《二次函数》PPT课件

合集下载

《二次函数》课件

《二次函数》课件

一二
元次
二函
次数
方与

抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)

《高三数学二次函数》课件

《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

《二次函数图象》PPT课件

《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

人教版数学九年级上册第二十二章《二次函数》课件(共22张)

人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.

二次函数ppt课件

二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾

观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×

×


例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
练习 1. n支球队参加比赛,每两队之间进行 一场比赛,写出比赛的场次数 m与球队 数 n 之间的关系式.
2. 圆的半径是1cm,假设半径增加xcm时,圆的面积增加 ycm². (1)写出y与x之间的函数关系表达式; (2)当圆的半径分别增加2cm时,圆的面积增加多少?
3.已知关于x的二次函数,当x=-1时,函数值为10, 当x=1时,函数值为4,当x=2时,函数值为7,求这个 二次函数的解析试.
基础回顾 什么叫函数? 在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,另一个变量y 总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫因变量。
目前,我们已经学习了那几种类型的函数?
二次函数
函数
1、m取何值时,函数
m2 2m 1
y= (m+1)x
+(m-3)x+m 是二次函数?
2、一农民用40m长的篱笆围成一个一边靠墙的长 方形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
解答过程
2、一农民用40m长的篱笆围成一个一边靠墙的长方 形菜园,和墙垂直的一边长为Xm,菜园的面积为 Ym2,求y与x之间的函数关系式,并说出自变量的取 值范围。当x=12m时,计算菜园的面积。
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
d 1 n n 3
此式表示了多边形 的对角线数d与边
2
数n之间的关系,对

d
1 2
n
2
3n 2
于n的每一值,d都 有唯一的对应值, 即d是n的函数。
2、定义:一般地,形y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变量 x的 整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
描述变量间
关系的数学工 具
正比例函数
y kx (k 0)
一次函数
y kx b (k 0)
反比例函数
九年级下册 第26章
问题1:正方体六个面是全等的正方形,设正方
体棱长为 x,表面积为 y,则 y 关于x 的关系式
为 y=6.x2
此式表示了正
方体表面积y与正 方体棱长x之间的 关系,对于y的每 一个值,x都有唯 一的一个对应值, 即y是x的函数。
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项.
(1)y=3(x-1)²+1 (2)y=x+3
(3)s=3-2t²
(5)y=
_1_ x²
(4)y=(x+3)²-x²
(6)v=10 r²
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的.
区别:前者是函数.后者是方程.等式另一 边前者是y,后者是0
例2、 y = (m+3)xm2-7 (1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
当a、b、c为何值时函数y=ax2+bx+c是一正次比函例数函?数?
思考: 二次函数的一般式y=ax2
+bx+c(a≠0)与一元二次方程 ax2+bx+c=0(a≠0)有什么联 系和区别?
解:设所求的二次函数为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是y 2x2 3x 5
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
知识运用
例3.某小区要修建一块矩形绿地,设矩形的长为x米,
宽为y米,面积为S平方米,(x﹥y).
(1)如果用18米的建筑材料来修建绿地的边框(即周 长),求S与x的函数关系,并求出x的取值范围。
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
此式表示了两年后的产即Leabharlann y 20x2 40x 20
量y与计划增产的倍数x 之间的关系,对于x的 每一个值,y都有唯一 的一个对应值,即y是x
的函数。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
1 2
n
2
3n 2
y 20x2 40x 20
函数都是用自 变量的二次整
式表示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的 函数叫做二次函数。其中a为二次项系数,b 为一次项系数,c为常数项。
问题4:某工厂一种产品现在的年产量是20件,计划今后两年 增加产量。如果每年都比上一年的产量增加x倍,那么两年后 这种产品的产量y将随计划所定的x的值而确定,y与x之间的 关系怎样表示?
这种产品的原产量是20件, 一年后的产量是
20(1+x)件,再经过一年后的产量是 20(1+x)2件,即两
年后的产量y=_2_0__(1_+__x_)2__
问题2:n个球队参加比赛,每两个队之间进行一场
比赛,比赛的场次数m与球队数n有什么关系?
每个球队n要与其他(n-1)个球队各比赛一场,甲队
对乙队的比赛与乙队对甲队的比赛时同一场比赛,所
以比赛的场次数
m 1 n n 1
2

m
1 2
n2
1 2
n
此式表示了比赛的
场次数m与球队数n之 间的关系,对于n的每 一个值,m都有唯一的 一个对应值,即m是n 的函数。
相关文档
最新文档