2019-2020学年第1学期 《概率论与数理统计》自测题答案

合集下载

《概率论及数理统计》习题一课后答案

《概率论及数理统计》习题一课后答案

C83

36 65
1.29设一批产品中一、二、三等品各占60%、30%、10%, 从中随意取出一件,结果不是三等品,求取到的是一 等品的概率.
解 Ai={取到的是i等品}i=1,2,3.
则所求概率为
P( A1 A3)
0.6
P( A1A3) P( A3)
2

P( A1) 1 P( A3)
即为求在2红2黑四个球中,取到1红1黑的概率.
(用条件概率的本来含义)
P( X
1Y
0)

C21 C21 C42

2 3
1.31已知P(A)=0.5,P(B)=0.6,P(B|A)=0.8,求P(A∪B).
解 P(AU B) P(A) P(B) P(AB) P(A) P(B) P(A) P(B A) 0.5 0.6 0.50.8 0.7
P(AB) 0 即P(AB) 0
∴A与B相容
1.11 试问下列命题是否成立?若正确给出其证明.
(3)若P(A)=1,P(B)=1,则 P(A∪B)=1
(√)
解 Q A AUB
P(A) P(AU B)
1 P(A) P(A UB) 1
P(AUB) 1
1.11 试问下列命题是否成立?若正确给出其证明.
1.8 设A与B互不相容,且P(A)=0.2,P(A+B)=0.6,求 P(B)
解 ∵A与B互不相容
∴P(AB)=0 又P(A+B)=P(A)+P(B)P(AB) ∴P(B)=P(A+B)-P(A)
=0.6-0.2
=0.4
1.9设P(A) 0.7, P(A B) 0.2,求P(A B)

2019-2020学年南邮通达《概率论与数理统计》期末考试卷

2019-2020学年南邮通达《概率论与数理统计》期末考试卷

南京邮电大学通达学院2019-2020学年第一学期《概率论与数理统计》期末考试卷一、填空题(每小题3分,共15分)1.A与B是两个事件,若,则_______.2. 盒子中有3个红球与2个白球,不放回地取球两次,每次任取一球,则第一次取到红球、第二次取到白球的概率为_______.3.设的分布函数为,则的概率密度函数_______.4. 设二维随机向量服从区域上的均匀分布,则概率_______.5. 设是总体的一个样本,要使分布,则常数________.二、选择题(每小题3分,共15分)1.设有3个人都以相同的概率进入6间房的每一间,每间房可容纳人数不限,则某指定的3间房中各有一人的概率为().A.; B.; C.; D. .2.设随机变量X 与随机变量Y 的联合分布律为:,,则有( ).A.; B.;C.; D. .3. 设随机变量,则().A.; B.7; C.13; D. 19.4.设相互独立,则下列不正确的是().A.;B.;C.;D..5.是总体的样本,分别为样本均值和样本方差,则下列正确的是( ).A.; B.;C.; D..三、计算题(每小题8分,共24分)1.已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。

今从男女人数相等的人群中随机地挑选一人。

(1)求此人是色盲患者的概率;(2)若此人是色盲患者,求他是男性的概率.2. 某大楼有3个不同类型的供水设备,假设在同一时刻每个设备是否被使用是相互独立的,且在任一时刻每个设备被使用的概率均为,用表示同一时刻被使用的供水设备数.求:(1)的分布律;(2)在同一时刻至少有2个设备被使用的概率。

3.设随机变量服从分布,求的概率密度.四、解答题(每小题14分,共28分)1.设连续型随机变量的概率密度为.求:(1)常数A;(2)的分布函数;(3)概率.2.设二维随机变量的概率密度 .(1)求边缘概率密度;(2)判别与是否独立;(3)求.五、应用题(每小题6分,共18分)1.已知总体服从正态分布,设是它的一个样本,求样本均值位于区间(14,16)内的概率(已知,).2. 设总体X的概率密度为,其中是未知参数,是来自X的一个样本,求参数 的极大似然估计量.3.设总体的概率密度为其中是未知参数,是来自X的一个样本.(1)求;(2)证明:是的无偏估计量.。

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。

设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。

3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。

解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。

概率论与数理统计课后习题答案 第七章

概率论与数理统计课后习题答案 第七章

习题 7.2 1. 证明样本均值 是总体均值
证:
的相合估计
由定理
知 是 的相合估计
2. 证明样本的 k 阶矩
是总体 阶矩
证:
的相合估计量
3. 设总体 (1)
(2)

的相合估计
为其样品 试证下述三个估计量
(3)
都是 的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证:
都是 的无偏估计
故 的方差最小.
大?(附
)
解: (1) 的置信度为 的置信区间为
(2) 的置信度为 故区间长度为
的置信区间为
解得
四、某大学从来自 A,B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位:厘米)后,算的
.假设两市新生身高分别服从正态分布:
,
其中 未知 试求
的置信度为 0.95 的置信区间.(附:
解:
.从该车床加工的零件中随机抽取
4 个,测得长度分别为:12.6,13.4,12.8,13.2.
试求: (1)样本方差 ;(2)总体方差 的置信度为 95%的置信区间.
(附:
解: (1)
(2) 置信度 的置信区间为
三、设总体
抽取样本
为样本均值
(1) 已知
求 的置信度为 的置信区间
(2) 已知
问 要使 的置信度为 的置信区间长度不超过 ,样本容量 n 至少应取多
施磷肥的
620 570 650 600 630 580 570 600 600 580
设不施磷肥亩产和施磷肥亩产均服从正态分布,其方差相同.试对施磷肥平均亩产与不施磷肥平均
亩产之差作区间估计(
).
解:
查表知

真题考试:2020 概率论与数理统计(经管类)真题及答案(1)

真题考试:2020 概率论与数理统计(经管类)真题及答案(1)

真题考试:2020 概率论与数理统计(经管类)真题及答案(1)1、下列文章中,属于游记的一篇是(单选题)A. 《都江堰》B. 《香市》C. 《秋夜》D. 《蚂蚁大战》试题答案:A2、下列《湘夫人》诗句中,表示湘君遗憾之情的是(单选题)A. 桂栋兮兰榛,辛夷楣兮药房B. 捐余袂兮江中,遗余襟兮醴浦C. 白玉兮为镇,疏石兰兮为芳D. 合百草兮实庭,建芳馨兮庑门试题答案:B3、设X,Y为随机变量,E(X)=E(Y)=1,Cov(X,Y)=2,则E(2XY)= 【】(单选题)A. -6B. -2C. 2D. 6试题答案:D4、下列《吃饭》语句中,作者据以生发议论,进而抨击和嘲讽不合理社会现象的是(单选题)A. 吃饭有时很像结婚,名义上最主要的东西,其实往往是附属品B. 弄饭给我们吃的人,决不是我们真正的主人翁C. 整个人世间好比是做菜的厨房D. 可口好吃的菜还是值得赞美的试题答案:A5、以市场上最有利的价格进行交易的证券交易委托方式是( )(单选题)A. 停止损失委托B. 停止损失限价委托C. 限价委托D. 市价委托试题答案:D6、设随机变量X与Y的相关系数为0.5,D(X)=9,D(Y)=4,则D(3X-Y)= 【】(单选题)A. 5B. 23C. 67D. 85试题答案:C7、下列作品中,使用倒叙方法的是(单选题)A. 《断魂枪》B. 《哦,香雪》C. 《金鲤鱼的百裥裙》D. 《苦恼》试题答案:C8、下列关于封闭式基金与开放式基金的说法正确的是(单选题)A. 封闭式基金有固定的存续期B. 开放式基金的规模是固定的C. 封闭式基金可以申请赎回D. 封闭式基金的交易价格与二级市场供求关系无关试题答案:A9、设随机事件A,B相互独立,且P(A)=0.2,P(B)=0.6,(单选题)A. 0.12B. 0.32C. 0.68D. 0.88试题答案:B10、狭义的黄金市场主要是指( )(单选题)A. 黄金制品市场B. 黄金投资市场C. 黄金信贷市场D. 黄金期贷市场试题答案:B11、设随机变量X~ B(3,1/5),则P{X=2}= (单选题)A. 1/125B. 12/125C. 3/25D. 12/25试题答案:B12、已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1) 分布的是(单选题)A.B.C.D.试题答案:D13、有效市场假说理论的提出人是(单选题)A. 保罗·萨缪尔森B. 尤金·法玛C. 米尔顿·弗里德曼D. 约翰·纳什试题答案:B14、设事件A与B相互独立,且P(A)=0.6,P(A∪B)=0.8,则P(B)= (单选题)A. 0.2B. 0.4C. 0.5D. 0.6试题答案:C15、设二维随机变量(X,Y)的概率密度为(单选题)A. 1/4B. 1/2C. 3D. 4试题答案:A16、黄金期贷合约的内容包括( )(多选题)A. 黄金数量B. 黄金质量C. 交易单位D. 交割地点E. 交割日期试题答案:A,B,C,D,E17、设二维随机变量(X,Y)的分布函数为F(x,y),则(X,Y)关于X的边缘分布函数Fx(x)= (单选题)A.B.C.D.试题答案:A18、设随机变量X的分布函数为F(x),则下列结论正确的是(单选题)A. F(+∞)=-1B. F(+∞)=0C. F(-∞)=0D. F(-∞)=1试题答案:C19、《都江堰》发出了“活着或死了应该站在哪里”的疑问,下列语句中,符合作者意图的回答是 ( ) (单选题)A. 站在滔滔的江边,完成了一个“守”字的原始造型B. 长城摆出一副老资格等待人们的修缮C. 把一批批有所执持的学者遴选为无所专攻的官僚D. 离索桥东端不远的玉垒山麓,建有一座二王庙,祭祀李冰父子试题答案:A20、下列诗词句中,表现对爱人的思念之情的有 ( )(多选题)A. 唯将旧物表深情,钿合金钗寄将去B. 仙掌月明孤影过,长门灯暗数声来C. 问君能有几多愁,恰似一江春水向东流D. 梧桐半死清霜后,头白鸳鸯失伴飞E. 想佳人、妆楼颙望,误几回、天际识归舟试题答案:A,D,E21、(单选题)A.B.C.D.试题答案:A22、我国的存款性金融机构主要包括(单选题)A. 中央银行B. 商业银行C. 政策性银行D. 商业银行和信用合作社试题答案:D23、《冯谖客孟尝君》先写冯谖的“无好”、“无能”,后写其为孟尝君经营三窟,这样的表现方法是 ( ) (单选题)A. 以小见大B. 互相映衬C. 欲扬先抑D. 首尾呼应试题答案:C24、设X1,X2...X10是来自总体X的样本,且X ~ N(0,1),(单选题)A.B.C.D.试题答案:B25、(单选题)A.B.C.D.试题答案:B26、设随机变量X在[-2,2]上服从均匀分布,则P{X≥1}= (单选题)A. 0B. 1/4C. 1/2D. 1试题答案:B27、《长恨歌》中唐玄宗、杨贵妃七月七日密誓之所是 ( ) (单选题)A. 未央宫B. 昭阳殿C. 蓬莱宫D. 长生殿试题答案:D28、设随机变量x满足E(X2)=20, D(X)=4,则E(2X)= (单选题)A. 4B. 8C. 16D. 32试题答案:B29、下列《寡人之于国也》的语句中,用比喻进行论证的有(多选题)A. 以五十步笑百步B. 数罟不入湾池C. 斧斤以时入山林D. 百亩之田,勿夺其时E. 非我也,兵也试题答案:A,E30、《哦,香雪》:“可在这儿,和同桌的铅笔盒一比,为什么显得那样笨拙、陈旧?它在一阵哒哒声中有几分羞涩地畏缩在桌角上。

概率论与数理统计习题答案1-19章

概率论与数理统计习题答案1-19章
解:设表示“在两次调整之间生产的合格品数”,且设,则的概率分布为
0
1
2 ……
……
…… ……
3、 已知一批产品共20个,其中有4个次品. (1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设表示“取出的样本中的次品数”,则服从超几何分布,即的 概率函数为 从而的概率分布为
格品” (1)
(2)
四、猎人在距离100米处射击一动物,击中的概率为0.6;如果 第一次未击中,则进行第二次射击,但由于动物逃跑而使距离 变为150米;如果第二次又未击中,则进行第三次射击,这时 距离变为200米.假定击中的概率与距离成反比,求猎人三次 之内击中动物的概率. 解:设表示“第次击中”,则由题设,有,得,从
0
1
2
3
(1)的分布律为 1
(2)的分布律为
0
1
1
0

0
1
五、设随机变量的概率密度为 求随机变量函数的概率密度.
解:因为 所以随机变量函数的概率密度为 ,即 .
8 二维随机变量的联合分布与边缘分布
一、把一颗均匀的骰子随机地掷两次.设随机变量表示第一次出现的点 数,随机变量表示
两次出现点数的最大值,求二维随机变量的联合概率分布及的边缘 概率分布. 解:二维随机变量的联合概率分布为

三、三个人独立地去破译一个密码,他们能译出的概率分别 为、、,求能将此密码
译出的概率. 解:设表示“甲能译出”;表示“乙能译出”;表示“丙能译出”, 则
设表示“此密码能被译出”,则,从而有
. (另解),从而有
四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分 别为.飞机被一

经济数学《概率论与数理统计》习题库(第 1 章)

第 一 章 练习题(A )一.单项选择题 1.设事件A 与B 互斥,P (A )p ,P (B )q ,则)(B A P 等于( ).(A)(1p )q ;(B)pq ;(C)q ;(D)p .==答 C 2.一批产品的废品率为0.01,从中随机抽取10件,则10是2件的概率为( ).(A)2210)0.01(C (B)28210)0.99()(C (C)82810)()(C (D)28810)()(C 件中废品数0.010.010.990.990.01;.;;答 C3.如果A ,B 为任意事件,下列命题正确的是 ( ). (A)如果A ,B 互不相容,则B A ,也互不相容;(C)如果相容,则B A ,也相容;(D)B A AB .(B)如果A ,B 相互独立,则B A ,也相互独立;A ,B答 B4..;;;( ).,3,2,1,,,310必有一发击中恰好击中一发至多击中一发至少击中一发表示那么事件发击中表示事件发打靶(D)(C)(B)(A)A A i i A i “”答 B 5..;;)(;,(B AB A A B P A A B P B A 是必然事件则正确的是满足和假设事件(A)(B)(C)(D)( ).答 D 6..)1(;)1(;)1(;)1(4),10(63395449643964410p p C p p C p p C p p C p p 次成功地概率为才取得进行重复试验每次试验成功率为(A)(B)(C)(D)( ).直到第十次试验,答 B7.设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( ).(A)0;(B)41;(C)81;(D)51.答 D 8.).()()();()()();|()|();|()|(( ).),|()|(,0)(,1)(0,B P A P AB P (D)B P A P AB P (C)B A P B A P (B)B A P B A P (A)A B P A B P B P A P B A 则下列各式中成立的是满足设事件答 C 9..1;1);1)(1)(1(;1( ).,,,,321321321321321321p p p p p p (D)p p p (C)p p p (B)p p p (A)p p p 则加工该种零件的成品率为各道工序的废品率分别为加工一种零件需经过三道独立工序答 B 10.).()()((D));|()|(|})(|{(C));()()((B);(A)( ).),|()|(|){(,0)()()(21212121212121212121B A P B A P B A BA P AB P A B P A A B P A P A P A A P A A B A P B A P B A A P A P A P B P 则已知答 D二.填空题 1.E 0,1,2,3,4,5,E ______________.若随机试验是:在六张卡片上分别中任意依次取出两张,取后不放回,组成一个二位数,空间中基本事件个数是标有数字则从的样本251515C C .答2.将3个球随机地放入4个盒子中,记事件A 表示:一盒中”P (A )等于________________.“三个球恰在同.则答161.3.设A , B 是两个互不相容的随机事件,且知)(,)(B P A P ,则)(B AP _______________.答43.4..____2,5,7.0次的概率为则恰好命中次现独立地重复射击设某人打靶的命中率为1323.0答.5..________5,5,,1010,,2,1个数字全不相同的事件的概率等于则所得数字个先后取出然后放回个数字中任取一个共从.3024.0106789105答6..____|,41)(,31)(,B (A P B P A P B A 则条件概率且互不相容与设事件).94答7.设A , B , C 表示3个随机事件, 试以A , B , C 的运算来表示下列事件:(1)C B A ,,恰有1个发生}表示为___________.(2)C B A ,,不多于1个发生}表示为_________.{{(2)填.C B A CB A CB A A (1)C B A ,,恰有1个发生}是一个较复杂的事件, 它可{A 发生, 而B , C 不发生}, {B 发生, 而A , C 不发生},C 发生, 而A , B 不发生}, 它们可以分别表示为C B A C B A BC A ,,.这3它们的和事件即为所要表(2) 所述事件可以分解为{A 发生, B , C 不发生}, {B 发生, A , C 不发生}, {C 发生, A , B 不发生}, {C B A ,,都不发生}.它们分别表示为C B A C B A C B A ,,与C B A ,它们的和事件为C B A C B A C B A CB A .{, 以分解为解(1)填C B A A ;个事件是互不相容的{示的事件.8.设321,,A A A 是随机试验E 的三个相互独立的事件,且知,)()(,)(321A P A P A P 则事件1A 发生且32,A A 至少有一个发生”_________.“的概率是答)].1)(1(1[)(或9.甲,乙,丙三人中恰好有两人出生在同一月份的概率是________.答4811.10. .________概率的可列可加性是指.)(,,,,,:,.)(,,,,,121121n nn n nn A P A A A A A P A PA A A 则是两两互不相容的随机事件设可知概率的可列可加性是指由概率的定义则是两两互不相容的随机事件设答,三.计算题 1.随机试验E 是连续检验某种产品但检查总次数不超过5次, ( 即检验到第五次品也停止检验).试写出E 的样本空间就停止检验,如果出两个废品,,即使未查出两个废,.解若把检出正品记为0,检出废品记为1,则).0,0,0,0,0(),0,0,0,0,1(),0,0,0,1,0(),0,0,1,0,0(),0,1,0,0,0(),1,0,0,0,0(),1,0,0,0,1(),1,0,0,1,0(),1,0,1,0,0()1,1,0,0,0(),1,0,0,1(),1,0,1,0(),1,1,0,0(),1,0,1(),1,1,0(),1,1U , 2.设随机试验为A 为“三颗骰子中最小的点数为3”;随机事件B 为;“点数之和为n ”,如果A 和B 不相容n 应满足怎样的条件?若随机事件,掷三颗骰子:互则,答如果事件A 出现3,故点数之和至少为9,因此A 与B 不同时出现9即"n8".即每一点数至少为,要使,点数之和应小于,,3.任取一自然数m ,设事件A ={m 为偶数},B ={m 为5的倍},C ={m 20},D ={m10},具体写出下列各式表示的集合:(1)B A;(2)C B ;D A ;C A .数(3)(4)答(1)N nn BA10,30,20,10.(2)20,15,10,5C B .(3)9,7,5,3,1DAD A .(4)11,2,26,24,22nN nn CA.4.某人向一目标连续射击直到击中两次为止,k A 表示事件k 击中目标”(k =),试用k A 表示下列事件:(1)“射击次数为3”记为B (2)“射击次数超过3”记为C .1, 2, 3,;次“第解(1)321321A A A A A B .(2)323121A A A A A A C.5..,,",54321B A i A B i i 表示事件请用个开关闭合表示第的事件电路接通表示用表示电路开关、、、、如果12345"答4325315421A A A A A A A A A A B.6..(2);(1):)5432(,"","",5B B i A B i A i i 表示、、、、用的事件次品不多于三件表示件次品发现有表示用件从一批产品中任意取解(1) A 0A 1A 2A 3(2)3210A A A A 或3210A A A A B或54A A B;.7.).()(,0.3(,0.4)(,0.5)(B A P B A P B A P B P A P 和求若解法一因为3.0)(B A P )()(B P A P ,1.0又),()(A P B A P ,,B A 又无包含关系既不互斥与这说明.而是一般的相容关系).()()()(AB P B P A P B A P 又由)()(AB A P B A P ),()(AB P A P 故得)()()(B A P A P AB P 3.05.0.2.0所以2.04.05.0)(B A P .7.0而)()(B A P B A P )(AB P 2.0.8.0解法二,B A 相容与由于B A 可写为因此,)(),(B A B B A B 互斥与从而))(()(B A B P B A P )()(B A P B P 3.04.0.7.0)(B B A A ,B A AB )()()(B A P AB P A P ),()(B A P AB P 所以)()()(B A P A P AB P 3.05.0,2.0于是)()(B A P B A P )(AB P 2.0.8.0,,由加法公式因此有8.某城市中发行2种报纸A, B. 经调查, 在这2种报纸的订户中, A 报的有45%, 订阅B 报的有35%, 同时订阅2种报纸A,的有10%. 求:(1)只订A 报的概率;(2)只订1种报纸的概率.订阅B解(1)记事件订阅A 报}, B 订阅B 报}, 则{只订阅A 报}可表示为AB A BA . 因,A AB故.0.350.10.45)()()()(AB P A P AB A P B A P (2)只订1种报,)()(A B A B B A 要把AB B A ,分别表示为.,AB BAB A 又这2个事件是互不相容的, 由概率加法公式, 有.0.60.10.350.10.45)()()()()()(AB P B P AB P A P AB B P AB A P p {9.52,个男兵和个女兵排成一列?如两头都是男兵共有多少种排法解2025P 种,5,有5!2400!520.两头一定是男兵的排法为剩下个兵排在中间种排法所求共有种排法10.从103,:(1).(2).(3),.名队员中选出名参加比赛试求共有多少种选法如队长必须被选上有多少种选法如某运动员甲不被考虑选上有多少种选法;1203218910(1)310C 解;362189(2)29C .84321789(3)39C11.1204,,5件,?件产品中有件次品在抽样检查时从中任取有且仅有一件次品的抽法共有多少种其中解5,4!112!4!1164116C ,414C 种,4,1).28640980(11319115!112!3!116144116或C C 抽取件产品其中有件正品的抽法有另一件是次品的抽法有故抽取件正品件次品的抽法共有12.在房间里有10人,分别佩戴着1~10号的纪念章,任意选4录其纪念章的号码,求最大的号码为5的概率.人记解A 表示事件“最大的号码为5”基本事件总数410C A 的基本事件数34C ,P (A )10524.,所包含13.20名运动员中有2名优秀选手,现将运动员平分成两组,2秀选手分在同一组的概率是多少?名优问解A 表事件“2名优秀选手分在同一组”.基本事件总数n1020C .A 所包含的基本事件数r8182C ,P (A )1993892.14.圆形靶由三个环形区域I,和III 组成,在射击一次中,命中第环形区域的概率依次为0.15, 0.23, 0.17 ,试求没有命中靶II I,和III II 子的概率. 解设A 为没有命中靶子事件,A 即为命中事件,321,,A A A 为命中I, II, III 区域的事件,于是.321A A A 55.0.023.015.0()()()(321A P A P A P A P 由此得出45.0)(1)(A P A P ..各15.,,5,4,5每次取一个次球从中取个红球个黑球箱中放了..求黑球和红球都取到至少两次的概率取后放回,,},},3},2BCC B A A C B 且则少取到两次黑球数为黑球数为设解.61.0)()()(55C C C P B P A P 由此可得黑球和红球至16.,4,3,,10卷另一套卷一套其中有两套书本书放在书架上任意将:求事件.两套中至少有一套放在一起的概率解,这是一古典概型概率问题,”3“A 卷一套的放在一表示设,4“B 卷一套的放在一起表示”,”“C 起表示两套各自放在一”“D 两套按卷次顺序排好表示.)()()()(AB P B P A P B A P 212.起17.,11名教师某教研室共有,7人其中男教师,3个为优秀教师现该教研室中要任选.13个女教师的概率个教师中至少有问解法一设;”3“A名优秀教师中有女教师,3,2,1,”3“i i A i名女教师名优秀教师中恰有则,321A A A A,,,321A A A 两两互斥由加法公式有)()()()(321A P A P A P A P 311073431117243112714C C C C C C C C C 0.788.),(1)(A P A P ,”3“A个优秀教师全是男的1)(31137C C A P .0.788解法二18.任意取两个正的真分数,记事件E 是两个分数的和介于21与23之间,求事件E 的概率.解设此二真分数分别为x ,y 则(x ,y )OACB .事件E 对应着图中阴影部分G 的面积.故)(OACB G E P 3181811.方形B y 的一切可能值对应着正19.已知.2.0)|(,3.0)(,1.0)(B A P B P A P 求(1)P (AB );(2)P ( AB );(3)P (B A );(4));(B A P (5)).|(B A P |解06.0B A P B P ABP .34.0AB P B P AP B AP .6.0AB P .04.0AB P A P AB A P B A P .66.01B A P BAP BA P .35337.066.0BA P .20.甲,乙两个盒子里各装有10只螺钉,是次品,其余均为正品,现从甲盒中任取二只螺钉放入乙盒中,从乙盒中取出两只,的概率是多少?每个盒子的螺钉中各有一只再一只次品问从乙盒中取出的恰好是一只正品,答)2,(i A i “放入乙盒的螺钉中有i 只正品”.B :“乙盒中出的二只螺钉是一只次品,一只正品”.511019111A P ,3310212110121C C C A B P .4210292C C A P ,61212111112C C C A B P .由全概率公式i i A B P A P BP 2194.03216522106154331051.21.,1,2,5求第三次才打开房门的概率.开房门从中随机地取把可以打开房门其中有把钥匙某人有把试 2.0324253)()()()(,).3,2,1(""213121321A A A P A A P A P A A A P i i A i 所求概率为于是次能打开房门第设解.22..(2);(1),3.0,.2.0,1.0.,,当乙河流泛滥是甲河流泛滥的概率该时期内这个地区遭受水灾的概率求乙河流泛滥的概率为当甲河流泛滥时乙河流泛滥的概设某时期内甲河流泛滥地区即遭受水灾当任一河流泛滥时假设某地区位于甲、乙二河流的汇合处率为该15.02.0.01.0)()()()((2)27.03.01.02.01.0)()()()()()()()(,,,(1),B P A B P A P B A P A B P A P B P A P AB P B P A P B AP B A B A 所求概率为于是该地区遭受水灾可表示为由题意乙河流泛滥甲河流泛滥设解..“”“”.23.)?每个字母的工作是相互独立的的概率是多少(问输入的是已知输出为其输入概率分别为之一输入信道,今将字母串输出为其他一字母的概率都是输出原字母的概率为,三个字母之一输入信道将AAAA ABCA p p p p p p CCCC BBBB AAAA aa C B A ,),(,,,,.21,,,21321而设信道传输ap a ap ap B P B A P B P B A P B P B A P B P B A P A B P ABCA A CCCC BBBB AAAA B B B 1)13(22)()|()()|()()|()()|()|(,,,11321133221111131的事件,由页贝斯公式为输出的事件,,分别为输入解 2设事件24.在18盒同类电子元件中有5盒是甲厂生产的,7盒是乙厂生产的,4盒是丙厂生产的,其余是丁厂生产的,0.8,0.7,0.6,0.5,现任意从某一盒中任取一个元件,现是不合格品,次为该四厂的产品合格品率依经测试发试问该盒产品属于哪一个厂生产的可能性最大?答)4,3,2,(i A i “所取一盒产品属于甲,乙,丙,丁厂生产”B :“所取一个元件为不合格品”,则1851A P ,1872A P ,1843A P ,1824A P .2.1A B P ,3.2A B P ,4.A B P ,5.A B P .由全概率公式ii A B P A P BP 418057.由贝叶斯公式5710,5716,5721,57104321B A P BA PB A P B A P 故该盒产品由乙厂生产的可能性最大.,.25..,)2(;)1(.一半,,%25.0%5求该人是男人的概率若已知此人不是色盲求此人是色盲的概率现随机挑选一人假设男人和女人各占女人是色盲患者的男人和已知21)(,21)()1(,,A P A P B A A 由题知出的是色盲选出的是女人则选出的是男人设解4878.097375.021)05.01()()2(02625.0)(0025.(,05.)(B A P B P A B P A B P 由逆概率公式知由全概率公式知)(A P )(A B P )(A P )(A B P )(A B P )(A P )(B P .“”“”“”.选,26.?,,.6,6,4的为要我们在随机地选出一名学生时名二年级女名一年级女生名一年级男生一个教室里有教室里还应有多少名二年级男生生性别与年级是相互独立.4,4.164104),()|(,,.1041610)|()()(.164)(,1610)(}.},{.名二年级男生即还应有解之得即必有独立欲则任选一名学生为男生任选一名学生为一年级个二年级男生设还应有解NNNB P A B P B A N A B P A P AB P NNB P N A P B A N .4,4.164104),()|(,,.104)|()()(.164)(,1610)(}.},{.名二年级男生即还应有解之得即必有独立欲则任选一名学生为男生任选一名学生为一年级个二年级男生设还应有解NNNB P A B P B A A B P A P AB P NNB P N A P B A N27.(0.70.9,,只要有一架飞机投中目标即完成使使完成使命有较大的概率、、同时投弹员驾驶员必须要找到目标轰炸机要完成它的使命.必须要投中目标设驾驶员甲、乙找到目标的概率分别为;0.8投弹员丙、丁在找到目标的条件下投中的概率分别为,.0.6问甲现在要配备两组轰炸人员丁怎样配合才能、丙乙、、.?)求此概率是多少命解,1为甲找到目标设A ,1为丙投中目标B ,2为乙找到目标A (1),甲丙搭配乙丁搭配)(W P )()()(两机均命中乙丁机命中甲丙机命中P P P )()()()()()()()(222111222111A B P A P A B P A P A B P A P A B P A P ||||6.08.07.09.06.08.07.09.08076.0:注意,”,标丙投中目标而且乙找到目.丁投中目标(2),乙丙搭配甲丁搭配)(W P )()()(两机均命中乙丙机命中甲丁机命中P P P 7.08.06.09.07.08.06.09.07976.0,所以甲丙搭配,乙丁搭配好.8076.0此时命中率为,2为丁投中目标B .为完成任务W .两机均命中“指甲找到目标.28.设有二类各三个相同的元件A 和把成一组,再把这三组并联成一个系统,p ,又各元件损坏与否是相互独立的,求此系统能正常工作的概率.,A ,A B ,B ,B ,B A ,0.8)B (p ,0.7)A (两两串联设每个元件正常工作的概率解)]()(1[B p A p P 3)8.07.01()915.0(44.013.29..,5.0,6.0,试求敌机被射中的概率乙炮的命中率为已知甲炮的命中率为甲乙二门炮同时独立地向一敌机开炮、)(,:5.06.0)(()(,:}.P P C P B A P A P B AP C P B A B A C得相互独立和由第二种方法相互独立和由第一种方法被击中甲炮射中敌机令事件解.8.02.05.04.)()()()(,.8.03.01.5.06.0)()()()()()(),},},B P A P B A P C B A B P A P B AB P B P A P C B 则有也相互独立和则有乙炮射中敌机敌机30.实验室器皿中产生甲类细菌与乙类细菌的机会是相同的,若某次发现产生了20个细菌,求甲,乙二类细菌各占一半的概率.解PC 2021!10!!20)1762.0(21113171918.31.甲、,投篮命中率分别为0.8和0.7,每人投篮3次,求两人进球相等的概率.乙两篮球运动员解甲投篮命中概率p 不中概率q 0.2乙投篮命中概率p 10.7,不中概率q 1甲在 3次中m 次概率mm mq p C m P 31133)(mm mq p C m P 32233)(则P )3()3()2()2()1()1()0()0(33333333P P P P P P P P 22333.07.032.08.033.02.033227.08.03.07.032.08.03 0.363乙在n 3次中m 次概率;,.32.,,,,.4,3,2,144321它们的可靠性分别为个独立工作的元件设有p p p p 将它们按右图的方式连接),(称为并串.试求这个系统的可靠性1234联系统解,5,4,3,2,1,,,,工作正常分别表示元件设事件E D C B A }.系统工作正常G .对图中的串联系统AD ABC G)()(AD ABC P G P )()()(ABCD P AD P ABC P )()()()()()()()()(D P C P B P A P D P A P C P B P A P .432141321p p p p p p p p p33.一袋中装有1N 个黑球及1个白球. 每次从袋中随机地摸出1球, 并换入1个黑球, 如此进行下去. 求:(1)第k 次摸球时, 摸到白球的概率;(2)第k 次摸球时, 摸到黑球的概率.解(1)因为袋中只有1只白球, 而每次摸球总是换入黑球, 故k 次摸球摸到白球, 则前面)1(k 次一定不能摸到白球, 也就, 前)1(k 次都摸到黑球.在前)1(k 次摸到黑球时, 皆放, )1(k 次中, 摸到黑球的概率皆为.111NN N 试验是独立的, 故.1111Np (2)它为(1)中事件的对立事件, 故故在这.112Np 1第是说入黑球解(1)因为袋中只有1只白球, 而每次摸球总是换入黑球, 故k 次摸球摸到白球, 则前面)1(k 次一定不能摸到白球, 也就, 前)1(k 次都摸到黑球.在前)1(k 次摸到黑球时, 皆放, )1(k 次中, 摸到黑球的概率皆为.111NN N 试验是独立的,故.1111Np (2)它为(1)中事件的对立事件, 故故在这.112Np 1第是说入黑球34..,2.0,2.0,3.0,,.2C B A C B A 求电路发生间断的概率损坏的概率分别是设电池串联而成及个并联的电池与电路由电池 328.0.02.03.02.02.03.0)()()()()()()]([)()(.,,,3,,C P B P A P C P B P A P BC AD P BC A D C B A C B A 于是则生间断损坏个电池分别表示设解.表示电路发,35.,,85.0,8.0,9.0,.1,3因无人照管而停工的概率.求在这段时间内不需要照管的概率依次是某段时间个人照管由部机床独立地工作甲、乙、丙它们机床 059.0)15.02.01.0(215.02.015.01.02.01.0)()()(2)()()()()()()(2)()()()(,.,,,,C P B P A P C P B P C P A P B P A P ABC P BC P AC P AB P BC ACABP BC AC AB C B A 所求概率为于是事件可表示为因无人照管而停工即有两台或两台以上机床需要照管照管分别表示在这段时间内机床甲、乙、丙需要工人设解.此36..,..1.0,8.0,.3.0,4.0,3.0.,,,的概率求被传送的字符为字母为若接收到的假定前后字母是否被歪曲互不影响的概率为而接收到其他两个字母每个字母被正确接收的概率为扰由于通道噪声的干定传送这三组字符的概率分别为三者之一传送的字符为某通信渠道中BBBB ABBC CCCC BBBB AAAA 假 .842.0)()|()()|(.00304.0)|()()(.0008.0)|(,0064.0)|(,0008.0)|(,3.0)(,4.0)(,3.0)(,.,,,,2223321321321A P B A P B P A B P B A P B P A P B A P B A P B A P B P B P B P ABBC A CCCC BBBB AAAA B B Bi i 于是由全概率公式则的事件表示接收到的字符为事件分别表示传送的字符为设解的37..,,,出现偶数次的概率事件次独立实验中求在出现的概率为事件在伯努利实验中A n p A 解事件A 出现偶数次的概率为a22222200mqp C q p C q p C a mnm m n n n n n 12121233311qp qp C pq C b m n m m n nn nn 而a b p q )a b (q p )n 2p )n解得n p a)21(2121事件A 出现奇数次的概率为b (1,.,.38..(2);(1),3,8.07.02甲比乙进球数多的概率两人进球数相等的概率求次每人投篮和人投篮命中率分别为甲、乙343.0)7.0()(411.0.07.0)(189.03.07.0)(027.03.0)(,,,,3,3332232213130A P C A P C A P A P C i B i A i i 甲比乙进球数多甲、乙进球数相等个球乙投中个球投中甲设重伯努利概型分别为次设甲、乙个投篮解21476.0)()()()()()()()()()()()()()((2)36332.0)()()()()()()()()()()()(()1(512.0)(;384.0)(096.0)(;008.0)(23130312020123130312020133221100332211003210B P A P B P A P B P A P B P A P B P A P B P A P B A B A B A B A B A B A P D P B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P B P B P B P B P 同理可得.“”“”“”“”.,,,.;.;39.某车间中, 一位工人操作甲、乙2台没有联系的自动车床. 由积累的数据知道, 这2台车床在某段时间里停车的概率分别为0.15及0.20. 求这段时间里至少有1台车床不停车的概率.解法一设A 甲车床不停车}, B {乙车床不停车}.则A , B 独立, 且.0.8)(,0.85)(B P A P 所求概率为.0.970.80.850.80.85)()()()()()()()(B P A P B P A P AB P B P A P B A P p解法二{2台都停车}.B A 因为B A ,相互独立, 因此2台车床都停车的概率为.0.030.200.15)()()(B P A P B A P 从而,至少有1台不停车的概率为.0.970.03p 40..,:不相互独立但两两独立,举例说明C B A C B A ,,,解,一个均匀正四面体,其第一面染成白色,第二面染成蓝色.白、蓝色,一次四面体.蓝色分别表示出现红、、、以C B A 白、,有两个面有红色故;)(A P 同理)()(C P B P .1/2,因为只有一个面含有两种颜色所以)()(AC P AB P )(BC P ,1/4因而),()()(B P A P AB P ),()()(C P A P AC P ),()()(C P B P BC P .两两独立、、故C B A 但是)(ABC P )()()(C P B P A P ,1/8.不是相互独立、、故C B A ,第三面染成红色,3块第四面分成分别染成红、投因四面体四.综合与证明题 1.设E 、F 、G 是三个随机事件各式(1));()(F E F E (2));()()(F E F E F E (3)).()(G F F E试利用事件的运算性质化简下列,:解(1)原式E F F F E F E E E .(2)原式.E F FE F F E F E F E (3)原式.G EF FFGEFE2.,,,21A A A 发生则同时发生已知事件.1)()()(21A P A P AP 证明:1)()()(1)()()()()()()()(,21212121212121A P A P A P A P A P A A P A P A P A A P A A P A P A A A 所以又于是由题意证,3.).()(),3,2,1(,3321321A A A A A A i i A i 次射击击中靶子”表示“第用次设某人向靶子射击试用语言描述事件解.)()(321321表示恰好连续两次击中靶子A A A A A A4..2)()()()(),3,2,(,,3321321A P A P A P A P i A A A A A i证明:都满足个事件已知2)()()()(1)()()()()()(1)()()()()()()(,,,),3,2,(32121212121321321321321321A P A P A P A P A P A P A A P A P A P A A P A P A A PA AA P A P A A P A A A P A P A A A A i A A i 所以又于是所以因为证.5.盒中有9个白球,1个红球,从盒中一个一个地取球(取出的球不再放回),证明:第k 次取得红球的概率为101.证k A “第k 次取得红球”(1k 10)由题设条件知k kkA A A A A 121kkk A A A A P 12111kk A A A P A P P 291298109k 101..,6.设0P (C )试证对任意的随机事件A ,恒有:P (A C ).1)|(C A P 1,|证)()()()|()|(C P C A P AC P C A P C A P )()(C P C A AC P .1)()(C P C P7.)()((,,,1)(0212121B A P B A P B A A P A A B P 证明互不相容若事件设.)()()()()()()()()(212121B P B A P B P B A P B P B A B A B P B A B A P 有因为证)(21B A A P )()(21B A P B A P ).()(21B A P B A8..,独立与证明独立与设事件B A B A .)()()()()()(1)()()()(1)](1)][(1[)()()(也独立与因此得由证B A B A P B AP B AP AB P B P A P B P A P B P A P B P A P B P A P AB P )()(B P A P9..,:,,,独立肯定与证明三个事件相互独立设C AB B A C B A 相互证(1))(])[(BC AC P C B A P )()()(ABC P BC P AC P )()()()()()()(C P B P A P C P B P C P A P )]()()()[(AB P B P A P C P )()(B A P C P .相互独立与故C B A (2))(])[(ABC P C AB P )()()(C P B P A P )()]()(C P B P A P )()(C P AB P .相互独立与故C AB10.设P (A )P (B )研究事件A ,B 相互独立与A ,B 同时成立.0,0,互斥能否解A ,B 相互独立,则P (AB )P (A )P (B ).若A ,B 互斥,则0.由于假设故两者不能同时成立.P (AB )P (A )P (B )0,0,练习题(B )一.单项选择题 1.设A ,B 为两个不同事件,下列等式中有哪个是正确的( ).(A)B A B A ;(B)B A B A ;(C) B ABA;(D)AB BABA.答(B).2..3(D);(C);(B);(A)( ).,3,2,1,0,,3321发击中必然击中至少有一发击中全部击中表示那么事件发击中表示事件发打靶A A A Aii A i “”答(B).3.设c B P b A P a B A P )(,)(,)(,则)(B A P 等于( ).(A);)(c c a (B);a c b (C);c b a (D).)1(c b答(B).设A ,B 相互独立,P (A ),P (B ,则( ).)(B AP (A)0.45;(B)0.95;(C)0.6;(D)0.55.0.8答(B).5.).()();()(;;( ).,1)(,0)(A P AB P (D)B p AB p (C)A B (B)A (A)A B P A P 为必然事件则有设答(D).6.).()()();()();()();()(( ).)(,AB P B P A P (D)B P A P (C)AB P A P (B)B P A P (A)B A P B A 、对于任意两个事件答(B).7.).()()();()()();()()();()()(,AB P B P A P A P AB P B P AB P B P A P A P B P A B P B A则已知(A)(B)(C)(D)( ).A.答8..)(;)(;0)();()(,0)(,0)(,2,AB P B A P B A P B P A P B P A P B A 成立.则个互不相容的事件是设(A)(B)(C)(D)( )一定答B.9.).()()(;;;,8.(,7.0)(,8.(B P A P B AP A BB A B A B A P B P A P 互斥与独立与则下列结论正确的是设(A)(B)(C)(D)( ).A.答10..)(;)(;0)();()(,0)(,0)(,,B A P B A P B A P B P A P B P A P B A 则下列式子不正确的是( ).是两个对立事件设(A)(B)(C)(D)D.答).()();()((;;,0)(,0)(,A P B A P B P A AB P B A B P A P B A 相容不相容与列结论中肯定正确的是并且是任意两个不相容的事件和设B A 与(A)(B)(C)(D)( ).则下D.答12..)((,)(B P A P AB AB B A AB P B A 或未必是不可能事件;是不可能事件;不相容(相斥);和则同时出现的概率和若两事件(A)(B)(C)(D)( ).答C.13..,,,(D);,,,(C);,,,(B);,,,(A)( ).,,也互为对立则互为对立如果不独立则相容如果相互独立则互不相容如果也互不相容则互不相容如果下列命题中正确的是对事件B A B A B A B A B A B A B A BA B AD.答14.下列结论中,错误的是(A)若P (A 则A 为不可能事件;(B)P (A )P (B )(B A P ;(C)P (B A P (B ) P (A );(D)P (BA P (B ) P (BA ).),( ).A.答15..;;)(;,3,,C B AC AC B A C A B A A C B A 互斥的事件是与事件个事件是设(A)(B)(C)(D)( ).D.答16..])[(;)(;2)(;)(( ).,,2B A B B A A (D)AB A B A A (C)B A BB A (B)A B B A (A)B A 则以下等式正确的是是任意两个随机事件设D.答17.).|()|()|((D));|()()|()()((C));|()|()((B));()())(((A)( ).).|()|()|(,0)(,,,C B P C A P C B A P B C P B P A C P A P C P C B P C A P B A P BC P AC P B A C P C B P C A P C B A P C P C B A 则下列不等式成立的是且若为随机事件设A.答18.相互独立与事件互不对立与事件互相对立与事件互不相容与事件则设B A (D)B A B A (B)B A B A P B A P B P A P (C)(A),|()|(,1)(0,1)(0( ).;;;.D.答19..;;;.()(()((D)(C)(B)(A)B A P A B P B P A P 则设( )A.答20..);1(;;(,)(,)(,(a b b a b c b a B A P c B A P b B P A P 则设(A)(B)(C)(D)答B.21.).|()()|()()();|()|()();()()();|()|(]|)[(),|()|(]|)[(,1)(022112121212121212121A B P A P A B P A B P B A P B A P A A P B A P B A P B A B A P B A P B A P B A A P B A P B A P B A A P B P 则下列选项成立的是且已知(A)(B)(C)(D)( ).答B.22.从1, 2, 3, 4, 5五个数码中, 任取2个不同数码排成2位数, 则所得位数为偶数的概率为( ).(A) 0.4; (B) 0.3; (C) 0.6; (D) 0.5.A.答23.设袋中有4只白球,只黑球. 从袋中任取2只球(不放回抽样), 2只白球的概率是( ).(A)53;51;52;54.2则取得(B)(C)(D)答C.24.甲再能活20年的概率为0.7, 乙再能活20年的概率为0.9. 则二人均无法活20年的概率是( ).(A) 0.63; (B) 0.03; (C) 0.27; (D) 0.07.答B.25.每次试验的成功率为p(0p 1),进行重复独立试验,直到第10次试验才取得4次试验成功的概率为( ).(A)64410)1(p p C ;(B)6439)1(p p C ;(C)6449)1(p p C ;(D)6339)1(p p C .答B.26..1;;1;,)(,)(,p (D)p (C)q (B)q (A)B P q B P p A P B A 则互斥、设随机事件D.答27.在编号为n ,,2,1的n 张赠券中采用不放回方式抽签, 则在第k 次)(n k 抽签时抽到1号赠券的概率是( ).(A)k n 1;11k n ;n 1;11k n .(B)(C)(D) 答C.二.填空题 1._________.随机试验是对同一目标连续独立射击次,观察中靶的次数,的样本空间E 10E U则{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.答设A 表示事件B 表示事件子出现2点”A 与B 的关系是 ______.“掷一颗骰子出现偶数点”,“掷一颗骰则,答A B .3.如果,A B A 且AB A ,则事件A 与B 满足的关系是_______.答A B .4.._____________,,15A ,i AA A A i i 则表示若用的事件子的点数和大于掷三个骰表示的事件点掷一个骰子恰好出现表示设“”“”答A 4A 6A 6A 5A 6A 6A 6A 6A 6A 5A 5A 6.5.从含有6个红球,4个白球和5个蓝球的盒子里随机地摸取一个球,则取到的是红球的事件的概率等于 _____________.答52.6.一只袋中有4只白球和2只黑球,另一只袋中有3只白球和5黑球,的概率等于___________.只:“两只球都是黑球”则事件如果从每只袋中各摸一只球,答245.7.一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地3只球,则摸到的没有一只是白球的事件的概率等于________.摸答5734.8.设A ,B 为两个随机事件,且P (B )则由乘法公式知P (AB )__________.0,答).|()(B A P B P9.已知P (A )1,41A B P ,则B A P _______________.答83.设n 个事件n A A A ,,,21互相独立,且),,2,(,{n k p A P k ,则这n 个事件恰好有一件不发生的概率是________________.答.)1(1np p n11.某产品的次品率为0.002,现对其进行重复抽样检查,共取200样品,则查得其中有4件次品的概率p 的计算式是.___________件答19644200)998.0()002.0(C .12.独立重复地掷一枚匀质硬币三次,A 事件,则P (A ) ________.表示至少有一次出现正面的答87.13.._______)(,3.0)(,3.0)(,4.0)(:B AP B A P B P A P 则已知答0.6.14.._____1,2,3,2,4个黑球的概率是白球则取得个球从中随机地取出个黑球个白球口袋中有个6.0答.15..________)(,31)(,41)(,,B A P B P A P B A 则且是两个相互独立的随机事件设.61答16..__________50,9,,1,0是的概率或则这三个数中不包含中任取三个数字从 .1514答17.._____,,3.0)(,8.()(都不发生的概率为则已知B A AB P B P A P.5.0答18..__________,,,},.,}},},:,,,321321BB A A A B A A A 则有表示若用目标被摧毁设则该目标被摧毁又若目标至少被击中两次丙击中目标乙击中目标甲击中目标令丙三个各自向同一目标射击一次乙甲..,.321321321321133221321321321321321133221A A A A A A A A A A A A A A A A A A B A A A B A A A A A A A A A A A A A A A A A A 或者因此至少有两发生等价于随机事件可知随机事件由题意或者答个发生,,19.._________)(,3.0)(,4.0)(,,B A P B P A P B A 则且互不相容设两个随机事件.3.03.04.0)(,0(,),()()()()()(.3.0B A P AB P B A AB P B P A P B AP B AP B A P 故所以互不相容与因为答20.从1,2,…,10共十个数字中任取一个5字__________.先后取出然后放回,,个数则所得个数字全不相同的事件的概率等于,答.3024.0106789421.9,,3,2,1,0____________.设由十个数字的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是....107个答22..________,5,至少发生一次的概率是次重复独立试验则在发生的概率为设在一次试验中事件A p A 中答5)1(1p .23.._____)(,,3.0)(,1.0)(则互不相容与且设B P B A B A P A P2.0答.24._________.)(,21)(,41(,31)(则设B AP B A P B P A P1211答.25.B P p A P B A AB P B A __________.(,)(),((,则且两个事件满足已知p 1.答26.______.)(,3.0)(,2.0(,则已知事件A B P B P A P B A1.0答.27..__,则有三个空盒的概率为把四个球随机地投入四个盒子中去.641答28.掷一对骰子, 则2个骰子点数总和是8的概率是________.此题是古典概型, 按古典概率定义求. 掷2个骰子, 情况总,3666即.36N出现点数总和是8的情况为:{2, 6}, {3, 5}, {4, 4}, {5, 3}, {6, 2}而总和是8的情况数,5M故所求概率.365N Mp 解填.365数是29..__________)(,7.0)(,3.0)(,B P B AP A P B A 则是相互独立的随机事件与设.747.04.0)(,),(3.0)(3.07.0,7.0(,3.0())()()()()()()()(.74B P B P B P B A P A P B A B P A P B P A P AB P B P A P B A P 得解方程得代入将是相互独立的随机事件与答(.30.._________)(,)()()(:B P p A P B A P AB P B A 则且适合、设随机事件答p 1.31._______.,,03.0(02.)(,01.0)(,,求他至少有一张奖券中奖的概率为奖是相互独立的且各奖券是否中和次为三种不同种类的奖券各一张某人买了C P B P A P C B A 已知中奖概率依.0589.0答.32.._______)(,5.0)(,4.0(,7.)(,,,,,C AB P AB P C A P A P C B C A C B A 则为三个随机事件设.2.0答33..__________)(72,2,52p 列式的概率数为张不同花且最大点则恰取到张随机抽取张扑克牌中在.171]1[252161224C C C C 答34..__________,5),(15,,2,1则甲取到的数大于乙取到的数的概率为倍数知甲取到的数是不重复的十五个数字中各取一数甲、乙二人从已故且甲取到的数大于乙取到的数的倍数甲取到的数是的倍数甲取到的数是令事件个样本点样本空间答},,5{};5},2101415)}14,15(,),2,5(),1,5(,),3,1(),2,1.149AB A S.1494227)|(,1494227210/42210/27)()()|(}271494},42143A B P A A P AB P A B P AB A 则得作为样本空间或将于是个样本点个样本点,,三.计算题 1.用5,4,3,2,1,0,个六位数?六个数码排成数字不重复的六位数共有多少多少个偶数其中有多少个奇数,解600!55288!443312288600)312!442!5(或六位数总数奇数个数偶数个数;;.2.设D C B A ,,,,(A BC )[(A C B )D ]化简下式为任意集合. 解因(A CB )D (ABC )D A B C 故(A BC )[(A CB )D ]A BC ,.3.E a ,b ,c 1,2,3E U .随机试验是三只球三只球任意放入三只盒子中去的情况的样本空间的三个盒子有编号为,,:将观察放球使每只盒子放一只球,,写出,则U 解用序组表示基本事件第一只盒子放球第三只盒子放入a ,b ,c )(第二只盒子放入球a ,b ,c .球a ,b ,c )(, a ,c ,b )(, b ,a ,c )(, b ,c ,a )(, c ,a ,b )(, c ,b ,a )(}.:4.设随机试验为A 为“三颗骰子中最小的点数为3”;随机事件B 为;“点数之和为n ”,如果A 和B 不相容n 应满足怎样的条件若随机事件,掷三颗骰子:互则,答如果事件A 出现3,故点数之和至少为9,因此A 与B 不同时出现9即"n8".即每一点数至少为,要使,点数之和应小于,,5.从自然数1至10中任取一数,设A 表示事件“取得的数是偶数”B 表示事件“取得的数是奇数”;C 表示事件“取得的数小于5”,试问:(1)B A;AB ;C ;C B 分别表示什么事件?;(2)(3)(4)答(1)A B 表示事件“必然事件”.(2) AB 表示事件“不可能事件”.(3)C 表示事件“取得的数大于或等于5”.(4)C B表示事件“取得的数是6、8、10、”.6..,"","",654321,B B A i A B i i 及表示事件请用个开关闭合第表示电路接通表示用表示开关、、、、、设如果123456解(1) 6543231A A A A A A A B (2) ()()()6543231A A A A A A A B或()[]()654321A A A A A A .7..),3,2,1(,3321A A A i i A i 次射击击中靶子”表示“第用次设某人向靶子射击试用语言描述事件解.3321次射击至少一次没击中靶子表示A A A8.设随机试验E 是从包含两件次品21,a a 和二件正品21,b b 产品中依次取出一件(每次取后放回),连续取2次E 空间和下列事件的集合表示( 1 )“恰好取到k 件正品”记为);2,1(kA k ( 2 )“两次取出的是同一件产品”记为B ;( 3 )“第一次取到的是第一件正品”记为C .写出的四件,的样本:解}.,,,}.,,,{}.,,,,,,,{}.,,,,,,,,,,,,,,,{112111212211122122221121122122111122112221121112312212122221112111b b a b a b b b C b b b b b b b b A a b a b a b a b b a b a b a b a A b b b b a b a b a b a b b b b b b a b a a a a a b a b a a a a a U9..,20,,,,A BC B A y x 事件之差为零”设事件分别表示第一、二两颗骰子出现的点数、同时掷两颗骰子”为“点数之积不超过表示“两颗骰子出现点数之和为奇数”用样本点的集合表示表示“点数解试验的样本空间}6,,2,;6,,2,),y x y x |S )};5,6(),3,6(),1,6(),6,5(),4,5(),2,5(),5,4(),3,4(),1,4(),6,3(),4,3(),2,3(),5,2(),3,2(),1,2(),6,1(),4,1(),2,1A 事件)};6,6(),5,5(),4,4(),3,3(),2,2(),1,1B 事件)}.3,6(),2,6(),1,6(),4,5(),3,5(),2,5(),1,5(),5,4(,),2,3(),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1C 事件),1,3(,),2,4(),1,4(),6,3( .6,6(),5,5(),4,4(),3,3(),2,2(),1,1{(B AB 从而10.。

2020年智慧树知道网课《概率论与数理统计(山东联盟—中国石油大学(华东))》课后章节测试满分答案

第一章测试1【单选题】(20分)A.B.C.D.2【单选题】(20分)A.1/4B.2/3C.1/2D.1/33【单选题】(20分)A.0.9B.0.6C.0.8D.0.74【单选题】(20分)A.0.35B.0.4C.0.55D.0.495【单选题】(20分)A.1/4B.7/12C.2/3D.3/4第二章测试1【单选题】(20分)A.ln10B.ln5C.2ln10D.2ln52【单选题】(20分)A.2/3B.1/3C.4/9D.1/23【单选题】(20分)A.B.C.D.4【单选题】(20分)A.B.C.D.5【单选题】(20分)A.a=1/2,b=-3/2B.a=1/3,b=2/3C.a=-1/2,b=3/2D.a=3/5,b=-2/5第三章测试1【单选题】(20分)A.2.2B.3C.2.4D.2.82【单选题】(20分)A.B.C.D.3【单选题】(20分)A.B.C.D.4【单选题】(20分)A.28B.8C.44D.165【单选题】(20分)A.不独立B.独立C.不相关D.相关第四章测试1【单选题】(20分)A.服从同一离散型分布B.有相同的数学期望C.有相同的方差D.服从同一指数分布2【单选题】(20分)A.B.C.D.3【单选题】(20分)设EX=1,DX=4,则由切比雪夫不等式由P(-5<X<7)().A.1/3B.2/3C.8/9D.1/94【单选题】(20分)A.1/2B.1C.2D.2/35【单选题】(20分)A.服从同一连续型分布B.服从同一离散型分布C.服从同一泊松分布D.有相同的数学期望第五章测试1【单选题】(20分)A.B.C.D.2【单选题】(20分)A.B.C.D.3【单选题】(20分)A.B.C.D.4【单选题】(20分)A.B.C.D.5【判断题】(10分)矩估计的思想是“用样本矩估计对应的总体矩”。

A.对B.错6【判断题】(10分)进行区间估计时,构造的样本的函数,除了包含待估计的未知参数,还可以包含其他未知参数。

2020智慧树知到概率论与数理统计章节(天津大学)测试答案

概率论与数理统计(天津大学)2020智慧树答案第一单元测试1【单选题】 (3分)设P ( A) = , P( B | A) = , P( A | B) = ,则P ( A |A u B) =(5/7 )2【单选题】 (3分)设A、B为互斥事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是:(p(A |B)=0)3【单选题】 (3分)?设A,B为随机事件,且, P(B)>0,则(P(A) ≤ P(A|B))成立。

A.P(A) ≥ P(A|B)B.P(A) >P(A|B)C.P(A) ≤ P(A|B)D.P(A) <P(A|B)\正确本题总得分3分4.设A,B为两个相互独立的事件,已知 (错误)A.对B.错5.设甲乙两人独立地射击同一目标,其命中率分别为与,则已命中的目标是被甲射中的概率为(正确)。

6.设A,B为两个事件,若A与B独立则A与B互不相容。

(错误)—第二章测试1【单选题】 (3分)1A.2.下列函数中,可以做随机变量的分布函数的是33【单选题】 (3分)~保持不变A.增减不定B.保持不变4.设一本书各页的印刷错误个数X服从泊松分布,已知有一个和两个印刷错误的概率相同,则随意抽查的4页中无印刷错误的概率为.正确A.对连续型随机变量的密度函数是唯一确定的.错误A.<错6【判断题】 (2分)正确A.对第三章测试1【单选题】 (3分)!答案12【单选题】 (3分)C.3【单选题】 (3分)1/8。

A.1/84【判断题】 (2分)错误5【判断题】 (2分)错误:6【判断题】 (2分)指数分布具有可加性错误第4章测试1【单选题】 (3分)设X表示10次独立重复射击中命中目标的次数,每次射中目标的概率为,则2【单选题】 (3分),23【单选题】 (3分)4【判断题】 (2分)正确5【判断题】 (2分)}错误6【判断题】 (2分)正确第5章测试1【单选题】 (3分)若随机变量X的数学期望与方差都存在,对a < b,在以下概率中,( 4 )可以由切比雪夫不等式进行取值大小的估计`2【单选题】 (3分)设随机变量X和Y的数学期望是2, 方差分别为1和4, 而相关系数为,则根据切比雪夫不等式1/123【单选题】 (3分)1/24【判断题】 (2分)~正确5【判断题】 (2分)错误6在实际应用中,只要n较大,便可把独立同分布的随机变量之和近似当作正态变量。

真题考试:2020 概率论与数理统计(经管类)真题及答案(1)

真题考试:2020 概率论与数理统计(经管类)真题及答案(1)共56道题1、设二维随机变量(X,Y)的分布律为则P{X=1}=(单选题)A. 0.1B. 0.3C. 0.2D. 0.4试题答案:D2、设随机变量x的概率密度为(单选题)A. 0B. 1/4C. 1/2D. 1试题答案:B3、(单选题)A.B.D.试题答案:B4、设随机变量x满足E(X2)=20, D(X)=4,则E(2X)= (单选题)A. 4B. 8C. 16D. 32试题答案:B5、有6部手机,其中4部是同型号甲手机,2部是同型号乙手机,从中任取3部,恰好取到一部乙手机的概率是(单选题)A. 1/20B. 1/10C. 3/10D. 3/5试题答案:D6、设随机变量X~ B(3,1/5),则P{X=2}= (单选题)A. 1/125B. 12/125C. 3/25D. 12/25试题答案:B7、设X1,X2...X10是来自总体X的样本,且X ~ N(0,1),(单选题)B.C.D.试题答案:B8、甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率是(单选题)A. 1/6B. 1/4C. 1/3D. 5/12试题答案:D9、设随机变量X的分布律为F(x)为X的分布函数,则F(O.5)=(单选题)A. 0B. 0.2C. 0.25D. 0.3试题答案:D10、设随机变量X的概率密度为(单选题)A. 0B. 1/3C. 1/2试题答案:D11、(单选题)A.B.C.D.试题答案:A12、设随机变量X~N(3,22),则E(2X+3)= 【】(单选题)A. 3B. 6C. 9D. 15试题答案:C13、设随机变量X~B(3,0.3),则P{X=2}= 【】(单选题)A. 0.189B. 0.21C. 0.441D. 0.7试题答案:A14、(单选题)A. 1/6C. 1/3D. 1/2试题答案:B15、在假设检验过程中,增大样本容量,则犯两类错误的概率【】(单选题)A. 都增大B. 都减小C. 都不变D. 一个增大,一个减小试题答案:B16、设随机变量x的分布律为(单选题)A. 1/4B. 1/2C. 3/4D. 1试题答案:C17、设随机变量X服从参数为1/2的指数分布,则E(2X-1)= 【】(单选题)A. 0B. 1C. 2D. 4试题答案:C18、设随机变量X在[-2,2]上服从均匀分布,则P{X≥1}= (单选题)B. 1/4C. 1/2D. 1试题答案:B19、某假设检验的拒绝域为w,当原假设H成立时,样本值(x1,x2...x n)落入w的概率为0.05,则犯第一类错误的概率为(单选题)A. 0.05B. 0.1C. 0.9D. 0.95试题答案:A20、设二维随机变量(X,Y)的分布律为则P{x=0}=(单选题)A. 0.1B. 0.2C. 0.3D. 0.5试题答案:D21、设α是假没检验中犯第一类错误的概率,H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档