二次函数全章课件
合集下载
《二次函数》课件

一二
元次
二函
次数
方与
程
抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)
《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3
22.1.1 二次函数 课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.
人教版九年级上册数学二次函数课件

当a=0时,这个函数不是 二次函数,有可能是一次函数.
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
二次函数图像和性质课件(1)完整版公开课全篇

B. y= –(x+1)2+1
C.y=(x–1)2+1
D. y= –(x–1)2+1
1)若抛物线y=-x2向左平移2个单位,再向 下平移4个单位所得抛物线的解析式是 ________
2)如何将抛物线y=2(x-1) 2+3经过平移 得到抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平 移得到抛物线y=2(x+2)2-1
(h,k)
二次函数y=a(x-h)²+k与y=ax²的关系
1.
(1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
y=3x2
向右
向上
y=3(x-1)2
y=3(x-1)2+2
二次函数y=3(x-1)2+2的 图象和抛物线 y=3x²,y=3(x-1)2有什么关 系?它的开口方向,对称轴 和顶点坐标分别是什么?
y 3x 12 2
y 3x 12
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
人教版数学九年级上册第二十二章《二次函数》课件(共22张)

解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
初中数学九年级PPT课件二次函数可编辑全文

2
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
解:根据题意,得
k
1 2
0
①
2k 2 k 1 2
②
由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1
∴
k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上
,
顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设人民币一年定期储蓄的年利率是x,一年到期后, 银行将本金和利息自动按一年定期储蓄转存。如果存 款额是100元,那么两年后的本息和y(元)的表达式。
分两种情况—— (1)不考虑利息税;(2)考虑利息税。
一般地,形如y=ax²+bx+c(a、b、c
是常数且a≠0)的函数叫做x的二次函数。
例:圆的半径是1cm,假设半径增加 x cm时,
在对称轴左侧,y随x的增大而减小; 在对称轴右侧,y随x的增大而增大。
函数图象有最低点(0,0)。
对称轴与抛物线的交点 (抛物线的顶点)
二次函数 y=-x²图象是什么形状?
2
-5 -2 -4 -6 -8
-10
5
10
比较二次函数 y=x²和 y=-x²图象的异同:
5
4
3
y x2
2
1
-6
-4
-2
-1
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
60495
60480
60455
60420
猜想:增种10棵橙子树时,橙子的总产量最多。
银行的储蓄利率是随时间的变化而变化的,也就 是说,利率是一个变量。在我国,利率的调整是有中 国人民银行根据国家经济发展的情况而决定的。
圆的面积增加 y cm²。 (1)写出y与x之间的关系表达式; (2)当圆的半径分别增加1cm, 2 cm,2cm 时,圆的面积增加多少?
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
100
雨天行驶时,这一公式为 s 1 v2。
50
s/m 144
s 1 v2 50
s 1 v2 100
128
112
96
(1)两个图象有什么相同与不同?
80
(2)如果行车速度是60km/h,那
64
么在雨天行驶和在晴天行驶相
48
比,刹车距离相差多少米?
32
16
O
v/(km/h) 20 40 60 80 100 120
(1)二次函数 y=2x²+1 的图象与二次函数 y=2x²的图象有什么关系?
7
6
5
4
y 2x2 1
3
2
y 2x2
1
-6
-4
-2
2
4
6
7
6
5
4
y 2x2 1
3
2
y 2x2
1
-6
-4
抛物线
y=2x²
y=2x²+1
-2
开口方向
向上 向上
2
对称轴
y轴 y轴
4
6
顶点坐标
(0,0)
(0,1)
(2)二次函数 y=3x²-1 的图象与二次函数 y=3x²的图象有什么关系?
二次函数 y=2x²的图象是什么形状?它与二 次函数 y=x²的图象有什么相同和不同?
3.5
3
y 2x2
2.5
y x2
2
1.5
1
0.5
-2
-1
1
2
3.5
3
y 2x2
2.5
y x2
2
1.5
1
0.5
-2
抛物线
y=x²
y=2x²
-1
开口方向
向上 向上
1
对称轴
y轴 y轴
2
顶点坐标
(0,0) (0,0)
某果园有100棵橙子树,每一棵平均结600个 橙子。现准备多种一些橙子树以提高产量,但是如 果多种树,那么树之间的距离和每一棵树所接受的 阳光就会减少。根据经验估计,每多种一棵树,平 均每棵树就会少结5个橙子。
(1)问题中有哪些变量?哪些是自变量?哪些 是因变量?
(2)假设果园增种x棵橙子树,那么果园共有 _(1_0_0_+_x_) 棵橙子树,这时平均每棵树结_(_6_0_0-_5_x_) 个橙子。
2 y 3x2
1.5
1
0.5
y 3x2 1
-2
-1
-0.5
1
2
-1
2 y 3x2
1.5
1
0.5
y 3x2 1
-2
-1
-0.5
1
Hale Waihona Puke 2抛物线y=3x² y=3x²-1
-1
开口方向
向上 向上
对称轴
y轴 y轴
顶点坐标
(0,0) (0,-1)
作业
在同一坐标系中画出下列各组函数的图象:
y 3x2
y 3x 12 y 3x 12 2
作二次函数 y=x²的图象。
(1)观察 y=x²的表达式,选择适当的x值,并计算相应 的y值,完成下表。
x -3 -2 -1 0 1 2 3 y9410149
(2)在直角坐标系中描点。
(3)用光滑的曲线连接各点,便得到函数 y=x²的图象。
10 8 6 4 2
-5
5
10
8
6
对于二次函数 y=x²
4
的图象,
2
(1)试描述图象的
形状。
-5
5
(2)图象是轴对称图形吗?如果是,它的对称轴是什么? 试找出几对对称点。
(3)图象与x轴有交点吗?如果有,交点坐标是什么?
(4)当x<0时,随着x值的增大,y的值如何变化?当x>0 时呢?
(5)当x取什么值时,y的值最小?最小值是什么?
二次函数 y=x²的图象是一条抛物线, 它的开口向上,且关于y轴对称。
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
y 2x2
y 2x 12 y 2x 12 3
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速 度及路面的摩擦系数。
有研究表明,晴天在某段公路上行驶时,速 度为v(km/h)的汽车的刹车距离s(m)可以由公 式 s 1 v2 确定。
(3)如果果园橙子的总产量为y个,那y么 y5与x2 x100 x 60000 之间的关系式为_Y_=_(6_0_0_-_5x_)_(1_0_0_+_x_)_。
y 5x2 100 x 60000
在上述问题中,种多少棵橙子树,可以使果园橙子的 总产量最多?
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
分两种情况—— (1)不考虑利息税;(2)考虑利息税。
一般地,形如y=ax²+bx+c(a、b、c
是常数且a≠0)的函数叫做x的二次函数。
例:圆的半径是1cm,假设半径增加 x cm时,
在对称轴左侧,y随x的增大而减小; 在对称轴右侧,y随x的增大而增大。
函数图象有最低点(0,0)。
对称轴与抛物线的交点 (抛物线的顶点)
二次函数 y=-x²图象是什么形状?
2
-5 -2 -4 -6 -8
-10
5
10
比较二次函数 y=x²和 y=-x²图象的异同:
5
4
3
y x2
2
1
-6
-4
-2
-1
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
60495
60480
60455
60420
猜想:增种10棵橙子树时,橙子的总产量最多。
银行的储蓄利率是随时间的变化而变化的,也就 是说,利率是一个变量。在我国,利率的调整是有中 国人民银行根据国家经济发展的情况而决定的。
圆的面积增加 y cm²。 (1)写出y与x之间的关系表达式; (2)当圆的半径分别增加1cm, 2 cm,2cm 时,圆的面积增加多少?
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
100
雨天行驶时,这一公式为 s 1 v2。
50
s/m 144
s 1 v2 50
s 1 v2 100
128
112
96
(1)两个图象有什么相同与不同?
80
(2)如果行车速度是60km/h,那
64
么在雨天行驶和在晴天行驶相
48
比,刹车距离相差多少米?
32
16
O
v/(km/h) 20 40 60 80 100 120
(1)二次函数 y=2x²+1 的图象与二次函数 y=2x²的图象有什么关系?
7
6
5
4
y 2x2 1
3
2
y 2x2
1
-6
-4
-2
2
4
6
7
6
5
4
y 2x2 1
3
2
y 2x2
1
-6
-4
抛物线
y=2x²
y=2x²+1
-2
开口方向
向上 向上
2
对称轴
y轴 y轴
4
6
顶点坐标
(0,0)
(0,1)
(2)二次函数 y=3x²-1 的图象与二次函数 y=3x²的图象有什么关系?
二次函数 y=2x²的图象是什么形状?它与二 次函数 y=x²的图象有什么相同和不同?
3.5
3
y 2x2
2.5
y x2
2
1.5
1
0.5
-2
-1
1
2
3.5
3
y 2x2
2.5
y x2
2
1.5
1
0.5
-2
抛物线
y=x²
y=2x²
-1
开口方向
向上 向上
1
对称轴
y轴 y轴
2
顶点坐标
(0,0) (0,0)
某果园有100棵橙子树,每一棵平均结600个 橙子。现准备多种一些橙子树以提高产量,但是如 果多种树,那么树之间的距离和每一棵树所接受的 阳光就会减少。根据经验估计,每多种一棵树,平 均每棵树就会少结5个橙子。
(1)问题中有哪些变量?哪些是自变量?哪些 是因变量?
(2)假设果园增种x棵橙子树,那么果园共有 _(1_0_0_+_x_) 棵橙子树,这时平均每棵树结_(_6_0_0-_5_x_) 个橙子。
2 y 3x2
1.5
1
0.5
y 3x2 1
-2
-1
-0.5
1
2
-1
2 y 3x2
1.5
1
0.5
y 3x2 1
-2
-1
-0.5
1
Hale Waihona Puke 2抛物线y=3x² y=3x²-1
-1
开口方向
向上 向上
对称轴
y轴 y轴
顶点坐标
(0,0) (0,-1)
作业
在同一坐标系中画出下列各组函数的图象:
y 3x2
y 3x 12 y 3x 12 2
作二次函数 y=x²的图象。
(1)观察 y=x²的表达式,选择适当的x值,并计算相应 的y值,完成下表。
x -3 -2 -1 0 1 2 3 y9410149
(2)在直角坐标系中描点。
(3)用光滑的曲线连接各点,便得到函数 y=x²的图象。
10 8 6 4 2
-5
5
10
8
6
对于二次函数 y=x²
4
的图象,
2
(1)试描述图象的
形状。
-5
5
(2)图象是轴对称图形吗?如果是,它的对称轴是什么? 试找出几对对称点。
(3)图象与x轴有交点吗?如果有,交点坐标是什么?
(4)当x<0时,随着x值的增大,y的值如何变化?当x>0 时呢?
(5)当x取什么值时,y的值最小?最小值是什么?
二次函数 y=x²的图象是一条抛物线, 它的开口向上,且关于y轴对称。
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
y 2x2
y 2x 12 y 2x 12 3
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速 度及路面的摩擦系数。
有研究表明,晴天在某段公路上行驶时,速 度为v(km/h)的汽车的刹车距离s(m)可以由公 式 s 1 v2 确定。
(3)如果果园橙子的总产量为y个,那y么 y5与x2 x100 x 60000 之间的关系式为_Y_=_(6_0_0_-_5x_)_(1_0_0_+_x_)_。
y 5x2 100 x 60000
在上述问题中,种多少棵橙子树,可以使果园橙子的 总产量最多?
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14