中考专题 二次函数

合集下载

2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。

中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线与x 轴相交于原点和点()4,0A ,在第一象限内与直线y x =交于点B ()5,5,抛物线的顶点为C 点.(1)求抛物线的解析式和顶点C 的坐标;(2)点()3,M m 在抛物线上,连接MO MB ,,求MOB △的面积;(3)抛物线上是否存在点D ,使得DOB OBC ∠=∠?若存在,求出所有点D 的坐标;若不存在,请说明理由. 2.综合与探究如图,已知抛物线238y x bx c =-++与x 轴相交于()4,0A -,B 两点(点A 在点B 的左侧),与y 轴相交于点()0,3C ,连接AC .(1)求该抛物线的解析式及对称轴;(2)若过点B 的直线与抛物线相交于另一点D ,当ABD BAC ∠=∠时,求直线的解析式; (3)在(2)的条件下,当点D 在x 轴下方时,连接AD ,此时在y 轴左侧的抛物线上存在点P ,使23BDP ABD S S =△△,请直接写出所有符合条件的点P 的坐标.3.如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点()0,2C -,2OC OA =和1tan 2ABC ∠=.直线l :()0y kx n k =+>与抛物线交于M ,N 两点(点M 在点N 的左边).(1)求抛物线的解析式,并写出顶点坐标;(2)当直线l BC ∥时,若MON △的面积被y 轴分成的两个三角形的面积比为1:4时,求n 的值; (3)当0n =时,试在抛物线上找一定点P ,使得90MPN ∠=︒,求P 点坐标以及点P 到MN 的最大距离. 4.如图①,抛物线2y ax bx =+的顶点为()2,4D -.(1)求抛物线的解析式;(2)连接OD ,P 为x 轴上的动点,当AOD ∠与PDO ∠互余时,求点P 的坐标;(3)如图①,点M ,N 都在抛物线上,点M 位于第四象限,点N 位于第二象限,连接MN 分别交x 轴,y 轴于点E ,F ,连接OM ON 、,求证:若NOF MOE ∠=∠,则直线MN 经过一定点.5.如图,在平面直角坐标系中,抛物线2=23y x x --交x 轴于A B 、两点(点A 在点B 的左边),交y 轴于点C .(1)直接写出、、A B C 三点的坐标;(2)若抛物线上有一点,45D ACD ∠=︒,求点D 的坐标.(3)如图2,点P 是第一象限抛物线上一点,过点P 的直线(0)y mx n n =+<与抛物线交于另一点Q ,连接AP AQ 、,分别交y 轴于M N 、两点,若2OM ON ⋅=,探究,m n 之间的数量关系,并说明理由.6.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .①抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ①连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.7.如图,已知(2,0),(3,0)A B -,抛物线24y ax bx =++经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一点,点P 的横坐标为m .过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN BC ⊥,垂足为点N .(1)求抛物线的函数表达式;(2)请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得290BCO PCN ∠+∠=︒?若存在,请直接写出m 的值;若不存在,请说明理由.8.如图1,已知抛物线233y ax bx =++,与x 轴交于点()2,0A -,点()6,0B 与y 轴交于点C ,抛物线的顶点为M ,其对称轴与x 轴交于Q 点.(1)抛物线解析式为______,顶点M 的坐标为______; (2)判断MAB 的形状,并说明理曲;(3)如图2,点P 是线段MQ 上的一个动点(点P 与点M 、点Q 不重合),连结PA 和PB ,过点B 作BD AP ⊥,射线BD 交射线AP 于点D ,交抛物线于点E ;过点E 作EF AB ⊥,垂足为点F ,EF 交射线BP 于点G . ①当ABD ①EBF 时,请求出此时点P 的坐标; ①当135APB ∠=︒时,请你直接写出BFEG的值. 9.如图1,二次函数y =ax 2+bx +c 的图象交x 轴于点A (﹣1,0),B (3,0),交y 轴于点C (0,﹣3),直线l 经过点B .(1)求二次函数的表达式和顶点D 的坐标; (2)如图2,当直线l 过点D 时,求①BCD 的面积;(3)如图3,直线l 与抛物线有另一个交点E ,且点E 使得①BAC ﹣①CBE >45°,求点E 的横坐标m 的取值范围;(4)如图4,动点F 在直线l 上,作①CFG =45°,FG 与线段AB 交于点G ,连接CG ,当①ABC 与①CFG 相似,且S △CFG 最小时,在直线l 上是否存在一点H ,使得①FHG =45°存在,请求出点H 的坐标;若不存在,请说明理由.10.如图,已知抛物线2y ax bx c =++经过(1,0),(2,0),(0,2)A B C -三点,点D 在该抛物线的对称轴l 上.(1)求抛物线的表达式;(2)若DA DC =,求ADC ∠的度数及点D 的坐标;(3)若在(2)的条件下,点P 在该抛物线上,当PBC DAB ∠=∠时,请直接给出点P 的坐标. 11.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点1tan 3APC ∠=,求点P 的坐标;(3)当点P 是抛物线上第一象限上的点1tan 3APC ∠=,直接写出点P 的坐标为______.12.如图,平面直角坐标系中,抛物线24y x nx =-++过点()4,0A -,与y 轴交于点N ,与x 轴正半轴交于点B .直线l 过定点A .(1)求抛物线解析式;(2)连接AN ,BN ,直线l 交抛物线于另一点M ,当①MAN =①BNO 时,求点M 的坐标;(3)过点(),1T t -的任意直线EF (不与y 轴平行)与抛物线交于点E 、F ,直线BE 、BF 分别交y 轴于点P 、Q ,是否存在t 的值使得OP 与OQ 的积为定值?若存在,求t 的值,若不存在,请说明理由.13.抛物线y =ax 2+c (a <0)与x 轴交于A 、B 两点,顶点为C ,点P 在抛物线上,且位于x 轴上方.(1)如图1,若P (1,2),A (-3,0). ①求该抛物线的解析式;①若D 是抛物线上异于点P 一点,满足①DPO =①POB ,求点D 的坐标; (2)如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OE OFOC+是否为定值?若是,试求出该定值;若不是,请说明理由.14.如图1,直线y =ax ²+4ax +c 与x 轴交于点A (-6,0)和点B ,与y 轴交于点C ,且OC =3OB(1)直接写出抛物线的解析式及直线AC 的解析式;(2)抛物线的顶点为D ,F 为抛物线在第四象限的一点,直线AF 解析式为123y x =--,求①CAF -①CAD 的度数.(3)如图2,若点P 是抛物线上的一个动点,作PQ ①y 轴垂足为点Q ,直线PQ 交直线AC 于E ,再过点E 作x 轴的垂线垂足为R ,线段QR 最短时,点P 的坐标及QR 的最短长度.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.参考答案:1.(1)24y x x =- ()2,4 (2)15(3)点D 的坐标为(7,21)或1313,39⎛⎫⎪⎝⎭;2.(1)233384y x x =--+,对称轴为直线=1x -(2)3342y x =-+或3342y x =-;(3)322222⎛⎫--- ⎪ ⎪⎝⎭,或12362262⎛⎫+--- ⎪ ⎪⎝⎭, 3.(1)213222y x x =-- (2)149n =(3)()3,2P - 134.(1)24y x x =-(2)()20,或()20-,5.(1)()1,0A -,()3,0B 和()0,3C - (2)()4,5D (3)23n m =-6.(1)-1;6 (2)①存在,5172+或5332+或5332-;①1317,66⎛⎫- ⎪⎝⎭;237,66⎛⎫- ⎪⎝⎭7.(1)222433y x x =-++(2)22655PN m m =-+,当32m =时,有最大值910(3)存在 74m =8.(1)233334y x x =-++和()2,43; (2)①MAB 为等边三角形 (3)①432,3⎛⎫ ⎪ ⎪⎝⎭;①12BF EG =.9.(1)二次函数的表达式为y =x 2﹣2x ﹣3,顶点D 的坐标为(1,﹣4) (2)2(3)﹣23<m <2(4)存在,点H 的坐标为:(65,185)或(95,185)10.(1)22y x x =-++(2)90ADC ∠=︒,点D 的坐标为11,22⎛⎫⎪⎝⎭(3)点P 的坐标为()1,2或15,24⎛⎫- ⎪⎝⎭11.(1)2=23y x x -- (2)点P 的坐标为()9,0 (3)点P 的坐标为()4,512.(1)234y x x =--+ (2)250,39⎛⎫- ⎪⎝⎭或266,525⎛⎫ ⎪⎝⎭(3)存在,4t =-13.(1)①21944y x =-+;①(-1,2)或(133,229-)(2)OE OFOC+是定值,定值为2.14.(1)抛物线的解析式为y =-12x ²-2x +6,直线BC 的解析式为y =x +6 (2)45°(3)点P 的坐标为(-2+10,3)或(-2-10,3),QR 的最短长度为3215.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或53224y x -+=+或53224y x --=+.。

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)1.如图,抛物线2y ax2x c=++(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当:COD COBS S=1:3时,求点F的坐标;(3)如图2,点E的坐标为(0,﹣32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请求出点P的坐标;若不存在,请说明理由.2.如图,在二次函数2221y x mx m=-+++(m是常数,且0m>)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求OBC∠的度数;(2)若ACO CBD∠=∠,求m的值;(3)若在第四象限内二次函数2221y x mx m=-+++(m是常数,且0m>)的图像上,始终存在一点P ,使得75ACP ∠=︒,请结合函数的图像,直接写出m 的取值范围. 3.如图1,直线y =2x +2交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线232y ax x c =++与x 轴的另一交点为B .(1)求该抛物线的函数表达式;(2)如图2,点D 是抛物线在第一象限内的一点,连接OD ,将线段OD 绕O 逆时针旋转90°得到线段OM ,过点M 作MN ∠x 轴交直线AC 于点N .求线段MN 的最大值及此时点D 的坐标;(3)在(2)的条件下,若点E 是点A 关于y 轴的对称点,连接DE ,试探究在抛物线上是否存在点P ,使得∠PED =45°?若存在,求出点P 的坐标;若不存在,请说明理由. 4.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标; (3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线211322y x x =-++与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,D 为线段AB 上一点.(1)求A ,B ,C 三点的坐标;(2)过点D 作x 轴的垂线与抛物线交于点E ,与直线BC 相交于点F ,求出点E 到直线BC 距离d 的最大值;(3)连接CD ,作点B 关于CD 的对称点B ',连接AB ',B D '.在点D 的运动过程中,ADB ∠'能否等于45°?若能,请直接写出此时点B '的坐标,若不存在请说明理由.6.如图1,二次函数2y x bx c =++的图像与x 轴交于点A (﹣2,0),B (4,0),抛物线的顶点为C ,作射线AC ,BC .动点P 从点A 出发,以每秒1个单位长度的速度沿射线AC 做匀速运动,动点Q 从B 出发,以每秒2个单位长度的速度沿射线BC 运动.(1)填空:b =_____,c =_____,C 的坐标为_____.(2)点P ,Q 运动过程中,∠CPQ 可能为等腰三角形吗?说明理由.(3)如图2,连接PO ,QO ,当∠POQ =30°时,直接写出t 的值.7.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点,1tan 3APC ∠=,求点P 的坐标; (3)当点P 是抛物线上第一象限上的点,1tan 3APC ∠=,直接写出点P 的坐标为______. 8.如图,抛物线24y ax bx =+-与x 轴交于点A (-2,0)、B (4,0),与y 轴交于点C ,过点C 作x 轴的平行线交抛物线于点D ,连接AC ,作直线BC .(1)求抛物线24y ax bx =+-的表达式; (2)如图2,点E (x ,0)是线段OB 上的点,过点E 作与x 轴垂直的直线与直线BC 交于点F ,与抛物线交于点G .∠线段FG 的长是否存在最大值?若存在,求出这个最大值:若不存在,说明理由; ∠连接CG ,当∠DCG =∠ACO 时,求点G 的坐标;(3)若点P 是直线BC 下方的抛物线上的一点,点Q 在y 轴上,点M 在线段BC 上,当以C ,P ,Q ,M 为顶点的四边形是菱形时,直接写出菱形的边长.9.如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于A (1,0),与y 轴交于C (0,-3).(1)求抛物线的解析式;(2)在抛物线上是否存在这样的点P ,使得∠ACP=∠ABC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图2,点D 为线段BC 上一点,过点D 作y 轴的平行线交抛物线于点E ,连结BE .当∠DBE =90°时,求BEC S ∆.10.如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2x +c 与x 轴交于点A 和点B (1,0),与y 轴相交于点C (0,3).(1)求抛物线的解析式和顶点D 的坐标;(2)找出图中与∠DAB 相等的一个角,并证明;(3)若点P 是第二象限内抛物线上的一点,当点P 到直线AC 的距离最大时,求点P 的坐标.11.如图所示:二次函数26y ax bx =+-的图象与x 轴交于()2,0A -,()3,0B 两点,与y 轴交于点C ,连接AC ,BC .(1)求二次函数表达式及直线BC 的函数表达式;(2)如图1,若点M 为抛物线上线段BC 右侧的一动点,连接CM ,BM .求四边形ACMB 面积最大时点M 的坐标;(3)如图2,该抛物线上是否存在点P ,使得ACO BCP ∠=∠?若存在,请求出所有点P 的坐标;若不存在,请说明理由.12.已知如图,二次函数23y x bx =++的图像与x 轴相交于点A 、B 两点,与y 轴相交于点C ,连接AC 、BC ,tan 1ABC ∠=,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点E ,当AE CE +取得最小值时,E 点坐标为________;此时AE 与BC 的位置关系是________,tan ACE ∠=________;(3)抛物线对称轴右侧的函数图像上是否存在点M ,满足ACB BAM ∠=∠,若存在求M 点的横坐标;若不存在,请说明理由;(4)若抛物线上一动点Q ,当BAQ ACO ∠=∠时,直接写出Q 点坐标________. 13.如图,在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于B ,C 两点(C 在B的左侧),与y 轴交于点A ,已知()0,4A -,2OA OB =.(1)求抛物线的表达式;(2)若点Q 是线段AC 下方抛物线上一点,过点Q 作QD 垂直AC 交AC 于点D ,求DQ 的最大值及此时点Q 的坐标;(3)点E 是线段AB 上一点,且14AOE AOC S S =△△;将抛物线212y x bx c =++沿射线AB 的方向平移,当抛物线恰好经过点E 时,停止运动,已知点M 是平移后抛物线对称轴上的动点,N 是平面直角坐标系中一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.14.如图,抛物线()()22369=++-+y mx m x m 与x 轴交于点A 、B ,与y 轴交于点C ,已知()3,0B .(1)m 的值是________;(2)P (异于点A )为抛物线上一点,若PBC ABC S S =△△,求点P 的坐标:(3)Q 为抛物线上一点,若45ACQ ∠=︒,请直接写出点Q 的坐标.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.16.我们不妨约定,过坐标平面内任意两点(例如A ,B 两点)作x 轴的垂线,两个垂足之间的距离叫做这两点在x 轴上的“足距”,记作AB .根据该约定,完成下列各题:(1)若点1(,6)A x ,2(,4)B x -.当点A 、B 在函数2y x =的图象上时,AB =______;当点A ,B 在函数24y x=-的图像上时,AB =______; (2)若反比例函数()11k y k x -=≠的图象上有两点()1,A x k ,()22,B x k k -,当AB k =时,求正整数k 的值. (3)在(2)条件下抛物线223y kx x =+-与x 轴交于1A ,1B 两点,与y 轴交于点C .如图,点D 是该抛物线的顶点,点(,)P m n 是第一象限内该抛物线上的一个点,分别连接1A D 、1A C 、1A P ,当1112PA B CA D ∠=∠时,求m 的值.17.在平面直角坐标系xOy 中,二次函数y =ax 2+bx 的图象与x 轴交于O 、A 两点,其顶点B 的坐标为(2,﹣6).(1)求a 、b 的值;(2)如图1,点C 是该二次函数图象的对称轴上的一个动点,连接BO 、CO ,当∠OBC 是以BC 为腰的等腰三角形时,求点C 的坐标;(3)如图2,P 是该二次函数图象上的位于第一象限内的一个动点,连接OP ,与对称轴交于点M ,点Q 在OP 上,满足OQ PQ =21,设点P 的横坐标为n ; ∠请用含n 的代数式表示点Q 的坐标(,);∠连接BQ ,OB ,当∠OBQ 的面积为15时,求点P 的坐标;∠当∠POA =2∠OBM 时,直接写出点P 的横坐标.18.如图1,直线4y x =-+与x 轴、y 轴分别交于点A 与点B ,抛物线212y x bx c =-++经过点A 、B ,在线段OA 上有一动点(),0D m ,点D 不与O 、A 重合,过点D 作x 轴的垂线交直线AB 于点C ,交抛物线于点E .(1)求抛物线的函数表达式;(2)当点C 是DE 的中点时,求m 的值;(3)在(2)的条件下,将线段OD 绕点O 逆时针旋转得到OD ',旋转角为()090αα︒<<︒,连接'D A 、'D B ,直接写出''12D A D B +的最小值.参考答案:1.(1)223y x x =-++;(2)F (35,125); (3)存在,P (13,329)或(﹣73,﹣649).2.(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC ∠=︒(2)1m =(3)0m <<3.(1)213222y x x =-++ (2)最大值为3;()2,3D(3)存在,11P ⎛ ⎝⎭,()20,2P4.(1)213 2.22y x x (2)79,28D 或121,.28(3)点D 的横坐标为2或2911.5.(1)A (-2,0),B (3,0),C (0,3);(2)点E 到直线BC 的距离d ;(3)在点D 的运动过程中,∠ADB '能等于45°,此时点B ′的坐标为(0,-或(-,3).6.;(1, (2)不可能,理由见解析(3)t 的值为:17.(1)2=23y x x --(2)点P 的坐标为()9,0(3)点P 的坐标为()4,58.(1)2142y x x =-- (2)∠当2x =时,FG 有最大值,FG 的最大值=2;∠G (3,-52)或(1,-4.5). (3)2或49.(1)2=+43y x x --(2)存在点P ,使得∠ACP=∠ABC ,点P 的坐标为7524,⎛⎫- ⎪⎝⎭(3)3△BEC S =10.(1)y =﹣x 2﹣2x +3,顶点D 的坐标为(﹣1,4)(2)∠ACB ,证明见解析(3)点P 坐标为(32-,154)11.(1)26y x x =--,26y x =-(2)点M 的坐标为321,24⎛⎫- ⎪⎝⎭ (3)存在,(2,-4)或(8,50)12.(1)y =x 2-4x +3;(2)(2,1);AE ∠BC ,12; (3)存在,M 点的横坐标为52或72; (4)Q 点的坐标为(103,79)或(83,59-) .13.(1)2142y x x =+-(2)DQ ()2,4Q -(3)N 点坐标为(2,或(2,-或()2,0-或52,2⎛⎫- ⎪⎝⎭,见解析14.(1)1-(2)()2,1P ,⎝⎭P ,⎝⎭P (3)75,24⎛⎫- ⎪⎝⎭Q15.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或2y x =+或2y x =+. 16.(1)5;10;(2)1;(3)74m =17.(1)a =32,b =﹣6;(2)点C 的坐标为(2,6--2,6-+2,83-);(3)∠23n ,n 2﹣4n ;∠P (5,152);∠点P 的横坐标为92.18.(1)2142y x x =-++;(2)2;(3。

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案

一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。

2023年九年级中考数学专题练习——二次函数与特殊的四边形(附答案)

2023年九年级中考数学专题练习——二次函数与特殊的四边形(附答案)

中考专题练习——二次函数与特殊的四边形1.如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.2.如图,已知直线y=﹣12x+2与x轴、y轴分别交于点B、C,抛物线y=﹣212x+bx+c过点B、C,且与x轴交于另一个点A.(1)求该抛物线的表达式;(2)点M是线段BC上一点,过点M作直线l∥y轴交该抛物线于点N,当四边形OMNC是平行四边形时,求它的面积;(3)联结AC,设点D是该抛物线上的一点,且满足∠DBA=∠CAO,求点D的坐标.3.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.4.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.5.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,顶点为D,过点A的直线与抛物线交于点E,与y轴交于点F,且点B的坐标为(3,0),点E的坐标为(2,3).(1)求抛物线的解析式;(2)若点G为抛物线对称轴上的一个动点,H为x轴上一点,当以点C、G、H、F四点所围成的四边形的周长最小时,求出这个最小值及点G、H的坐标;(3)设直线AE与抛物线对称轴的交点为P,M为直线AE上的任意一点,过点M作MN∥PD 交抛物线于点N,以P、D、M、N为顶点的四边形能否为平行四边形?若能,请求点M的坐标;若不能,请说明理由.6.如图,抛物线y═﹣1x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,30),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求抛物线的解析式及点A的坐标;(2)当点M和N都在线段AC上时,连接MF,如果sin∠10Q的坐标;(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.7.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C 点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E 点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.8.如图4,已知抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),交y轴于点C,且S△ABC=16.(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG.9.如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.(1)点B的坐标为,点C的坐标为;(2)若∠BAC=90°,求抛物线的解析式.(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.10.如图,在Rt ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA 匀速运动,同时动点Q从点A2/cm s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为他t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.11.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.12.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y 轴交于点C(0,3),抛物线的顶点为点E.(1)求抛物线的解析式;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.13.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.14.如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;,求k的值;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=214(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M 在抛物线上,点N 在x 轴上,当四边形PBMN 为平行四边形时,请求出点M 的坐标.15.如图,已知抛物线21322y x x n =--(n >0)与x 轴交于A ,B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴交于点E ,若AE:ED =1:4,求n 的值.16.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PF=3PE ,求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.17.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;AB向点B运动,点Q从点C出(2)点P从点A发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.18.如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.19.抛物线2y ax bx c=++经过点A(-1,0)、B(4,0),与y轴交于点C(0,4).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线的一点,分别连接PB、PC,若直线BC恰好平分四边形COBP 的面积,求P点坐标;(3)在(2)的条件下,是否在该抛物线上存在一点Q,该抛物线对称轴上存在一点N,使得以A、P、Q、N为顶点的四边形为平行四边形?若存在,求出Q点坐标,若不存在,请说明理由.20.如图,在平面直角坐标系中,抛物线y=1x2+bx+c的图象与x轴交于点A(2,0)、B(﹣24,0),与y轴交于点D.(1)求抛物线的解析式;(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.参考答案:1.(1)y=﹣38x2+34x+3;D(1,278);(2)P(3,158).【分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-38m2+34m+3),则F(m,-34m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【解析】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣38,y=﹣38x2+34x+3=﹣38(x﹣1)2+278,∴抛物线的解析式为y=﹣38x2+34x+3,且顶点D(1,278);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣34x+3,∵D(1,278),当x=1时,y=﹣34+3=94,∴E(1,94),∴DE=278-94=98,设P(m,﹣38m2+34m+3),则F(m,﹣34m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣38m2+34m+3)﹣(﹣34m+3)=98,解得:m1=1(舍),m2=3,∴P(3,158).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.2.(1)213222y x x =++;(2)4;(3)(﹣5,﹣18)或(3,2). 【分析】(1)根据直线解析式求出点B 、C 的坐标,然后利用待定系数法求二次函数解析式列式求解即可; (2)设M (m ,-12m+2),则N (m ,-12m 2+32m+2),则MN=(-12m 2+32m+2)-(-12m+2)=-12m 2+2m ,根据MN=OC=2列方程可得M 的横坐标,根据平行四边形的面积公式可得结论;(3)分两种情况:①当D 在x 轴的下方:根据AC ∥BD ,直线解析式k 相等可设直线BD 的解析式为:y=2x+b ,把B (4,0)代入得直线BD 的解析式为:y=2x-8,联立方程可得D 的坐标;②当D 在x 轴的上方,根据对称可得M 的坐标,利用待定系数法求直线BM 的解析式,与二次函数的交点,联立方程可得D 的坐标.【解析】(1)当x=0时,y=2,∴C (0,2),当y=0时,﹣12x+2=0,x=4,∴B (4,0),把C (0,2)和B (4,0)代入抛物线y=﹣212x +bx+c 中得:22{14402c b c =-⨯++=, 解得:322b c ⎧=⎪⎨⎪=⎩, ∴该抛物线的表达式:y=213222x x -++; (2)如图1,∵C (0,2),∴OC=2,设M (m ,﹣12m+2),则N (m ,213222m m -++), ∴MN=(21322m m -++2)﹣(﹣12m+2)=﹣12m 2+2m , ∵MN ∥y 轴,当四边形OMNC 是平行四边形时,MN=OC , 即﹣12m 2+2m=2, 解得:m 1=m 2=2,∴S ▱OCMN =OC×2=2×2=4;(3)分两种情况:当y=0时,﹣21322x x ++2=0, 解得:x 1=4,x 2=﹣1,∴A (﹣1,0),易得直线AC 的解析式为:y=2x+2,①当D 在x 轴的下方时,如图2,∵AC ∥BD ,∴设直线BD 的解析式为:y=2x+b ,把B (4,0)代入得:0=2×4+b ,b=﹣8,∴直线BD 的解析式为:y=2x ﹣8,则2x ﹣8=21322x x -++2,解得:x 1=﹣5,x 2=4(舍), ∴D (﹣5,﹣18);②当D 在x 轴的上方时,如图3,作抛物线的对称轴交直线BD 于M ,将BE (图2中的点D )于N ,对称轴是:x=﹣3212()2⨯-=32, ∵∠CAO=∠ABE=∠DAB ,∴M 与N 关于x 轴对称,直线BE 的解析式:y=2x ﹣8,当x=32时,y=﹣5, ∴N (32,﹣5),M (32,5), 直线BM 的解析式为:y=﹣2x+8,﹣2x+8=﹣21322x x ++2,解得:x 1=3,x 2=4(舍), ∴D (3,2),综上所述,点D 的坐标为:(﹣5,﹣18)或(3,2).【点评】本题是对二次函数的综合考查,主要有直线与坐标轴的交点的求解,待定系数法求二次函数和一次函数解析式,两直线平行的关系,对称性等知识,(3)题有难度,采用分类讨论的思想解决问题.3.(1)(1,4);(2)①点M 坐标(﹣12,74)或(﹣32,﹣94);②m 【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【解析】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到9303b cc-++=⎧⎨=⎩,解得23bc,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE=BEDE=12,∵∠MBA=∠BDE,∴2233m mm-++-=12,当点M在x轴上方时,2233m mm-++-=12,解得m=﹣12或3(舍弃),∴M(﹣12,74),当点M在x轴下方时,2233m mm---=12,解得m=﹣32或m=3(舍弃),∴点M(﹣32,﹣94),综上所述,满足条件的点M坐标(﹣12,74)或(﹣32,﹣94);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m,当﹣m2+2m+3=m﹣1时,解得m∴满足条件的m.【点评】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.4.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【解析】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴55-,∴Q55.(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点评】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.5.(1)抛物线的解析式为:y=﹣x2+2x+3;(2)G(1,1),H(12,0),四边形CFHG的周长最小值5(3)M的坐标为:M(0,1117-317-117+317+.【分析】(1)根据抛物线上的两点列方程组求抛物线y=﹣x2+bx+c中的系数b和c,(2)根据题目的提示可以画出简图,然后表示出以点C、G、H、F四点所围成的四边形的周长,在根据表示出的线段就可以求出最短的周长,对应的点G、H的坐标也可得出;(3)根据题意可以分两种情况讨论,点N在点M的上方或者下方,然后设出点M,根据题目给出的条件是否能将P、D、M、N为顶点的四边形组成平行四边形,可以根据平行四边形对边相等来入手.【解析】(1)∵y=﹣x2+bx+c经过(3,0)和(2,3),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴对称轴为x=1.当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0).当x=0时,y=3,∴C(0,3)∴CE=2.OC=3如图,在y轴的负半轴上取一点I,使得点F点I关于x轴对称,在x轴上取点H,连接HF、HI、HG、GC、GE、则HF=HI.∵抛物线的对称轴为x=1,∴点C点E关于对称轴x=1对称,∴CG=EG.设直线AE的解析式为y=kx+b,由题意,得,解得:,∴直线AE的解析式为y=x+1.当x=0时,y=1,∴F(0,1),∴OF=1,CF=2.∵点F与点I关于x轴对称,∴I(0,﹣1),∴OI=1,CI=4.在Rt△CIE中,由勾股定理,得EI==2.∵要使四边形CFHG的周长最小,而CF是定值,∴只要使CG+GH+HF最小即可.∵CG+GH+HF=EG+GH+HI,∴只有当EI为一条直线时,EG+GH+HI最小.设EI的解析式为y=k1x+b1,由题意,得,解得:,∴直线EI的解析式为:y=2x﹣1,∵当x=1时,y=1,∴G(1,1).∵当y=0时,x,∴H(,0),∴四边形CFHG的周长最小值=CF+CG+GH=CF+EI=2+2;(3)∵y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∴D(1,4)∴直线AE的解析式为y=x+1.∴x=1时,y=2,∴P(1,2),∴PD=2.∵四边形DPMN是平行四边形,∴PD=MN=2.∵点M在AE上,设M(x,x+1),①当点M在线段AE上时,点N点M的上方,则N(x,x+3),∵N点在抛物线上,∴x+3=﹣x2+2x+3,解得:x=0或x=1(舍去)∴M(0,1).②当点M在线段AE或EA的延长线上时,点N在M的下方,则N(x,x﹣1).∵N点在抛物线上,∴x﹣1=﹣x2+2x+3,解得:x=或x=,∴M (,)或(,).∴M 的坐标为:M (0,1)或(,)或(,).【点评】本题是一道比较综合的解析几何题,涉及到了抛物线方程的求解和在动点的情况下对四边形周长的表示进行求最小周长,第三问考察了学生对动点问题的分类讨论能力,灵活运用平行四边形对边相等这个条件入手解题.6.(1)y=﹣13x2﹣23x +5,点A 的坐标是(﹣5,0);(2)点Q 坐标(﹣4,73);(3)以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,点M 的坐标为(﹣2,3)或(﹣23)或(﹣2,3).【分析】(1)把点B 、C 的坐标代入函数解析式求出b 、c 的值,进而求出点A 的坐标即可;(2) 作FG ⊥AC 于G , 设点F 坐标(m ,0),根据sin ∠AMF=FG FM =; (3)分两种情况讨论①当MN 是对角线时;②当MN 为边时;解答即可.【解析】(1)∵抛物线上的点B 的坐标为(3,0),点C 的坐标为(0,5)∴将其代入y═﹣13x 2+bx+c ,得 130{5b c c -++== ,解得b=﹣23,c=5.∴抛物线的解析式为y=﹣13x2﹣23x+5.∴点A的坐标是(﹣5,0).(2)作FG⊥AC于G,设点F坐标(m,0),则AF=m+5,AE=EM=m+6,2m+5),2221(6)EF EM m+++∵sin∠10∴=10 FG FGFM FM==225)21(6)mm+++10整理得到2m2+19m+44=0,∴(m+4)(2m+11)=0,∴m=﹣4或﹣5.5(舍弃),∴点Q坐标(﹣4,73).(3)①当MN是对角线时,点M在y轴的右侧,设点F(m,0),∵直线AC解析式为y=x+5,∴点N(m,m+5),点M(m+1,m+6),∵QN=PM,∴﹣13m2﹣23m+5﹣m﹣5=m+6﹣[﹣13(m+1)2﹣23(m+1)+5],解得m=﹣3+6或﹣3﹣6(舍弃),此时M (﹣,,当MN 是对角线时,点N 在点A 的左侧时,设点F (m ,0).∴m+5﹣(﹣13m 2﹣23m+5)=[﹣13(m+1)2﹣23(m+1)+5]﹣(m+6),解得m=﹣3,此时M (﹣2,3)②当MN 为边时,设点Q (m ,﹣13m 2﹣23m+5)则点P (m+1,﹣13m 2﹣23m+6), ∵NQ=PM ,∴﹣13m 2﹣23m+6=﹣13(m+1)2﹣23(m+1)+5, 解得m=﹣3.∴点M 坐标(﹣2,3),综上所述以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,点M 的坐标为(﹣2,3)或(﹣3+23). 【点评】本题考查了二次函数的综合题、三角函数、勾股定理等知识,解题的关键是会用待定系数法求解二次函数的解析式,会用分类讨论及方程的思想解决问题.7.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点. 【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【解析】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c , 得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩, ∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩, ∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P在点E的上方,∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当x=12时,PE的最大值为94,∴S△ACE=12PE•|x C﹣x A|=12×94×3=278;(3)①如图,连接C与抛物线和y轴的交点,∵C(2,﹣3),G(0,﹣3)∴CG∥X轴,此时AF=CG=2,∴F点的坐标是(﹣3,0);②如图,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1±73),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=﹣x+h,将G 点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(7,0);④如图,同③可求出F的坐标为(4,0);综合四种情况可得出,存在4个这样的点F,分别是F1(1,0),F2(﹣3,0),F3(0),F4(4,0).【点评】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.8.(1)(0,8);(2)y=23x2﹣163x+8,其对称轴为直线x=4;(3)4【分析】(1)由S△ABC=12×AB×OC求出OC的长度,进而确定C点坐标;(2)因为抛物线经过点A(2,0),B(6,0),故可以设二次函数的交点式,即y=a(x﹣2)(x﹣6),再将C点坐标代入即可求得解析式,进一步得到对称轴;(3)设正方形DEFG的边长为m,再根据题中的条件列出正确的D、E坐标,再将E点坐标代入二次函数求出边长m,进一步求得正方形DEFG的面积.【解析】(1)∵A(2,0),B(6,0),∴AB=6﹣2=4.∵S△ABC=16,∴12×4•OC=16,∴OC=8,∴点C的坐标为(0,8);(2)∵抛物线y=ax2+bx+c(a>0)经过点A(2,0),B(6,0),∴可设抛物线的解析式为y=a(x﹣2)(x﹣6),将C(0,8)代入,得8=12a,解得a=23,∴y=23(x﹣2)(x﹣6)=23x2﹣163x+8,故抛物线的解析式为y=23x2﹣163x+8,其对称轴为直线x=4;(3)设正方形DEFG的边长为m,则m>0,∵正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),∴D(4﹣12m,﹣m),E(4+12m,﹣m).将E(4+12m,﹣m)代入y=23x2﹣163x+8,得﹣m=23×(4+12m)2﹣163×(4+12m)+8,整理得,m2+6m﹣16=0,解得m1=2,m2=﹣8(不合题意舍去),∴正方形DEFG的边长为2,∴S正方形DEFG=22=4.【点评】本题考查了三角形的面积、二次函数的性质、二次函数图像上点的坐标特征、正方形的性质,注意灵活运用知识点,另外利用面积求出点C坐标、根据二次函数与正方形的性质正确表示D、E的坐标是解答此题的关键.9.(1)(﹣1,0),(4,0);(2)y=﹣12x2+32x+2;(3)点M的坐标分别为:(﹣52,﹣398)或(112,﹣398)或(52,218).【分析】(1)利用x轴上点的坐标特点即可得出结论;(2)判断出△AOB∽△COA,建立方程求出OA,进而得出点A坐标,最后用待定系数法即可的结论;(3)设出点M,N的坐标,分三种情况,利用中点坐标公式建立方程求解即可得出结论.【解析】(1)令y=0,∴nx2-3nx-4n=0,∵n<0,∴x2-2x-4=0,∴x=-1或x=4,∴B(-1,0),C(4,0);(2)∵∠BAC=90°,AO⊥BC,易证△AOB ~△COA , ∴OA BO CO AO =,14OA AO=, ∴OA=2,故A (0,2),则设抛物线的解析式为:y=a(x-x1)( x-x2),把A (0,2)、B (-1,0)、C (4,0)代入上式得,-4a=2, ∴12a =-, ∴()()2113142222y x x x x =-+-=-++, ∴对称轴直线为32x =, ∴设N (32,b ),M (m ,213222m m --+), 以A 、C 、M 、N 为顶点的四边形是平行四边形,∴①当AC 为对角线时,()11304222m ⎛⎫+=+ ⎪⎝⎭, ∴52m =. ∴M (52,218). ②当AM 为对角线时,()11304222m ⎛⎫+=+ ⎪⎝⎭, ∴112m =. ∴M (112,-398). ③当AN 为对角线时,()13104222m ⎛⎫+=+ ⎪⎝⎭, ∴52m =-. ∴M (52-,-398). 即:抛物线上存在这样的点M ,点M 的坐标分别为:M (52,218)或(112,-398)或(52-,-398). 【点评】二次函数综合题,主要考查了待定系数法,x 轴上点的坐标特点,直角三角形的性质,相似三角形的判定和性质,平行四边形的性质,中点坐标公式,求出OA 的是解本题的关键.10.(1)(843t s =- (2)存在,43s 或2s (3)()204s t t =<< 【分析】(1)连接PB ,由点B 在线段PQ 的垂直平分线上,推出BP=BQ ,由此构建方程即可解决问题;(2)分两种情形分别构建方程求解即可;(3)如图4中,连接QC ,作QE ⊥AC 于E ,作QF ⊥BC 于F .则QE=AE ,QF EC =,可得QE+QF=AE+EC=AC=4.根据S=1122QNC PCQ SS CN QF PC QE +=⋅+⋅,计算即可; 【解析】(1)如图1中,连接BP .在Rt ΔACB 中,AC BC 4==,C 90∠=︒,AB 42∴=点B 在线段PQ 的垂直平分线上,BP BQ ∴=,AQ 2t =,CP t =,BQ 422t ∴=,222PB 4t =+,()22422t 16t ∴=+, 解得t 843=-843+,(t 843s ∴=-时,点B 在线段PQ 的垂直平分线上. (2)①如图2中,当PQ QA =时,易知ΔAPQ 是等腰直角三角形,AQP 90∠=︒.则有PA 2AQ =,4t 2?2t ∴-=,解得4t 3=. ②如图3中,当AP PQ =时,易知ΔAPQ 是等腰直角三角形,APQ 90∠=︒.则有:AQ =,∴)4t -,解得t 2=, 综上所述:4t s 3=或2s 时,ΔAPQ 是以PQ 为腰的等腰三角形. (3)如图4中,连接QC ,作QE AC ⊥于E ,作QF BC ⊥于F .则QE AE =,QF EC =,可得QE QF AE EC AC 4+=+==.()ΔQNC ΔPCQ 111S S S ?CN?QF ?PC?QE t QE QF 2t(0t 4)222=+=+=+=<<. 【点评】本题考查了四边形综合题、等腰直角三角形的性质、等腰三角形的判定和性质、线段的垂直平分线的性质定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.11.(1) y =﹣14x 2﹣12x +2; (2)见解析;(3)见解析. 【分析】(1)根据自变量与函数值的对应关系可得A 、B 点坐标,再根据OB =OC 可得C 点坐标,进而根据待定系数法可得抛物线解析式;(2)根据题意易得∠BAO =∠ODC ,然后根据“ASA”证得△AOB ≌△COD ,进而可得OA =OD ,∠OAD =∠ODQ ,再根据∠POQ =∠AOD =90°得到∠AOP =∠DOQ ,因此可证△AOP≌△DOQ,即可证OP=OQ;(3)设点P横坐标为n,则点P坐标为(n,12n+2),点M的坐标为(n,1 4﹣n2﹣12n+2),通过证△OPE≌△OQF(AAS)确定Q,N的坐标,由题意可得PM∥QN,故当PM =QN时,以P、Q、M、N为顶点的四边形为平行四边形,分P在M点上方以及P在M点下方两种情况进行讨论,根据PM=QN求出点P坐标即可.【解析】解:(1)∵OA=4∴点A(﹣4,0)∵直线y=kx+2与坐标轴交于A、B两点,∴点B(0,2),0=﹣4k+2∴OB=2,k=12∴直线解析式y=12x+2∵OC=OB=2∴点C(2,0)∵抛物线y=ax2+bx+c过A、B、C三点.∴20164042ca b ca b c⎧⎪⎨⎪⎩==-+=++,解得:a=﹣14,b=﹣12,c=2∴抛物线解析式:y=﹣14x2﹣12x+2;(2)∵CD⊥AB∴∠BAO+∠DCO=90°又∵∠ODC+∠DCO=90°∴∠BAO=∠ODC且OB=OC,∠AOB=∠COD=90°∴△AOB≌△COD(ASA)∴OA=OD,∠OAB=∠ODC∴∠OAP=∠ODQ∵∠POQ=90°,∠AOD=90°∴∠AOP=∠DOQ且OA=OD,∠OAP=∠ODQ∴△AOP≌△DOQ(ASA)∴OP=OQ(3)设点P横坐标为n,则点P坐标为(n,12n+2),点M的坐标为(n,14﹣n2﹣12n+2)∵QF⊥x轴,∴∠FQO+∠QOF=90°,且∠QOF+∠POE=90°∴∠FQO=∠EOP又∵∠OEP=∠QFO=90°,OP=OQ∴△OPE≌△OQF(AAS)∴OE=QF,PE=OF∴点Q的坐标为(12n+2,﹣n),点N坐标(12n+2,﹣116n2﹣34n).由题意可得PM∥QN当PM=QN时,以P、Q、M、N为顶点的四边形为平行四边形当点P位于点M上方时:如图:∴PM=(12n+2)﹣(14﹣n2﹣12n+2)=14n2+nQN=(﹣n)﹣(﹣116n2﹣34n)=116n2﹣14n∴116n2﹣14n=14n2+n解得:n=0(不合题意舍去),n=﹣20 3∴12×(﹣203)+2=﹣43∴点P坐标为(﹣203,﹣43)当点P位于点M下方时,如图:∴PM =(14﹣n 2﹣12n +2)﹣(12n +2)=﹣14n 2﹣n QN =(﹣n )﹣(﹣116n 2﹣34n )=116n 2﹣14n ∴﹣14n 2﹣n =116n 2﹣14n 解得:n =0(不合题意舍去),n =﹣125, ∴12×(﹣125)+2=45 ∴点P 的坐标为(﹣125,45) 综上所述:点P 坐标(﹣203,﹣43),(﹣125,45) 【点评】本题考查了一次函数的图像与性质、二次函数的图像与性质、待定系数法求解析式、全等三角形的判定与性质、平行四边形的性质等知识点,弄清题意,综合运用所学知识,掌握数形结合的思想是解答的关键.12.(1) y=﹣x²+2x+3;(2)1;(3)见解析.【分析】(1)由点 A ,C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点 B 的坐标,利用配方法可求出顶点 E 的坐标,由点 B ,C 的坐标,利用待定系数法可求出直线 BC 的解析式, 利用一次函数图象上点的坐标特征可得出点 D 的坐标,再利用三角形的面积公式即可求出当点 P 运动到点 E 时△PCD 的面积;(3)设点 M 的坐标为(m ,0),点 N 的坐标为(1,n ),分四边形 CBMN 为平行四边形、四边形 CMNB 为平行四边形及四边形 CMBN 为平行四边形三种情况,利用平行四边形的性质找出关于 m 的一元一次方程,解之即可得出结论.【解析】(1)将 A (﹣1,0),C (0,3)代入 y=ax 2+2x+c ,得:203a c c -+=⎧⎨=⎩,解得:13a c =-⎧⎨=⎩, ∴抛物线的解析式为 y=﹣x 2+2x+3.(2)当 y=0 时,有﹣x 2+2x+3=0, 解得:x 1=﹣1,x 2=3,∴点 B 的坐标为(3,0).∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴点E 的坐标为(1,4).设过B,C 两点的直线解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入y=kx+b,得:303k bb+=⎧⎨=⎩,解得:13kb=-⎧⎨=⎩,∴直线BC 的解析式为y=﹣x+3.∵点D 是直线与抛物线对称轴的交点,∴点D 的坐标为(1,2),∴DE=2,∴当点P 运动到点E 时,△PCD 的面积=12×2×1=1.(3)设点M 的坐标为(m,0),点N 的坐标为(1,n).分三种情况考虑:①当四边形CBMN 为平行四边形时,有1﹣0=m﹣3,解得:m=4,∴此时点M 的坐标为(4,0);②当四边形CMNB 为平行四边形时,有m﹣1=0﹣3,解得:m=﹣2,∴此时点M 的坐标为(﹣2,0);③当四边形CMBN 为平行四边形时,有0﹣1=m﹣3,解得:m=2,∴此时点M 的坐标为(2,0).综上所述:存在这样的点M 与点N,使以M,N,C,B 为顶点的四边形是平行四边形,点M 的坐标为(4,0)或(﹣2,0)或(2,0).【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用一次函数图象上点的坐标特征及配方法,求出点D,E 的坐标;(3)分四边形CBMN 为平行四边形、四边形CMNB为平行四边形及四边形CMBN 为平行四边形三种情况求出点M 的坐标.13.(1)y=x2﹣2x﹣3;(2)M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(173)或(17,3)或(2,﹣3).【分析】(1)把A,B,C的坐标代入抛物线解析式求出a,b,c的值即可;(2)由题意得到直线BC与直线AM垂直,求出直线BC解析式,确定出直线AM中k的值,利用待定系数法求出直线AM解析式,联立求出M坐标即可;(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分两种情况,利用平移规律确定出P的坐标即可.【解析】(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:9303a b ca b cc++=⎧⎪-+=⎨⎪=-⎩,解得:123abc=⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为y=x2﹣2x﹣3;(2)设直线BC解析式为y=kx﹣3,把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,∴直线BC解析式为y=﹣3x﹣3,∴直线AM解析式为y=13x+m,把A(3,0)代入得:1+m=0,即m=﹣1,∴直线AM解析式为y=13x﹣1,联立得:33113y xy x=--⎧⎪⎨=-⎪⎩,解得:3565xy⎧=-⎪⎪⎨⎪=-⎪⎩,则M(﹣35,﹣65);(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,分两种情况考虑:设Q(x,0),P(m,m2﹣2m﹣3),当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,解得:m=1±7x=2±7当7m2﹣2m﹣7﹣2﹣7﹣3=3,即P(73);。

中考数学压轴题专题二次函数的经典综合题及答案解析

中考数学压轴题专题二次函数的经典综合题及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

中考复习专题09二次函数与正方形存在性问题(含解析)

专题09二次函数与正方形存在性问题二次函数与正方形存在性问题1.作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.2.对于二次函数与正方形的存在性问题,常见的处理思路有:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.3.示例:在平面直角坐标系中,已知A、B的坐标,在平面中求C、D使得以A、B、C、D 为顶点的四边形是正方形.如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.【例1】(2022•齐齐哈尔)综合与探究如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为(1,2);(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.【分析】(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n,解方程即可得出答案;(2)根据两点之间,线段最短,可知当点A、B、C三点共线时,AC+BC的最小值为AB的长,求出直线AB的解析式,即可得出点C的坐标;(3)设D(a,a2﹣2a﹣3),则E(a,a+1),表示出DE的长度,利用二次函数的性质可得答案;(4)分CF为对角线和边,分别画出图形,利用正方形的性质可得答案.【解答】解:(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n得,,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设直线AB的函数解析式为y=kx+b,,∴,∴直线AB的解析式为y=x+1,∵AC+BC≥AB,∴当点A、B、C三点共线时,AC+BC的最小值为AB的长,∵抛物线y=x2﹣2x﹣3的对称轴为x=1,∴当x=1时,y=2,∴C(1,2),故答案为:(1,2);(3)设D(a,a2﹣2a﹣3),则E(a,a+1),∴DE=(a+1)﹣(a2﹣2a﹣3)=﹣a2+3a+4(﹣1<a<4),∴当a=时,DE的最大值为;(4)当CF为对角线时,如图,此时四边形CMFN是正方形,∴N(1,1),当CF为边时,若点F在C的上方,此时∠MFC=45°,∴MF∥x轴,∵△MCF是等腰直角三角形,∴MF=CN=2,∴N(1,4),当点F在点C的下方时,如图,四边形CFNM是正方形,同理可得N(﹣1,2),当点F在点C的下方时,如图,四边形CFMN是正方形,同理可得N(,),综上:N(1,1)或(1,4)或(﹣1,2)或(,).【例2】(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB =8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.【分析】(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH=2OG计算H的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H(t,﹣t2+8)(t>0),表示矩形EFGH的周长,再根据二次函数的性质求出最值即可;(3)设半径为3dm的圆与AB相切,并与抛物线相交,设交点为N,求出点N的坐标,并计算点N是圆M与抛物线在y轴右侧的切点即可.【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M N作⊙M的切线交y轴于Q,连接MN,过点N作NP ⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.【例3】(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y 轴上时,请直接写出点G的坐标.【分析】(1)将A,C两点坐标代入抛物线的解析式,进一步求得结果;(2)可推出△PCB是直角三角形,进而求出△BOC和△PBC的面积之和,从而求得四边形BOCP的面积;(3)作PE∥AB交BC的延长线于E,根据△PDE∽△ADB,求得的函数解析式,从而求得P点坐标,进而分为点P和点A和点Q分别为直角顶点,构造“一线三直角”,进一步求得结果;(4)作GL∥y轴,作RC⊥GL于L,作MT⊥KI于K,作HW⊥IK于点W,则△GLC≌△CRH,△ITM ≌△HWI.根据△GLC≌△CRH可表示出H点坐标,从而表示出点K坐标,进而表示出I坐标,根据MT=IW,构建方程求得n的值.【解答】解:(1)由题意得,,∴,∴该抛物线的函数表达式为:y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴B(3,0),∵PC2+BC2=[1+(4﹣3)2]+(32+32)=20,PB2=[(3﹣1)2+42]=20,∴PC2+BC2=PB2,∴∠PCB=90°,===3,∴S△PBC===,∵S△BOC=S△PBC+S△BOC=3+=;∴S四边形BOCP(3)如图1,作PE∥AB交BC的延长线于E,设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴直线BC的解析式为:y=﹣x+3,由﹣x+3=﹣m2+2m+3得,x=m2﹣2m,∴PE=m﹣(m2﹣2m)=﹣m2+3m,∵PE∥AB,∴△PDE∽△ADB,∴===﹣(m﹣)2+,=,∴当m=时,()最大当m=时,y=﹣()2+2×+3=,∴P(,),设Q(n,﹣n2+2n+3),如图2,当∠PAQ=90°时,过点A作y轴平行线AF,作PF⊥AF于F,作QG⊥AF于G,则△AFP∽△GQA,∴=,∴=,∴n=,如图3,当∠AQP=90°时,过QN⊥AB于N,作PM⊥QN于M,可得△ANQ∽△QMP,∴=,∴=,可得n1=1,n2=,如图4,当∠APQ=90°时,作PT⊥AB于T,作QR⊥PT于R,同理可得:=,∴n=,综上所述:点Q的横坐标为:或1或或;(4)如图5,作GL∥y轴,作RC⊥GL于L,作MT⊥KI于T,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.∴RH=OG=﹣n,CR=GL=OC=3,MT=IW,∴G(n,0),H(3,3+n),∴K(,),∴I(,﹣()2+n+3+3),∵TM=IW,∴=()2+n +6﹣(3+n ),∴(n +3)2+2(n +3)﹣12=0,∴n 1=﹣4+,n 2=﹣4﹣(舍去),∴G (﹣4+,0).【例4】(2022•长春)在平面直角坐标系中,抛物线y =x 2﹣bx (b 是常数)经过点(2,0).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连结BC .当BC =4时,求点B 的坐标;(3)若m >0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为时,直接写出m 的值.【分析】(1)把(2,0)代入y =x 2﹣bx ,得到b =2,可得结论;(2)判断出点B 的横坐标为﹣1,可得结论;(3)分两种情形:当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大.当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小.利用图象法解决问题即可;(4)分三种情形:如图4﹣1中,当点N (0,)时,满足条件,如图4﹣2中,当点N (0,﹣),满足条件,如图4﹣3中,当正方形PQMN 的边长为时,满足条件,分别求出点A 的坐标,可得结论.【解答】解:(1)把(2,0)代入y =x 2﹣bx ,得到b =2,∴该抛物线的解析式为y =x 2﹣2x ;(2)如图1中,∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线的顶点为(1,﹣1),对称轴为直线x=1,∵BC∥x,∴B,C故对称轴x=1对称,BC=4,∴点B的横坐标为﹣1,∴B(﹣1,3);(3)如图2中,∵点A的横坐标为m,PQ=2|m|,m>0,∴PQ=PQM=MN=2m,∴正方形的边MN在y轴上,当点M与O重合时,由,解得或,∴A(3,3),观察图象可知,当m≥3时,抛物线在正方形内部的点的纵坐标y随x的增大而增大.如图3中,当PQ落在抛物线的对称轴上时,m=,观察图象可知,当0<m≤时,抛物线在正方形内部的点的纵坐标y随x的增大而减小.综上所述,满足条件的m的值为0<m≤或m≥3;(4)如图4﹣1中,当点N(0,)时,满足条件,此时直线NQ的解析式为y=﹣x+,由,解得,或,∵点A在第四象限,∴A(,﹣),∴m=.如图4﹣2中,当点N(0,﹣),满足条件,此时直线NQ是解析式为y=﹣x﹣,由,解得,∴A (,﹣),∴m =.如图4﹣3中,当正方形PQMN 的边长为时,满足条件,此时m =﹣,综上所述,满足条件的m 的值为或或﹣.1.(2020•乐平市一模)如图,抛物线y =a (x ﹣h )2+k (a ≠0)的顶点为A ,对称轴与x 轴交于点C ,当以AC 为对角线的正方形ABCD 的另外两个顶点B 、D 恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD 为它的内接正方形.(1)当抛物线y =ax 2+1是美丽抛物线时,则a =﹣2;当抛物线y =+k 是美丽抛物线时,则k=﹣4;(2)若抛物线y =ax 2+k 是美丽抛物线时,则请直接写出a ,k 的数量关系;(3)若y =a (x ﹣h )2+k 是美丽抛物线时,(2)a ,k 的数量关系成立吗?为什么?(4)系列美丽抛物线y n =a n (x ﹣n )2+k n (n 为小于7的正整数)顶点在直线y =x 上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.【分析】(1)画出函数y=ax2+k的图象,求出点D的坐标,即可求解;(2)由(1)知,点D的坐标为(k,k),即可求解;(3)美丽抛物线沿x轴向右或向左平移后得到的抛物线仍然是美丽抛物线,美丽抛物线y=a(x﹣h)2+k 沿x轴经过适当平移后为抛物线y=ax2+k,即可求解;(4)设这两条美丽抛物线的顶点坐标分别为和,它们的内接正方形的边长比为,则m=4k,,进而求解.【解答】解:(1)函数y=ax2+k的图象如下:①抛物线y=ax2+1是美丽抛物线时,则AC=1,∵四边形ABCD为正方形,则点D的坐标为(,),将点D的坐标代入y=ax2+1得:=a()2+1,解得a=﹣2;②同理可得,点D的坐标为(k,k),将点D的坐标代入y=+k得:k=(k)2+1,解得k=0(不合题意)或﹣4;故答案为:﹣4;(2)由(1)知,点D的坐标为(k,k),将点D 的坐标代入y =ax 2+k 得:k =a (k )2+k ,解得ak =﹣2;(3)答:成立.∵美丽抛物线沿x 轴向右或向左平移后得到的抛物线仍然是美丽抛物线.∴美丽抛物线y =a (x ﹣h )2+k 沿x 轴经过适当平移后为抛物线y =ax 2+k .∴ak =﹣2;(4)设这两条美丽抛物线的顶点坐标分别为和,(k ,m 为小7的正整数,且k <m ),它们的内接正方形的边长比为,∴m =4k ,.∴这两条美丽抛物线分别为和.∵,=﹣2,∴a 1=﹣12,a 4=﹣3.∴a 1+a 4=﹣15.答:这两条美丽抛物线对应的二次函数的二次项系数和为﹣15.2.(2016秋•西城区校级期中)我们规定:在正方形ABCD 中,以正方形的一个顶点A 为顶点,且过对角顶点C 的抛物线,称为这个正方形的以A 为顶点的对角抛物线.(1)在平面直角坐标系xOy 中,点在轴正半轴上,点C 在y 轴正半轴上.①如图1,正方形OABC 的边长为2,求以O 为顶点的对角抛物线;②如图2,在平面直角坐标系xOy 中,正方形OABC 的边长为a ,其以O 为顶点的对角抛物线的解析式为y =x 2,求a 的值;(2)如图3,正方形ABCD 的边长为4,且点A 的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD 内分别交于点M 、P 、N 、Q ,直接写出四边形MPNQ 的形状和四边形MPNQ 的对角线的交点坐标.【分析】(1)①设O为顶点的抛物线的解析式为y=ax2,把B(2,2)代入即可解决问题.②设B(a,a).代入y=x2求出a即可解决问题.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).求出A、B、C、D的顶点的对角抛物线,利用方程组求出M、P、N、Q的坐标即可解决问题.【解答】解:(1)①如图1中,设O为顶点的抛物线的解析式为y=ax2,∵过B(2,2),∴2=4a,∴a=,∴所求的抛物线的解析式为y=x2.②如图2中,设B(a,a).则有a=a2,解得a=4或0(舍弃),∴B(4,4),∴OA=4,∴正方形的边长为4.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).理由:∵正方形ABCD的边长为4,A(3,2),∴B(7,2),C(7,6),D(3,6),∴以A为顶点的对角抛物线为y=(x﹣3)2+2,以B为顶点的对角抛物线为y=(x﹣7)2+2,以C为顶点的对角抛物线为y=﹣(x﹣7)2+6,以D为顶点的对角抛物线为y=﹣(x﹣3)2+6,由可得M(5,3),由可得N(5,5),由可得P(3+2,4),由可得Q(7﹣2,4),∴PM=,PN=,QN=,QM=,∴PM=PN=QN=QM,∴四边形MPNQ是菱形,对角线的交点坐标为(5,4).3.(2022•陇县二模)在平面直角坐标系中,已知抛物线经过A(﹣2,0),两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是,∵抛物线L1过点A(﹣2,0),∴,解得,∴.即抛物线L1的表达式是;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设,则,解得即抛物线L2的解析式是.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设,则,解得:,即抛物线L2的解析式是.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设,则,解得,即抛物线L2的解析式是.综上所述:L2的表达式为:,或.4.(2022•临潼区二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是y=a(x﹣1)2﹣,∵抛物线L1:y=ax2+bx+c A(﹣2,0),∴0=9a﹣,解得a=,∴y=(x﹣1)2﹣,即抛物线L1的表达式是y=x2﹣x﹣2;(2)当AC为正方形的对角线时,则点D的坐标为(0,0),点E(﹣2,﹣2),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2+x;当AC为边时,分两种情况,第一种情况,点D、E在AC的右上角时,则点D的坐标(0,2),点E(2,0),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2﹣x+2;第二种情况,点D、E在AC的左下角时,则点D的坐标(﹣4,﹣2),点E(﹣2,﹣4),设y=x2+bx+c,则,解得,即抛物线L2的解析式是y=x2+x﹣4.5.(2022•松阳县一模)如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA,OC上分别存在点E,F,使EF⊥FG.已知OE=m,OF=t①当t为何值时,m有最大值?最大值是多少?②若点E与点R关于直线FG对称,点R与点Q关于直线OB对称.问是否存在t,使点Q恰好落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)先求得点G的坐标,再用待定系数法求解即可;(2)①证明△EOF∽△FCG,利用相似三角形的性质得到m关于t的二次函数,利用二次函数的性质即可求解;②根据轴对称的性质以及全等三角形的判定和性质先后求得点R(﹣m,2t),点Q(2t,﹣m),代入二次函数的解析式得到方程,解方程即可求解.【解答】解:(1)∵点A(4,0),点C(0,4).且四边形OABC是正方形,∴QA=QC=BC=4,∵CG:GB=3:1.∴CG=3,BG=l,∴点G的坐标为(3,4),设抛物线的解析式为y=ax2+bx+c,把.4(4,0),C(0,4),G(3,4),代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+3x+4,令y=0,则﹣x2+3x+4=0,解得x=4或x=﹣1,∴点D的坐标为(﹣1,0);.(2)①∵EF⊥FG,∠EOF=∠GFE=∠GCF=90°,∴∠EFO+∠FEO=∠EFO+∠CFG=90°,.∴∠FEO=∠CFG,∴△EOF∽△FCG,∴=,即=,∴m=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,m有最大值,最大值为;②∵点A(4,0),点C(0,4),且四边形OABC是正方形,∴点B的坐标为(4,4),设直线OB的解析式为y=kx,把(4,4),代入得:4=4k,解得k=1,∴直线OB的解析式为y=x,过点R作RS⊥y轴于点S,如图:∵点E与点R关于直线FG对称,EF⊥FG,∴RF=EF,∠RFS=∠EFO,∴△RFS≌△EFO(AAS),∴RS=EO=m,FS=FO=t,则SO=2t,∴点R的坐标为(﹣m,21)∵点R与点Q关于直线OB对称,同理点Q的坐标为(2t,﹣m),把Q(2t,﹣m)代入y=﹣x2+3x+4,得:﹣m=﹣4t2+6t+4,由①得m=﹣t2+t,∴t2﹣t=﹣4t2+6t+4,解得:t1=,t2=,∵0≤t1≤4,∴当t=时,点G恰好落在抛物线上.6.(2022•香坊区校级开学)在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长【分析】(1)根据正方形的性质求得B,C的坐标,利用待定系数法求解析式即可;(2)在AD延长线时取DI=DE,连接IE,设∠ABD=α,可得tan∠EIA==,设AE=x,则AI=2x,在Rt△ADE中,ED2=AD2+AE2,建立方程,解方程进而可得E点的坐标,利用待定系数法求解析式即可;(3)延长BD,交y轴于点M.设直线DP交y轴于点S,分别求得G,C.H三点的坐标,进而根据勾股定理以及两点距离公式分别求得CG,HG,HC的长,即可求得△CGH的周长.【解答】解:∵四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.∴AB=OC=OA=18,∴C(0,18),B(18,18),∴c=18,∴18=﹣×182+bx+18,解得b=2,∴抛物线的解析式为y=﹣x2+2x+18;(2)如图,在AD延长线时取DI=DE,连接IE,设∠ABD=α,∵∠EDA=2∠ABD,∴∠EDA=2α,∵DI=DE,∴∠EID=∠IED=α,∵点D是OA的中点,∴OD=DA=9,∴tanα==,∴tan∠EIA==,设AE=x,则AI=2x,∴ED=DI=IA﹣DA=2x﹣9,在Rt△ADE中,ED2=AD2+AE2,即(2x﹣9)2=92+x2,解得x1=12,x2=0(舍),∴AE=12,∴E(18,12),∵D(9,0),设直线ED的解析式为y=kx+t,∴,解得,∴直线DE的解析式为y=x﹣12;(3)如图,延长BD,交y轴于点M,设直线DP交y轴于点S,∵OD=DA,∠DOM=∠DAB,∠ODM=∠ADB,∴△ODM≌△ADB(ASA),∴MD=DB,∵点Q为BP中点,DQ=PQ,∴DQ=BQ=PQ,∴∠QDB=∠QBD,∠QDP=∠QPD,∠QDB+∠QBD+∠QDP+∠QPD=180°,∴∠BDQ+∠PDQ=90°,即∠BDP=90°,∴PH⊥BD,∴∠SDO+∠MDO=∠MDO+∠OMD=90°,∴∠SDO=∠OMD=∠ABD,∴tan ∠SDO =tan ∠ABD ==,∴OS =OD =,∴S (0,),设直线SD 的解析式为y =mx +n ,将点S (0,),D (9,0)代入得,,解得,∴直线SD 的解析式为y =﹣x +,联立,解得,,∵点P 在AB ∴P (27,﹣9),∵D (9,0),B (18,18),∴PD ==9,BD ==9,∴DB =DP ,∴△DBP 是等腰直角三角形,∴∠DBP =45°,DQ ⊥BP ,∵BH ⊥BP ,∴BH ∥DQ ,∴=1,∴DH =DP ,∵D (9,0),P (27,﹣9),∴H (﹣9,9),∵点G 在OD 上,GC =GE ,C (0,18),E (18,12),设G (p ,0),则p 2+182=(18﹣p )2+122,解得p =4,∴G (4,0),∵H (﹣9,9),G (4,0),C (0,18),∴CG ==2,CH ==9,HG ==5,∴CG +HG +CH =2+5+9,∴△CGH 的周长为2+5+9.7.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l ,P 是该抛物线上一动点,其横坐标为m ,过点P 作PQ ⊥l 于点Q ,M 是直线l 上的一点,其纵坐标为.以PQ ,QM 为边作矩形PQMN .(1)求抛物线的解析式;(2)当点Q 与点M 重合时,求的值;(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值;(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,求m 的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M 与点P 的纵坐标相等构建方程求解即可.(3)根据PQ =MQ ,构建方程求解即可.(4)当点P 在直线l 的左边,点M 在点Q 是下方下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有﹣m +<﹣m 2+m +,解得0<m <4,观察图象可知.当0<m <3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中.当m>4时,点M 在点Q的上方,也满足条件,如图4﹣2中.【解答】解:(1)∵抛物线的图象经过点A(3,0),∴=0,解得b=1.∴抛物线解析式为:.(2)∵P点的横坐标为m,且P点在抛物线y=的图象上,∴P点的坐标为(m,),∵PQ⊥l,l过A点且垂直于x轴,∴Q点的坐标为(3,),∵M点的坐标为(3,﹣m+),∵Q点与M点重合,∴=﹣m+,解方程得:m=0或m=4.(3)∵抛物线=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2).∵N点的坐标为N(m,﹣m+),要使顶点(1,2)在正方形PQMN内部,∴﹣m+>2,得m<﹣.∴PN=﹣m+﹣()=m2﹣2m,PQ=3﹣m.∵四边形PQMN是正方形,∴m2﹣2m=3﹣m,解得m=1+(舍去)或m=1﹣.∴当m=1﹣时,抛物线顶点在正方形PQMN内部.(4)∵M点的纵坐标﹣m+,随P点的横坐标m的增大而减小,根据(1)的结果得:当m=0时,M,Q两点重合;m=3时,P,Q重合;m=4时,M,Q重合,矩形PQMN不存在;当m<0时,直线MN在直线PQ上方,抛物线顶点在矩形PQMN内部,不合题意.当0<m<4时,直线MN在直线PQ下方,如图4﹣1,当3<m<4时,矩形内部没有抛物线图象,不合题意;当m>4时,直线MN在直线PQ上方,矩形内部有抛物线,且为对称轴右侧,y随x的增大而减小,如图4﹣2;综上:当0<m<3或m>4时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小.8.(2021•云南模拟)如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A在点B的左侧),交y轴于点C,且经过点D(5,6).(1)求抛物线的解析式及点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.【分析】(1)用待定系数法直接求出解析式,然后令y=0,求出点A、B的坐标即可;(2)求出直线AD的解析式,设直线AD与y轴交于点E,得出∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,求出各个P点的坐标即可;(3)设平移后的抛物线解析式为,分别求出抛物线平移后与正方形ADEF有公共点的最低位置和最高位置的t值,即可求出t的取值范围.【解答】解:(1)依题意,将点D(5,6)代入,得,解得k=﹣2,∴抛物线的解析式为,令y=0,得,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)存在,设直线AD的解析式为y=mx+n(m≠0),将A(﹣1,0),D(5,6)两点坐标代入得,,解得,∴直线AD的解析式为y=x+1,如图1,设直线AD与y轴交于点E,令x=0,得y=1,∴OA=OE=1,∴∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,∴P1(5,0),P2(﹣1,6),P3(11,0),P4(5,﹣6),P5(﹣1,12),P6(﹣7,6);(3)如图2,由(2)可知,点E的坐标是(11,0),点F的坐标是(5,﹣6),直线AD的解析式是y=x+1,设平移后的抛物线解析式为,结合图象可知,当抛物线经过点E时,是抛物线平移后与正方形ADEF有公共点的最低位置,将点(11,0)代入,得,解得t=﹣48,当抛物线与AD边有唯一公共点时,是抛物线平移后与正方形ADEF有公共点的最高位置,将y=x+1与联立方程组,,化简得x2﹣4x+2t﹣5=0,∵只有唯一解,即此一元二次方程有两个相等的实数根,∴△=(﹣4)2﹣4×1×(2t﹣5)=0,解得,∴t的取值范围.9.(2019秋•温州校级月考)如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y =﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.=6?若存在,(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD 求出点D的坐标;若不存在,说明理由;(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OPA =135°,直接写出此时AP的长度.【分析】(1)根据正方形的性质可得OA、OB,然后写出点B、C的坐标,再利用待定系数法求二次函数解析式解答,设BC边上的高为h,利用三角形的面积求出h,从而确定出点P的纵坐标,再代入抛物线解析式求解即可;(2)分点E在点F上方和下方两种情况表示出EF,再根据平行四边形对边相等列方程求解即可;(3)将△AOP绕点A逆时针旋转90°得到△AP′C,根据旋转的性质可得AP′=AP,P′C=OP,∠AP′C=∠OPA,然后判断出△APP′是等腰直角三角形,再求出∠PP′C=90°,利用勾股定理列式求出PP′,再根据等腰直角三角形的性质解答.【解答】解:(1)∵t=3秒,∴OA=OB=3,∴点B(0,3),C(3,3),将点B、C代入抛物线得,,解得,∴抛物线解析式为y=﹣x2+3x+3,设BC边上的高为h,=6,∵BC=OA=3,S△BCD∴h=4,∴点D的纵坐标为3﹣4=﹣1,令y=﹣1,则﹣x2+3x+3=﹣1,整理得,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以,D1(﹣1,﹣1),D2(4,﹣1);(2)∵OB=3,∴EF=3,设E(m,﹣m2+3m+3),F(m,m),若E在F上方,则,﹣m2+3m+3﹣m=3,整理得,m2﹣2m=0,解得m1=0(舍去),m2=2,∴F1(2,2),若F在E上方,则,m﹣(﹣m2+3m+3)=3,整理m2﹣2m﹣6=0,解得m1=1﹣,m2=1+,∴F2(1﹣,1﹣),F3(1+,1+);(4)如图,将△AOP绕点A逆时针旋转90°得到△AP′C,由旋转的性质得,AP′=AP,P′C=OP=,∠AP′C=∠OPA=135°,∵△APP′是等腰直角三角形,∴∠AP′P=45°,∴∠PP′C=135°﹣45°=90由勾股定理得,PP′==,所以,AP=PP′=×=1.10.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)求抛物线的解析式;(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.【分析】(1)求出OA、OB,根据勾股定理求出AB,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,证△AOB≌△BZC≌△DMA,推出BZ=OA=DM=1,CZ=OB=MA=2,进而求解;(2)分为三种情况,根据题意画出图形,①当点A运动到x轴上点F时,②当点C运动x轴上时,③当点D运动到x轴上时,根据相似三角形的性质和判定和三角形的面积公式求出即可;(3)由抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,即可求解.【解答】解:(1)∵直线y=﹣x+1,∴当x=0时,y=1,当y=0x=2,∴OA=1,OB=2,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,∵四边形ABCD是正方形,∴AD=AB=BC,∠ABC=∠AOB=∠CZB=90°,∴∠ABO+∠CBZ=90°,∠OAB+∠ABO=90°,∴∠OAB=∠CBZ,在△AOB和△BZC中,,∴△AOB≌△BZC(AAS),∴OA=BZ=1,OB=CZ=2,∴C(3,2),同理可求D的坐标是(1,3);设抛物线为y=ax2+bx+c,∵抛物线过A(0,1),D(1,3),C(3,2),则,解得,∴抛物线的解析式为y=﹣x2+x+1;(2)∵OA=1,OB=2,∴由勾股定理得:AB=,①当点A运动到x轴上点F时,t=1,当0<t≤1时,如图1,∵∠OFA=∠GFB′,tan∠OFA=,∴tan∠GFB′===,∴GB′=t,=FB′×GB′=•t•t=t2;∴S△FB′G②当点C运动x轴上时,t=2,当1<t≤2时,如图2,∵AB=A′B′=,∴A′F=t﹣,∴A′G=,∵B′H=t,=(A′G+B′H)•A′B′=(+t)•=t﹣;∴S四边形A′B′HG③当点D运动到x轴上时,t=3,当2<t≤3时,如图3,∵A′G=,∴GD′=﹣=,=×2×1=1,OA=1,∠AOF=∠GD′H=90°,∠AFO=∠GFA′,∵S△AOF∴△AOF∽△GA′F,∴=()2,=()2,∴S△GA′F=()2﹣()2=﹣t2+t﹣;则S五边形GA′B′CH综上,S=;(3)设平移后点E和点C对应的点为E′、C′,则抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,联立y=与y=﹣x2+x+1并解得,∴E(4,﹣1),∴BC=BE,CE=,当顶点D落在x3个单位长度,向右平移了6个单位长度,此时点E′的坐标为(10,﹣4),∴EE′=3,∴抛物线上C,E两点间的抛物线弧所扫过的面积为S=EE′•BC=3×=15.11.(2021•深圳模拟)如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2=S△MAE,求与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE 点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为4,。

中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。

中考数学专题复习:二次函数


第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质



第二课时二次函数的实际应用



第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、.二次函数y= ax2+bx+c的图象如图所示,求此 函数解析式。
(1)方法一 (一般式) 方法二 (顶点式) 方法三 (两点式)
-6 -2 3 2
(2)知识拓展
若抛物线y1 = a1x2+b1x+c1 1 2 与抛物线 y1 x x 3 4 关于x轴对称,则其解析式 为----
4、二次函数的y= ax2+bx+c的性质: 二次函数
开口 方向
对称轴 顶点坐标 最 a>0 值 a<0 增 a>0 减 性 a<0
y=ax2+bx+c y=a(x-h)2+k a>0 开口向上 a < 0 开口向下 x=h (x , k) y最小=k y最大=k
b x 2a
b 4ac b 2 , 2a 4a 4ac b 2 y最小= 4a 4ac b 2 y最大= 4a
思路点拨:把点(-1,0)代入解析式 从而求出b的值、抛物线的解析 式 、点D的坐标 。
巩固训练:
1.抛物线y=x2向上平移 2 个单位,再向右平移 3 2 y x 6 x 11 个单位可得到抛物线 。
y ( x 3) 2
2
巩固训练:
2、抛物线y=ax2+bx+c的图像如下,则满足条 件a>0, b<0, c<0的是( D )
在对称轴左边, x ↗y↘ ;在对称轴右边, x ↗ y ↗ 在对称轴左边, x ↗y ↗ ;在对称轴右边, x ↗ y ↘
例2:二次函数y=ax2+bx+c的图象向左平移2
个单位, 再向上平移3个单位, 得二次函数 y=x2-2x+1, 求b和c.
【思路点拨】:可以看出:a=1 解: ∵y=x2-2x+1=(x-1)2, 根据题意知: 把抛物线向下平移3个单位,再向右 平移2个单位, 顶点 由(1, 0)平移到 (3, -3)处, ∴ y=x2+bx+c=(x-3)2-3=x2-6x+6. ∴b=-6, c=6.
中考复习函数专题第三讲
二次函数
赵集二初中 吕鹏 二0一 三年四月
新课标解读:
1.通过对实际问题的分析,体会二次函数的意义。 2.会用描点法画出二次函数的图像,通过图像了解二 次函数的性质。 3.会用配方法将数字系数的二次函数的表达式化为 y=a(x-h)2 +k 的形式,并能由此得到的二次函数图 像的顶点坐标,说出图像的开口方向,画出图像的 对称轴,并能解决简单实际问题。 4.会用二次函数的图像求一元二次方程的近似解。 5.知道给不共线三点的坐标可以确定一个二次函数。
3
-6 -2 2
1 2 y1 x x 3 4
中考链接:
1.(北京)如果b>0,c>0,那么二次函数
y ax2 bx c的图象大致是( D )
A.
B.
C.
D.
中考链接:
2、.(2011常州)已知抛物线的部分图象如图,则抛
物线的对称轴为直线x= 3 ,满足y<0的x的取值范围 是1<X<5 ,将抛物线向下 平移 1 个单位,则得到抛物
线 y x 2 6x 5
中考链接:
3、(2012梅州)根据图1中的抛物线, 当x <2 时,y随x的增大而增大, 当x >2 时,y随x的增大而减小, 当x =2 时,y有最大值。 y
x 2
图1
0
6
中考链接:
4.(2009河南)如图,半圆A和半圆B均与y轴相 切于点O,其直径CD、EF均和x轴垂直,以O为 顶点的两条抛物线分别经过点C、E和点D、F,则 图中阴影部分的面积是 。
货 车
(3)若该隧道内设双行道,现有一货车卡高4.2米, 宽2.4米,这辆车能否通过该隧道?请说明理由。
解: 把x=2.4代入 y 1 x 2 6 4 中,解得y =4.56。 ∵4.2<4.56
货 车
∴这辆车能通过该隧道
课后拓展与巩固提高
2. 张大伯准备用40m长的木栏围一个矩形的羊圈, 为了节约材料同时要使矩形的面积最大,他利用了 自家房屋一面长25m的墙,设计了如图一个矩形的 羊圈。 请你求出张大伯矩形羊圈的面积; 请你判断他的设计方案是否合理?如果合理,直接 答合理;如果不合理又该如何设计?并说明理由。
一、 回顾思考
1、二次函数的概念是什么?它的一般表达式 是什么? 2、二次函数的图象是什么形状? 3、试回想二次函数的顶点式、交点式解析式 各是什么? 4、二次函数y=ax2+bx+c 的性质是什么? (开口方向、顶点坐标、对称轴、极值、增减 性、平移规律等)
二、 知识梳理:
1、二次函数的概念:函数y= ax2+bx+c (a、b、c 为常数,______)叫做二次函数。 a ≠0 2、二次函数的图象是一条 抛物线 。 3、二次函数的解析式(顶点式 ) y=a(x-h)2 +k 、 对称轴为直线 x=h, 解析式(交点式)y=a(x-x1)(xx1 x x2) 、对称轴 x= ------ 2

课后拓展与巩固提高
1.如图,隧道的截面由抛物线AED和矩形ABCD组成, 矩形的长BC为8米,宽AB为2米,以BC所在的直线为x 轴,以BC的中垂线为y轴,建立直角坐标系。y轴是抛物 线的对称轴,顶点E到坐标原点的距离为6米。
1 2 (1)求抛物线的解析式; y x 6 4
(2)现有一货车卡高4.2米,宽
ABD C巩固训练:3、.二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以
下结论:① abc>0 ;② b2-4ac<0;③ b+2a<0;④
a+b+c>0. 其中所有正确结论的序号是( A )
A. ③④
B. ②③
C. ①④
D. ①②③
a<0,b>0,c>0 b+2a<0 2a<-b
巩固训练 :
例3: 如图,抛物线y= 1x2+bx-2与x轴交于A、B两点,
2
与y轴交于C点,且A(一1,0).
⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论;

y=0 求出x 的值从而求出 A、B的坐标。 结合C 点坐标分别求出AB、BC、AC的长, 由勾股定理逆定理得出是直角三角形。
2.4米,这辆车能否通过该隧道?
请说明理由。 GO
(3)若该隧道内设双行道,
该辆车还能通过隧道吗?请说明理由。 GO
(2)现有一货车卡高4.2米,宽2.4米,这辆 车能否通过该隧道?请说明理由。
解: 把x=1.2代入 y 1 x 2 6 中,解得y=5.64。 4
∵4.2<5.64
∴这辆车能通过该隧道
2
三、合作交流---典型例题剖析
例1:二次函数y=-3(x-2)2+9图像的开口方向、 对称轴和顶点坐标分别为( )B
A. 开口向下、对称轴为x=-2、顶点坐标(2, 9) B.开口向下、对称轴为x=2,顶点坐标(2,9)
C.开口向上,对称轴为x=-2,顶点坐标 (-2,9) D.开口向上,对称轴为x=2,顶点坐标 ( -2,-9)
相关文档
最新文档