4,∵关于x的不等式组K24<K133−≤3−恰有2个整数解,即-1和0,∴0≤r34<1,解得:-3≤m<1,∵m为整数,∴m为-3,-2,-1,0,解方程组B+=43−=0得:=4r3=12r3,∵方程组有整数解,∴m只能为-2或-1,∴所有符合条件的整数m的乘积为2,故选:C.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,一元一次不等式组的整数解等知识点,能求出m的范围是解此题的关键.18.(2022·重庆·七年级期末)若关于x的不等式组K24<K134−≤4−恰有2个整数解,且关于x,y的方程组B+=43−=0也有整数解,则所有符合条件的整数m的和为()A.−2B.−3C.−6D.−7【答案】D【分析】表示出不等式组的解集,根据解集中恰有2个整数解,确定出m的范围,再由方程组有整数解,确定出满足题意的整数m的值,求出之和即可.【详解】解:不等式组整理得:>−2≤r45,解得:-2<x≤r45,∵不等式组恰有2个整数解,即-1,0,∴0≤r45<1,解得:-4≤m<1,即整数m=-4,-3,-2,-1,0,解方程组B+=43−=0得:=4r3=12r3,∵x,y为整数,∴m+3=±1或±2或±4,解得:m=-4或-2或-1,则m值的和为-4-2-1=-7.故选:D.【点睛】此题考查了一元一次不等式的整数解,以及二元一次方程组的解,熟练掌握各自的解法是解本题的关键.19.(2022·重庆铜梁·七年级期末)若a使关于x的不等式组4+2≥+−23+3≥2有三个整数解,且使关于y的方程2+=5r62有正数解,则符合题意的整数a的和为()A.12B.9C.5D.3【答案】B【分析】不等式组整理后,根据有三个整数解,表示出解集,确定出a的范围,再由方程有正数解,确定出符合题意整数a的值,求出之和即可.【详解】解:不等式组整理得:≥K83≤32,∵不等式组有三个整数解,∴K83≤≤32,整数解为-1,0,1,∴−2<−83≤1解得2<a≤5,∴整数解a=3,4,5,方程去分母得:4y+2a=5y+6,解得:y=2a-6,∵方程有正数解,∴2a-6>0,解得:a>3,综上所述,a=4,5,之和为4+5=9.故选:B.【点睛】此题考查了一元一次不等式组的整数解,以及一元一次方程的解,弄清题意是解本题的关键.20.(2022·浙江舟山·八年级期末)对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@<4M2≥有3个整数解,则m的取值范围为是()A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5【答案】B【分析】利用题中的新定义得到不等式组,然后解不等式组,根据不等式组有3个整数解,确定出m的范围即可.【详解】解:根据题中的新定义得到不等式组:2−+2<4①−2+2≥t,解不等式①得:x<2,解不等式②得:≥r23,∴不等式组的解集是r23≤x<2,∵不等式组有3个整数解,即整数解为﹣1,0,1,∴﹣2<r23≤﹣1,解得:﹣8<m≤﹣5.故选:B.【点睛】此题考查了新定义下的实数运算、解一元一次不等式组、求一元一次不等式组的整数解等知识,弄清题中的新定义是解本题的关键.21.(2022·重庆九龙坡·七年级期末)整数a使得关于x,y的二元一次方程组B−=113−=1的解为正整数(x,y均为正整数),且使得关于x+8)≥7−<2无解,则所有满足条件的a的和为()A.9B.16C.17D.30【答案】C【分析】表示出方程组的解,由a为整数且方程组的解为正整数确定出a的值,再由不等式组无解,确定出满足题意a的值,求出之和即可.【详解】解:方程组B−=11①3−=1②,①−②得:(a−3)x=10,解得:x=10K3,把x=10K3代入②得:30K3−=1,解得:=33−K3,∵a为整数,x,y为正整数,∴a−3=1或2或5或10,解得:a=4或5或8或13,不等式组整理得:≥10<+2,∵不等式组无解,∴a+2≤10,解得:a≤8,∴满足题意a的值为4或5或8,之和为4+5+8=17,故C正确.故选:C.【点睛】本题主要考查了解一元一次不等式组,以及二元一次方程组的解,熟练掌握各自的解法是解本题的关键.22.(2022·四川资阳·七年级期末)若关于的一元一次不等式组{2(+1)<+3−≤+5的解集是<1,且为非正整数,则满足条件的的取值有()个.A.1B.2C.3D.4【答案】C【分析】不等式组整理后,根据已知解集确定出a的范围,进而确定出非负正整数解的个数即可.【详解】解:不等式组整理得:<1≤2+5,∵不等式组的解集为x<1,∴2a+5≥1,解得:a≥-2,则非负正整数a=-2,-1,0,共3个.故选:C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.23.(2022·重庆江北·七年级期末)已知关于x的不等式组>s≤5至少有三个整数解,关于y的方程−3=12的解为正数,则满足条件的所有整数a的值之和为()A.−7B.−3C.0D.3【答案】B【分析】首先根据不等式组整数解的情况确定a<3;再根据方程y−3a=12解的情况确定a >−4.从而确定a的取值范围,再进一步确定整数a的值,进而求出所有整数a的值和.【详解】解:∵不等式组>≤5至少有三个整数解,∴a<3,解方程y−3a=12得,y=12+3a,∵方程的解y为正数,∴12+3a>0,∴a>−4,∴a的取值范围为:−4<a<3,∴整数a的值为:−3,−2,−1,0,1,2,∴整数a的值之和为:−3+(−2)+(−1)+1+2+0=−3,故选:B.【点睛】本题主要考查了根据不等式组解集的情况确定参数的取值范围,解这类题目的关键是题目中有关字母取值范围的确定.24.(2022·重庆巴南·七年级期末)若关于x的不等式组2−1>7−≤0无解,且关于x的方程ax=3x+2的解为整数,则满足条件的所有整数a的和为()A.12B.7C.3D.1【答案】B【分析】解不等式组,根据不等式组无解得出≤4,解方程得出=2K3,结合方程的解为整数知=1,2,4,从而得出答案.【详解】解:由2−1>7,得:>4,由−≤0,得:≤,∵不等式组无解,∴≤4,解关于x的方程ax=3x+2,得:=2K3,∵方程的解为整数,∴=1,2,4,则满足条件的所有整数a的和为1+2+4=7,故选:B.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.25.(2022·重庆·七年级期末)若关于的一元一次不等式组−≥02+1<3无解,关于的一元一次方程2(−3)+=0的解为非负数,则满足所有条件的整数的和为()A.14B.15C.20D.21【答案】D【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集.【详解】解:∵−≥0,∴≥,∵2+1<3,∴<1,∵不等式组无解,∴≥1,∵2(−3)+=0,∴=3−2,∵关于的一元一次方程2(−3)+=0的解为非负数,∴=3−2≥0,∴≤6,∴1≤≤6,∴满足所有条件的整数为:1,2,3,4,5,6,∴它们的和为:1+2+3+4+5+6=21.故选:D.【点睛】此题考查的是解—元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解答此题的关键.26.(2022·重庆北碚·七年级期末)若关于x的不等式组+2−1≤−52r3≤无解,且关于y 的一元一次方程2(y+1)+3k=11的解为非负数,则符合条件的所有整数的和是()A.2B.3C.5D.6【答案】D【分析】先解出方程的解和不等式组的解集,再根据题意即可确定k的取值范围,从而可以得到符合条件的整数,然后相加即可.【详解】解:+2−1≤−5①2r3≤t,由不等式①,得:x≤-1,由不等式②,得:x≥k,∵关于x的不等式组+2−1≤−52r3≤无解,∴k>-1,由方程2(y+1)+3k=11,得y=9−32,∵关于y的方程2(y+1)+3k=11的解为非负数,∴9−32≥0,得k≤3,由上可得,k的取值范围是-1<k≤3,∴k的整数值为0,1,2,3,∴符合条件的整数k的值的和为:0+1+2+3=6,故选:D.【点睛】本题考查解一元一次方程、解一元一次不等式组,解答本题的关键是求出k的取值范围.27.(2022·福建省福州屏东中学七年级期末)已知关于x,y的方程组−3=4−+=3,其中−3≤≤1,若=−,则M的最小值为()A.−2B.−1C.2D.3【答案】B【分析】由①+②得x-y=2+t,将=−代入得t=M-2,再根据−3≤≤1可得−1≤≤3即可得出答案.【详解】解:−3=4−s+=3t①+②得2x-2y=4+2t即x-y=2+t,∵=−,∴M=2+t,∴t=M-2∵−3≤≤1,∴−3≤−2≤1即−1≤≤3∴M的最小值为-1故选:B.【点睛】本题考查含参二元一次方程组参数满足的条件求字母的最小值问题,用整体思想直接找到两个参数之间的关系是解题的关键.28.(2022·重庆·巴川初级中学校七年级期中)如果整数m使得关于x的不等式组>0 ≥−4有解,且使得关于x,y的二元一次方程组B+=52+=1的解为整数(x,y均为整数),则符合条件的所有整数m的个数为()A.2个B.3个C.4个D.5个【答案】C【分析】不等式组整理后,根据有解确定出m的范围,再由方程组的解为整数确定出满足题意m的值,判断即可.>0①≥−4②由①得,>,由②得,≤4>0,≥−4有解,∵不等式组的解集为m<x≤4,∴m<4,方程组B+=5①2+=1②,①-②得:(m﹣2)x=4,解得:x=4K2,把x=4K2代入②得:8K2+y=1,解得:y=1−8K2,∵x与y都为整数,∵m<4,∴m-2<2,且m≠2,∴m-2=1或﹣1或﹣2或﹣4,解得:m=3或1或0或﹣2,故符合条件的所有整数m的个数为4个.故选:C.【点睛】此题考查了二元一次方程组的整数解,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.29.(2022·重庆忠县·七年级期末)若整数a使关于x≤2r59Kr13至少有1个整数解,且使关于x,y的方程组B+2=−4+=4的解为正整数,那么所有满足条件的a值之和为()A.﹣17B.﹣16C.﹣14D.﹣12【答案】B【分析】根据不等式组求出的范围,然后再根据关于,的方程组B+2=−4+=4的解为正整数得到−2=−4或−6或−12−2=−6,从而确定所有满足条件的整数的值的和.【详解】⩽2r59Kr13整理得:N2>+2,由不等式组至少有1个整数解,得到+2<2,解得:<0,解方程组B+2=−4+=4,得=−12K2=4r4K2,∵关于,的方程组B+2=−4+=4的解为正整数,∴−2=−4或−6或−12,解得=−2或=−4或=−10,∴所有满足条件的整数的值的和是−16.故选:B.【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出的范围,本题属于中等题型.30.(2022·重庆綦江·七年级期末)如果关于x 、y 的方程组3+2=+12+=−1中x >y ,且关于x 的不等式组K12<1+35+2≥+有且只有4个整数解,则符合条件的所有整数m 的和为()A .8B .9C .10D .11【答案】D【分析】解二元一次方程组求出x ,y 的值,根据x >y 得到关于m 的不等式,根据不等式组只有4个整数解求出m 的取值范围,取交集,找出符合条件的所有整数m ,即可求解.【详解】解:解方程组3+2=+12+=−1得=−3=5−,∵x >y ,∴−3>5−,∴>4,解不等式组K12<1+35+2≥+得<5≥K24,∴K24≤<5,∵关于x 的不等式组K12<1+35+2≥+有且只有4个整数解,∴0<K24≤1,∴2<≤6,∴4<≤6,∴整数m 为5和6,∴符合条件的所有整数m 的和为11.故选:D .【点睛】本题考查解一元一次不等式组和解二元一次方程组,根据不等式组只有4个整数解求出m 的取值范围是解题的关键.二、填空题(共15小题)31.(2022·江苏·南京市第一中学泰山分校七年级阶段练习)若不等式组>−2<3无解,则a 的取值范围为________.【答案】≥5【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【详解】解:−2<3解得<5,∵不等式组>−2<3无解,∴≥5;故答案为:≥5.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).32.(2022·湖北孝感·七年级期末)若关于x的不等式组2−1>4−>0的解集为>3,那么a的取值范围是_____.【答案】≤3【分析】先解出每个不等式的解集,再根据不等式组的解集为>3,,即可得到a的取值范围.【详解】解:2−1>4①−>0②,由不等式①,得:x>3,由不等式②,得:x>a,∵关于x的不等式组2−1>4−>0的解集为>3,∴a≤3,故答案为:a≤3.【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.33.(2022·湖南永州·八年级期末)若关于x的不等式组{2−≥0+≤0的解集为3≤x≤4,则关于x的不等式ax+b<0的解集为_____.【答案】>32【分析】分别求出每一个不等式的解集,确定不等式组的解集,由已知解集得出、的值,代入不等式,求解即可.【详解】解:解不等式2−O0,得:O2,解不等式+N0,得:N−,∵不等式组的解集为3⩽N4,∴2=3,−=4,则=−4,=6,∴关于的不等式B+<0为:−4+6<0,解得:>32,故答案为:>32.【点睛】本题考查的是解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.34.(2022·北京平谷·七年级期末)若<的解集中的最大整数解为2,则a的取值范围是_________.【答案】2<≤3【分析】根据最大整数解的意义即可得到a的取值范围.【详解】解:∵x<a的解集中的最大整数解为2,∴2<a≤3,故答案为2<a≤3.【点睛】此题考查了最大整数解的意义,正确理解最大整数解的意义及范围是解题的关键.35.(2022·湖北·武汉市光谷实验中学七年级阶段练习)若关于的不等式组,3−24<K13 2−≤2−3有且只有两个整数解,=2,则整数的值为______.【答案】4【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于的不等式组,进一步求得的整数解.【详解】解:3−24<K13①2−≤2−3②,解不等式①得:>1310,解不等式②得:≤3r27,∴不等式组的解集为:1310<≤3r27,∵不等式组只有两个整数解,1<1310<2,∴不等式组的两个整数解为:2和3,∴3≤3r27<4,解得:193≤<263,∵=2,∵196≤<266,∴整数的值为4.故答案为:4.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于的不等式组,难度适中.36.(2022·河南·鹿邑县基础教育研究室七年级期末)已知关于的不等式组2−≥0−<0的整数解是−1,0,1,2,若、为整数,则−的值为______.【答案】5或6【分析】先解两个不等式,结合不等式组的整数解得出m、n的取值范围,结合m、n为整数可以确定m、n的值,代入计算可得.【详解】解:解不等式2x﹣m≥0,得:x≥12m,解不等式x﹣n<0,得:x<n,∵不等式组的整数解是﹣1,0,1,2,∴﹣2<12m≤﹣1,2<n≤3,即﹣4<m≤﹣2,2<n≤3,∵m,n为整数,∴n=3,m=﹣3或m=﹣2,当m=﹣3时,n﹣m=3﹣(﹣3)=6;当m=﹣2时,n﹣m=3﹣(﹣2)=5;综上,n﹣m的值为5或6,故选:C.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.37.(2022·黑龙江·大庆市庆新中学九年级阶段练习)关于x的不等式组2K13<2−1+>恰好只有4个整数解,则a的取值范围为_________.【答案】−2≤<−1【分析】先求出不等式组的解集,根据其只有四个整数解即可确定的取值范围.【详解】解:2K13<2①−1+>②解不等式①得<3.5,解不等式②得>+1,根据题意,可得该不等式组的解集为+1<<3.5,∵不等式组只有4个整数解∴这4个整数解为3、2、1、0,∴−1≤+1<0,解得:−2≤<−1,所以的取值范围是−2≤<−1,故答案为:−2≤<−1.【点睛】本题考查了不等式组,已知不等组解集的整数解情况确定参数的取值范围关键是灵活的表示不等式组的解集.38.(2022·湖北·+4≤0+>0的整数解的和为-5,则m的取值范围为_______【答案】32<≤2【分析】分别求出不等式组中不等式的解集,利用“大小小大取中间”表示出不等式组的解集,根据解集中整数解的和为-5,求得m的取值范围即可+4≤0+>0解不等式2+4≤0解得:≤−2解不等式12+>0解得:>−2∴不等式组的解集为−2<≤−2∵不等式组的整数解和为-5∴−4≤−2<−3解得:32<≤2故答案为:32<≤2【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.39.(2022·河南南阳·七年级期末)如果不等式组<4<3+1的解集为<3+1,则的取值范围为______.【答案】a≤1##1≥a【分析】利用不等式组确定解集的方法得到关于a的不等式,求解即可.【详解】解:∵不等式组<4<3+1的解集为x<3a+1,∴3a+1≤4,解得a≤1,故答案为:a≤1.【点睛】本题考查了确定不等式组的解集,解一元一次不等式,掌握确定一元一次不等式组。
解一元一次不等式专项训练 (350)

x+11>4x-30 2(7x-7)>7(10x+14)9x+7 3x+1 9x-9 x-7 ———< ——————> ———+3 8 4 8 43x-25<2x-1 4( x+6)>3(2x+1)2x-3 4x+8 4x-8 x+2 ———< ——————< ———+4 3 3 5 73x+21>10x+7 2( x+3)>3(10x-9)8x+6 7x-1 2x-6 5x+5 ———< ——————< ———-5 7 8 3 69x-17>6x+17 4(9x+5)<5(8x+3)x+6 4x+8 x-2 x+2 ———< ——————> ———-4 8 5 6 35x-8<2x-23 6(5x-2)>7(2x-24)x+2 x-7 4x+6 7x+9 ———> ——————> ———+4 3 5 5 65x-16>2x-9 4(7x-8)<3(4x+16)5x-3 3x+2 x+1 9x-2 ———> ——————> ———+3 6 4 8 87x-13>8x+21 8( x-10)<7(10x-29)3x-9 6x+6 4x+9 3x-7 ———< ——————> ———+5 4 5 5 45x-11>10x+2 8(7x-10)>7(8x+2)x+5 6x-8 3x-1 9x+1 ———> ——————> ———-16 5 4 87x-28>8x-14 4(5x-5)<7(10x+27)8x-2 2x+9 7x-6 4x+5 ———< ——————< ———+67 3 8 5x-27>10x+15 2(3x+9)>7(2x+22)x+3 7x-8 2x-8 4x-4 ———< ——————< ———-47 6 3 33x+5<4x+26 2(3x-1)>7(10x-9)4x+3 x-3 2x+7 5x+4 ———> ——————> ———-1 5 7 3 43x-16>4x-22 2(3x-1)<9(8x+8)x+3 4x+5 5x+6 x+7 ———> ——————> ———-6 3 5 4 45x+22>2x-19 8(5x-3)<5(8x-4)5x-4 6x-7 5x+8 2x+1 ———> ——————< ———+4 6 5 4 39x+10<2x+27 8(3x-4)<9(2x+4)5x-4 8x-8 2x+2 x+9 ———< ——————> ———+6 6 7 3 87x+17>6x-7 8( x+4)<5(10x+14)2x-8 x+3 6x-9 7x+9 ———< ——————< ———-5 3 3 7 89x-10<2x-29 6(3x-1)>5(6x+25)x-9 x+2 7x-2 8x+8 ———> ——————> ———+33 7 8 7x-10<10x-22 8(7x-2)>5(4x+26)4x+7 8x-4 x-3 x+5 ———> ——————< ———+15 7 4 69x-28<10x+4 2( x-2)>9(6x-22)6x+2 6x+5 x-9 7x-6 ———< ——————< ———-2 7 5 4 6x-26<10x-1 4(9x+8)<7(6x+3)7x-1 2x+4 6x-7 7x+7 ———> ——————> ———-2 6 3 7 89x-19<10x-23 2(3x+1)>3(8x-9)7x+3 5x-2 9x+9 x+7 ———> ——————> ———+1 6 4 8 4x+25<8x+23 2(5x-6)>7(6x+22)x+2 x+6 3x+2 x-7 ———> ——————< ———+2 6 3 4 8x-14<4x+18 8( x-4)<5(4x+17)x-8 6x-2 6x-5 6x+6 ———> ——————> ———-5 6 5 5 5x+7<2x-1 6(3x+3)>7(8x+11)x-5 7x+5 7x-5 7x-7 ———< ——————> ———-4 8 6 6 89x-12>10x+4 4(7x+8)>7(8x+1)x-6 4x-6 4x+7 3x-7 ———> ——————< ———+4 3 5 3 49x+22>4x+11 6(9x-8)>9(4x+2)8x+7 x+4 x+5 4x+4 ———> ——————< ———+5 7 6 3 35x+19<2x+13 4(9x+10)>5(8x-1)4x+8 3x-5 x+4 8x-4 ———> ——————> ———-3 3 4 7 7x-18>10x+21 8( x-6)>5(4x+8)9x+7 7x-2 7x+8 x-8 ———> ——————< ———-2 8 6 6 4x-24<8x-4 8(3x+10)>3(6x-19)6x-8 x-4 x-2 x-9 ———< ——————< ———-3 5 8 5 55x-9<10x-16 4(3x+2)>3(10x+24)5x-9 4x-5 3x-8 6x-8 ———> ——————< ———-5 6 5 4 5x+26>10x-4 2(9x-7)>5(4x+9)5x-5 4x+1 x-4 2x+6 ———< ——————> ———-4 6 3 3 33x-9<6x+25 2(3x+1)>3(4x-26)6x+7 8x+3 x-9 2x+8 ———> ——————< ———-3 5 7 4 35x-29>8x+11 6(9x+5)>3(8x-11)4x-6 5x+2 x-5 3x+3 ———< ——————> ———-6 5 4 8 49x-8<4x+1 6(3x-7)>3(6x-15)6x+4 x-5 7x+7 8x+3 ———< ——————< ———+1 7 6 8 7x-9>6x-27 8(3x-3)>9(4x+11)5x+3 5x-6 6x+3 7x-2 ———< ——————< ———-6 6 4 5 89x-8<4x+16 2(9x+4)<5(2x-13)x-6 7x+1 x-7 3x+2 ———< ——————< ———+4 6 8 6 47x-12<6x+5 2(7x-6)<7(8x+4)x-9 5x-9 x+8 x+9 ———> ——————> ———-5 8 4 3 35x-25<6x-20 8(9x-6)<9(6x+18)7x-8 x+6 9x-6 3x-7 ———> ——————> ———+6 8 5 8 45x+10>4x-11 6(3x-6)<9(4x-3)8x-7 x+8 x-9 4x+2 ———< ——————< ———-27 8 3 5x+10<10x-10 8(9x-4)>3(8x+26)x+1 5x+2 x-6 x-6 ———> ——————> ———-45 6 6 35x+16>8x+23 4( x+3)<9(4x+2)6x+1 x-1 x+8 6x-6 ———> ——————< ———+37 7 6 79x-15<10x+4 8(3x-1)>7(2x-23)9x-2 7x+7 x-4 4x-1 ———> ——————< ———-6 8 8 5 57x-16<4x-28 6(3x-1)<7(10x+11)8x+6 x+6 7x+9 8x+7 ———> ——————> ———-3 7 3 8 77x-11>8x-23 6(5x-4)>5(6x+18)x+3 x+6 5x+6 x-9 ———> ——————< ———+34 7 4 47x-29<10x-15 2(7x-3)>3(6x+13)x+4 5x-4 6x-2 7x-1 ———> ——————> ———+56 67 87x+18>6x+23 4( x-10)<7(10x-1)3x+3 4x+2 5x-7 2x-6 ———< ——————> ———+64 3 4 35x-23>8x+8 4(7x+9)<9(2x-22)8x-2 x-3 x+4 6x-1 ———> ——————< ———-47 3 8 75x+28<10x+25 2(7x-1)<9(8x-17)5x+6 x-6 4x+1 x+6 ———> ——————< ———+66 6 3 83x+29>10x+3 6( x-3)<5(4x-17)。
一元一次不等式(组)专题训练

1、某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1)需租用48座客车多少辆?解:设需租用48座客车x辆.则需租用64座客车辆.当租用64座客车时,未坐满的那辆车还有个空位(用含x的代数式表示).由题意,可得不等式组:解这个不等式组,得:.因此,需租用48座客车辆.(2)若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?2、某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?3、某部门为了给员工普及电脑知识,决定购买A、B两种电脑,A型电脑单价为4800元,B型电脑单价为3 200元,若用不超过160000元去购买A、B型电脑共36台,要求购买A型电脑多于25台,有哪几种购买方案?4、为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?5、筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.6、某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?7、为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的1/2 ,八年级学生占合唱团总人数的1 /4 ,余下的为七年级学生.请求出该合唱团中七年级学生的人数.8、在“五?一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?9、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.10、某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?11、王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.12、为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.13、小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m的钢管及长2.5m的钢管.﹙余料作废﹚(1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根?(2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.14、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?15、义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的1/3 .请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?16、某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?17、为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?18、某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?19、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?20、2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?21、黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?23、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?24、某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?25、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?26、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?27、2010年1月1日,全球第三大自贸区-中国-东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代,广西某民营边贸公司要把240顿白砂糖运往东盟某国的A,B两地,现用大,小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种火车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的白砂糖不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?28、某校为迎接县中学生篮球比赛,计划购买A、B两种篮球共20个供学生训练使用.若购买A种篮球6个,则购买两种篮球共需费用720元;若购买A种篮球12个,则购买两种篮球共需费用840元.(1)A、B两种篮球单价各多少元?(2)若购买A种篮球不少于8个,所需费用总额不超过800元.请你按要求设计出所有的购买方案供学校参考,并分别计算出每种方案购买A、B两种篮球的个数及所需费用.29、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?30、师徒二人分别组装28辆摩托车,徒弟单独工作一周(7天)不能完成,而师傅单独工作不到一周就已完成,已知师傅平均每天比徒弟多组装2辆,求:(1)徒弟平均每天组装多少辆摩托车(答案取整数)?(2)若徒弟先工作2天,师傅才开始工作,师傅工作几天,师徒两人做组装的摩托车辆数相同?31、某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?32、为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?33、东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条.(1)求初三(1)班学生的人数;(2)初三(1)班学生的人数是50人,如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?说明理由.34、为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?35、去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?36、君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购买方案?37、某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案?38、某儿童服装店欲购进A、B两种型号的儿童服装,经调查:B型号童装的进货单价是A型号童装进货单价的2倍,购进A型号童装60件和B型号童装40件共用2100元.(1)求A、B两种型号童装的进货单价各是多少元?(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过63 00元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元,问应该怎样进货,才能使总获利最大,最大获利为多少元?39、某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.40、今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台,若要求购买的费用不超过40000元,安装及运输费用不超过92 00元,则可购买甲、乙两种设备各多少台?41、初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.42、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?43、玉柴一分厂计划一个月(按30天计)内生产柴油机500台.(1)若只生产一种型号柴油机,并且每天生产量相同,按原先的生产速度,不能完成任务;如果每天比原先多生产1台,就提前完成任务.问原先每天生产多少台?(2)若生产甲,乙两种型号柴油机,并且根据市场供求情况确定:乙型号产量不超过甲型号产量的3倍.已知:甲型号出厂价2万元,乙型号出厂价5万元,求总产量ω最大是多少万元?44、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?45、某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?46、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.47、迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?48、某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9个,乙品牌的书包1 0个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.(1)求甲、乙两种品牌的书包每个多少元?(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元.根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?49、某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?。
人教版数学七年级上册一元一次不等式(组)专项训练50题

方程与不等式(组)计算练习1.﹣=2﹣2.3.解方程:(I)4x+3(2x﹣3)=12﹣(x﹣4)(II)2x﹣(x+3)=﹣x+3(III)4.解方程组:5.解方程组:(1)(2)(3)(4)6.(Ⅰ)﹣=﹣1(Ⅱ)7.解下列方程组:(1)(2)8.解方程(组):(1)﹣=2﹣(2)9.解下列方程组:(1)(2)10.解下列方程组(1)(2)11.解下列方程组:(1)(2)12.解方程组(1)(2)13.解下列方程组:(1)(2)14.解下列方程组:(1)(2)15.解方程组(1)(2)(3)(4)16.解方程组:(1)(2)17.解方程组:(1)(2)18.解下列方程组(1)(2)19.(1)计算:(2)(3)20.解方程.(1)(2)21.解方程组(1)(2)22.解方程组:(1)(2)23.解方程(1)(2)24.解方程组:(1)(2)(3)25.解不等式组26.(1)解不等式5x+15>3x﹣1(2)解不等式组27.解方程(组)或不等式(组)并把第(4)的解集表示在数轴上(1)(2)(3)(4)28.解不等式组29.解不等式组30.解不等式组:,并把它的解集在数轴上表示出来31.解方程(组)或不等式(组)(1)(2)(3)并把解在数轴上表示出来并把解在数轴上表示出来(4)32.解不等式组(1)(2)33.解不等式和不等式组并用数轴表示其解集(1)(2)34.解不等式或不等式组,并把解集在数轴上表示出来(1)﹣(x﹣1)<1(2)(3)35.解下列不等式:(1)7x﹣2<9x+4(2)不等式组并将其解集在数轴上表示出来36.解下列方程组或不等式组37.求下列不等式(组)的解集(1)(2)+2<3﹣38.解下列方程组或不等式组,并将不等式组的解集表示在数轴上(1)(2)39.解不等式组40.解不等式组:,并把它的解集在数轴上表示出41.解不等式组(在数轴上表示解集)42.解不等式组,并在数轴上表示出解集43.不等式组的解集是0<x<2,求ab的值44.解不等式(组)(1)﹣(x﹣3)>4(2)45.解不等式组,并把解集表示在数轴上46.解不等式组:(1)3x﹣3≤2(2x﹣1)(2)46.解不等式组,并把解集在如图所示的数轴上表示出来47.解不等式组,并把解集在数轴上表示出来49.(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)50.解下列不等式(组),并把解集在数轴上表示出来(1)1﹣(2)。
七年级一元一次不等式专项练习题
初一数学专题练习《一元一次不等式》一.选择题1.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.当1≤x≤2时,ax+2>0,则a的取值范围是()A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠03.已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是()A.a>1B.a≤2C.1<a≤2D.1≤a≤24.关于x的不等式组的解集为x>1,则a的取值范围是()A.a>1B.a<1C.a≥1D.a≤15.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣26.当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x7.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.x+3>y+3C.﹣3x>﹣3y D.>8.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n29.下列不等式变形正确的是()A.由a>b得ac>bc B.由a>b得﹣2a>﹣2bC.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣210.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3B.m>3C.m<3D.m≥311.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0B.0≤a<1C.0<a≤1D.a≤112.若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0二.填空题13.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是.14.若不等式组有解,则a的取值范围是.15.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.16.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).17.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x 的值是.18.已知,且﹣1<x﹣y<0,则k的取值范围为.19.若不等式组的解集是﹣1<x<1,则(a+b)2017=.20.关于x的不等式组的整数解共有3个,则a的取值范围是.三.解答题21.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?22.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.23.解不等式:≤﹣1,并把解集表示在数轴上.24.已知关于x,y的方程组的解满足不等式组,求满足条件的m 的整数值.25.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?26.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)1535售价(元/件)2045(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.27.已知x=3是关于x的不等式的解,求a的取值范围.28.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?29.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.30.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.31.解不等式组:,并把解集在数轴上表示出来.32.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.33.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.34.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?35.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?36.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1640元,且总利润(利润=售价﹣进价)不少于600元.请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.37.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?38.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?39.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.40.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?。
(完整版)一元一次不等式应用题分类专项训练
一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
一:(分配问题)1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
2、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?3、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?4、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二:(积分问题)1、某次数学测验共20道题(满分100分)。
评分办法是:答对1道给5分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格?2、一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?3.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?三:(比较问题)1、某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
含参一元一次不等式专项训练
Action is character! 肥羊出品,必属精品
1 含参一元一次不等式
一、选择题 1.由xy得到axay的条件是( ) A.0a B.0a C.0a D.0a
2.若a为整数,且3902100aa,则21a的值为( ) A.17 B.16 C.5 D.4 3.6556xx,则x的取值范围是( )
A.56x B.56x C.56x D.56x 4.关于x的方程236ax的解是非负数,那么a满足的条件是( ) A.3a B.3a C.3a D.3a
二、填空题 5.△ABC的三条边分别是5、9、3a,则a的取值范围是__________.
6.不等式组xaxa的解集为__________.
7.不等式组213xax无解,则a的取值范围是__________. 8.若不等式(2)2mx的解集为22xm,则m的取值范围是__________. 9.若方程3(1)1(3)5mxmxx的解是负数,则m的取值范围是__________. 10.不等式组9511xxxm的解集为2x,则m的取值范围是__________.
11.不等式1()23xmm的解集为2x,则m的值是__________. 12.已知关于x的不等式组41320xxxa的解集为2x,那么a的取值范围是__________. 13.不等式283(2)xx的正整数解是__________. 14.若方程组4143xykxy的解满足条件01xy,则k的取值范围是__________.
15.如果关于7060xmxn的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有_______对. 三、解答题 16.解不等式:112142xx,并写出它的最大整数解. Action is character! 肥羊出品,必属精品
一元一次不等式应用题分类训练(含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算? 分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题. 解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0)依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x+5 x-6 x-9 6x-3 ——— > ——— ——— > ——— -1 5 6 3 5
5x-17<8x-12 6(9x-10)<7(8x-24) 6x-3 5x+6 5x+3 8x-1 ——— > ——— ——— < ——— -5 5 6 4 7
9x-9>8x+6 6(3x-7)<5(6x-16) x+8 x+9 x-7 6x+5 ——— < ——— ——— > ——— +5 7 7 4 5 x-9<4x+22 6(3x-10)<3(8x-5) 2x+3 x+2 x-9 2x+1 ——— < ——— ——— < ——— -4 3 4 8 3
7x+3>8x-26 2(5x+1)>7(8x-30) x+3 4x+7 6x+4 6x-4 ——— > ——— ——— < ——— +5 7 5 5 7
5x-28<6x-16 6( x-3)>5(4x-24) 6x+4 x+3 9x-4 x+9 ——— < ——— ——— > ——— -4 7 3 8 3
x-28>2x-7 4(9x+6)>7(6x+9) 4x-8 2x+1 x-2 8x-4 ——— > ——— ——— > ——— +1 3 3 3 7
5x+30>10x+17 2(7x-8)>3(10x+15) x-4 x+7 6x-7 4x+3 ——— > ——— ——— > ——— -5 5 7 5 3 x-28>2x-6 6(7x-5)>5(6x-8) 6x-9 4x+7 5x-8 5x+4 ——— < ——— ——— < ——— -1 7 3 4 4
x+20<8x+12 6( x-5)<9(4x+13) 7x+4 5x-4 5x+7 x-8 ——— < ——— ——— < ——— +6 6 4 4 3
9x-20<4x-19 4( x+2)>3(8x+9) 4x+9 7x-8 7x+9 6x+4 ——— > ——— ——— < ——— +1 5 6 6 7
7x-22<8x-11 4( x-9)>9(8x+26) 4x+9 9x-3 x+9 4x+6 ——— < ——— ——— > ——— +2 5 8 8 3
7x-19>2x-22 2(5x+4)<7(6x-20) 3x-8 6x+4 7x-4 3x-1 ——— < ——— ——— < ——— +5 4 5 8 4 x+1<6x-8 4(3x-2)<5(2x-3) 5x+2 3x-1 5x+7 x-4 ——— > ——— ——— > ——— -3 6 4 6 6
x-18<8x+19 8( x-9)>5(10x-27) x-5 5x-2 4x+3 x+5 ——— > ——— ——— > ——— +1 8 6 5 5
5x+6>2x+23 2(5x+1)>3(4x+20) 9x+1 x+7 7x+1 4x-2 ——— < ——— ——— > ——— -6 8 6 6 5
7x-21>6x-8 6(9x+8)>3(10x-8) x-2 6x+4 x+7 x+7 ——— > ——— ——— < ——— +4 3 5 8 8
7x-28>6x+27 4( x+5)>9(4x-27) 5x+7 3x+7 4x+8 6x-2 ——— < ——— ——— < ——— -5 4 4 3 5 9x+24<2x+3 8(3x-1)<7(6x-10) x+8 x+7 8x-4 4x+2 ——— > ——— ——— < ——— +1 8 4 7 3
9x-7<4x+25 8(5x-7)>7(4x-28) x-3 x+1 5x+6 7x-6 ——— > ——— ——— < ——— -6 4 4 6 6
x+24>8x-9 6(3x-1)>3(2x+28) 6x+9 4x+1 9x-1 6x-4 ——— < ——— ——— < ——— +1 5 5 8 5
7x-19<6x-29 8(7x-7)>3(4x+18) x+6 7x-1 x+1 x-1 ——— < ——— ——— < ——— +4 5 6 7 7
5x-4>6x+1 4(3x-10)>3(10x-29) x-2 x-1 x+5 x-8 ——— < ——— ——— < ——— +4 3 6 8 4 x+25>4x-1 4(5x-7)>5(2x+21) x+7 x-3 x-6 x-5 ——— > ——— ——— > ——— +4 8 8 5 7
7x+12>8x+19 6( x-5)<9(4x+11) 4x+7 3x+6 x+7 9x+7 ——— < ——— ——— > ——— -6 3 4 8 8
x-15<10x+12 8(9x+4)<9(8x-24) 4x-2 7x+6 x-3 x-7 ——— < ——— ——— > ——— +1 3 8 5 8
3x+3>8x+29 4(9x-1)<9(10x+8) 5x-6 5x-7 7x-1 5x-2 ——— < ——— ——— > ——— -2 4 6 6 4
3x+14>2x-23 8(3x+4)<7(6x+6) x-4 7x-6 2x+5 7x-5 ——— > ——— ——— > ——— -4 3 8 3 8 5x+8<6x+22 2(5x-5)>5(2x-17) x-8 x+5 x+2 x-2 ——— < ——— ——— > ——— -2 3 3 6 3
5x-21>8x-29 2(7x-6)<7(2x-25) 5x-3 4x-4 x+7 5x+3 ——— > ——— ——— > ——— +3 6 3 3 4
9x-9<6x-20 4( x-4)<7(2x-23) x+5 7x+3 7x+8 6x+9 ——— < ——— ——— > ——— +5 3 8 6 7
x+10>8x-1 4(7x-2)<7(4x-21) 6x+6 6x+9 7x+4 5x-3 ——— > ——— ——— < ——— -4 5 5 6 6
7x+17<8x+5 4(7x-4)>5(2x-21) 4x+4 x+7 x+9 6x-4 ——— < ——— ——— > ——— +2 5 3 3 7 x-3<6x+14 6( x+5)>9(8x-22) 5x+1 x+7 4x+1 x-6 ——— > ——— ——— > ——— +1 6 5 3 7
3x+10>6x-15 8(9x+2)<9(10x+4) 2x-3 4x+6 x+6 x+2 ——— > ——— ——— > ——— -6 3 5 6 6
9x+30<10x-22 2(7x+5)>7(10x-25) 7x+7 2x+8 6x-9 6x-2 ——— < ——— ——— < ——— +1 6 3 7 7
3x-28>2x+8 8(3x-10)>7(10x-5) 6x-2 3x+3 8x-9 x+6 ——— > ——— ——— < ——— -2 7 4 7 6
9x-26<6x-8 8(5x-7)>3(6x-28) 8x-6 6x-9 9x+6 5x-8 ——— > ——— ——— > ——— +3 7 5 8 4 x-19>8x+4 4(7x+7)<5(8x+15) x-5 6x-5 3x-2 4x+5 ——— < ——— ——— < ——— -4 6 7 4 3
x+21>8x-25 4(5x+9)<9(8x+11) 5x+4 6x+9 x+9 4x-4 ——— > ——— ——— < ——— -1 4 5 3 5
9x+20>10x-22 6( x-5)<7(10x+13) 7x+2 x+4 6x+9 x-3 ——— > ——— ——— > ——— -1 6 7 7 7
5x+4<6x-2 4(9x-1)>3(2x-29) 3x+7 x+6 7x+3 5x+1 ——— > ——— ——— > ——— -5 4 6 6 4
7x+12<4x+29 6( x-1)>3(2x+18) 6x+5 4x+8 x-9 3x+3 ——— > ——— ——— > ——— -4 5 3 6 4 3x-1>6x+2 8(9x+3)<3(8x+22) x+3 x-1 3x-9 x+2 ——— < ——— ——— < ——— -2 4 6 4 4
9x+12>8x-4 4(5x+1)<3(2x+13) 9x+1 4x+2 9x-2 7x-2 ——— < ——— ——— > ——— +6 8 3 8 8
7x-7>6x+4 6( x-3)>5(8x-27) x-4 6x-3 4x+4 6x+7 ——— > ——— ——— > ——— +3 8 5 5 7
9x+29<10x+11 6(9x-3)<7(10x+17) x+6 6x-8 8x-3 2x-3 ——— < ——— ——— > ——— +2 6 5 7 3
3x+14>2x-15 6( x+7)<7(6x+8) 7x+1 x-2 x-6 6x+5 ——— < ——— ——— > ——— -2 6 6 3 5