中考二次函数专题课件(34张PPT)

合集下载

《二次函数》中考总复习PPT课件-图文共131页文档

《二次函数》中考总复习PPT课件-图文共131页文档

ห้องสมุดไป่ตู้
《二次函数》中考总复习PPT课件-图文
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

浙教版九年级上册 1.2.2 二次函数的图象 课件(共35张PPT)

浙教版九年级上册 1.2.2 二次函数的图象 课件(共35张PPT)
(1)抛物线y=ax2的对称轴是 ,顶点是 .
y轴
原点
向上
最低点
向下
最高点
越小
那么y=ax2+k 呢?
知识点1
二次函数y = ax2 +k的图象的画法
例1 在同一直角坐标系中,画出二次函数 y = 2x2 +1, y = 2x2 -1的图象。
解:先列表:
x

当x≤-m时,y随x增大而减小;当x≥-m时,y随x增大而增大.
向上
向下
直线x=-m
直线x=-m
(-m,k)
x=-m时,y最小值=k
x=-m时,y最大值=k
(-m,k)
图1-2-9
例3.某二次函数图象的一部分如图1-2-9所示,请求出该二次函数的表达式,并直接写出该二次函数图象在 轴右侧部分与 轴的交点坐标.
D
A. B. C. D.
B
9. 把二次函数 的图象绕原点旋转 后得到的图象的函数表达式为_________________.
[解析] 二次函数 的图象开口向上,顶点坐标为 ,图象绕原点旋转 后得到的图象的顶点坐标为 ,开口向下,所以旋转后的新图象的函数表达式为 .
10.(2021杭州一模)已知二次函数 ( 是实数).
-m
k
思考
想一想,试着画出二次函数y=a(x+m)2+k不同情况下的大致图象.( 按a,m,k的正负分类 )
二次函数y=a(x+m)2+k的图象和性质
归纳
a>0
a<0
图象
m>0
m<0
开口方向
对称轴
顶点坐标
函数的增减性
最值

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

九年级上数学:二次函数的应用课件ppt(共30张PPT)

九年级上数学:二次函数的应用课件ppt(共30张PPT)
知道顶点坐标或函数的最值时 知道顶点坐标或函数的最值时 顶点坐标
比较顶点式和一般式的优劣
一般式:通用, 一般式:通用,但计算量大 顶点式:简单, 顶点式:简单,但有条件限制
使用顶点式需要多少个条件? 使用顶点式需要多少个条件?
顶点坐标再加上一个其它点的坐标; 顶点坐标再加上一个其它点的坐标; 再加上一个其它点的坐标 对称轴再加上两个其它点的坐标 再加上两个其它点的坐标; 对称轴再加上两个其它点的坐标; 其实,顶点式同样需要三个条件才能求。 三个条件才能求 其实,顶点式同样需要三个条件才能求。
二次函数的应用
专题三: 专题三: 二次函数的最值应用题
二次函数最值的理论
b 你能说明为什么当x = − 时,函数的最值是 2a 2 4ac − b y= 呢?此时是最大值还是最小值呢? 4a
求函数y=(m+1)x 2(m+1)x- 的最值。 求函数y=(m+1)x2-2(m+1)x-m的最值。其 为常数且m≠ m≠- 中m为常数且m≠-1。
A O D
B
C
最值应用题——面积最大 面积最大 最值应用题

用一块宽为1.2m的长方形铁板弯起两边做 用一块宽为 m 一个水槽,水槽的横断面为底角120 120º的等 一个水槽,水槽的横断面为底角120 的等 腰梯形。要使水槽的横断面积最大, 腰梯形。要使水槽的横断面积最大,它的 侧面AB应该是多长? AB应该是多长 侧面AB应该是多长? D A
C
145km
A
D
最值应用题——销售问题 销售问题 最值应用题
某商场销售一批名牌衬衫, 某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利 元,为了扩大销售,增加 件 每件盈利40元 为了扩大销售, 盈利,尽快减少库存, 盈利,尽快减少库存,商场决定采取适当的 降价措施。经调查发现, 降价措施。经调查发现,如果每件衬衫每降 价1元,商场平均每天可多售出 件。 元 商场平均每天可多售出2件 (1)若商场平均每天要盈利 )若商场平均每天要盈利1200元,每件 元 衬衫应降价多少元? 衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天 )每件衬衫降价多少元时, 盈利最多? 盈利最多?

初三二次函数ppt课件ppt课件

初三二次函数ppt课件ppt课件
轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。

初中数学九年级PPT课件二次函数可编辑全文

初中数学九年级PPT课件二次函数可编辑全文
2
解:根据题意,得
k
1 2
0

2k 2 k 1 2

由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1

k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上

顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3

中考二次函数复习课件【优质PPT】

中考二次函数复习课件【优质PPT】

x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)

初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
二次函数的应用
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)设此一次函数解析式为 y kx b 。
1分
15k b 25 则 20k b 20
解得:k=-1,b=40。 所以一次函数解析式为 y x 40 。
5分 6分
(2)设每件产品的销售价应定为 x 元,所获销售利润为 w 元。则 7分
w x 10 x 40 x 2 50x 400 x 25 225
如果果园橙子的总产量为y个,那么y与x之间的关系 式为_______________ y 600 5x 100 x 。
y 5x 2 100x 60000
y 5x 2 100x 60000
y/个
60600 60500
60400
60300 60200 60100 60000
一般地,形如y=ax² +bx+c(a、b、c 是常数且a≠0)的函数叫做x的二次函数。
y ax2 bx c b c a x 2 x a a
2 2 2 b b b c ax 2 x 2a 2a 2a a
2
b 2 4ac 0
实根 x0
b 2 4ac 0
没有实根
图象与x轴没有交点
有两个相等 有两个不等 一元二次方程 二次函数与一元二次方程的关系: 实根 x1 ,x2
二次函数
图象与x轴有两个交点 图象与x轴有一个交点
y ax bx c
2
x1 ,0 x2 ,0
y
x0 ,0
O
5
x1
10
x2
15
练一练:
某产品每件成本10元,试销阶段每件产品的销售价 x(元)与产品的日销售量 y(件)之间的关系如下表: x(元) 15 20 30 …
y(件)
25
20
10

若日销售量 y 是销售价 x 的一次函数。 (1)求出日销售量 y(件)与销售价 x(元)的函 数关系式;(6分) (2)要使每日的销售利润最大,每件产品的销售价 应定为多少元?此时每日销售利润是多少元?(6分)
2
10分
产品的销售价应定为25元,此时每日获得最大销售利 润为225元。 12分
总结:
(1)理解问题; (2)分析问题中的变量和常量,以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)数学求解; (5)检验结果的合理性、拓展等。
<
m>1 C
x y
… …
﹣1 10
0 5
1 2
2 1
y
y
二 次 函 数 的 图 象
a0
O x1
x2
x
O
x0
x0
x x
O
x
y
y
O
y
O
x
a0
x1
O
x2
x
利用二次函数求一元二次方程的近似解:
1、利用函数图像求近似解 2、无限逼近法求近似解
二次函数三种表示方式:
函数的表格表示可以清楚、直接地表示出变量 之间的数值对应关系;
函数的图象表示可以直观地表示出函数的变化 过程和变化趋势;
b 4ac b 2 a x 2a 4a
2
b 2a b 4ac b 2 顶点坐标: 2a , 4 a
对称轴:直线 x
抛物线概览:
注意抛物线 的对称性
三种特殊形式的抛物线:
抛物线系数和图像的关系:
抛物线的三种形式及解析式求法(待定系数法):
(1)利用函数图象描述橙子的总产量与增种橙子 树的棵数之间的关系。 当x<10时,橙子的总产量 随增种橙子树的增加而增加; 当x>10时,橙子的总产量 随增种橙子树的增加而减少。 (2)增种多少棵橙子树,可 以使橙子的总产量在60400个 以上? 增种6~14棵,都 可以使橙子的总产量在 60400个以上。 20 x/棵
3 2
… …
0<x<4
D
m>1
m>=-1
x ﹣3 ﹣2 ﹣1 0 1 2 3 y 12 5 0 ﹣3 ﹣4 ﹣3 0
4 5
5 12
(2)、(3)
0、1
> a<-2
m=-1
一般式
知道任意三个点,解三元一次方程组;
顶点式
知道二次函数的顶点坐标及任意一个点;
两点式或交点式
抛物线最值:
抛物线最值:
抛物线最值:
抛物线最值:
பைடு நூலகம்
抛物线最值:
抛物线最值:
抛物线的平移:
左加右减
抛物线的平移:
上加下减
抛物线的平移:
左移 上移
上移 左移
b 2 4ac 0
ax bx c 0
函数的表达式可以比较全面、完整、简洁地表 示出变量之间的关系。
二次函数与实际问题:
某果园有100棵橙子树,每一棵平均结600个橙子。 现准备多种一些橙子树以提高产量,但是如果多种树, 那么树之间的距离和每一棵树所接受的阳光就会减少。 根据经验估计,每多种一棵树,平均每棵树就会少结5个 橙子。
100 x 棵 假设果园增种x棵橙子树,那么果园共有______ 600 5x 个橙子。 橙子树,这时平均每棵树结_______
相关文档
最新文档