光纤光缆21条基础知识
1.光纤光缆基础知识

THANK YOU!
产生光损耗的原因大部分为光纤具有的固有损耗和光纤制造后 的附加损耗。前者主要包括瑞利散射损耗、吸收损耗、波导结构不完 善引起的损耗;后者包括微弯损耗、弯曲损耗、接续损耗等。
损耗成因
瑞利散射损耗
吸收损耗
固有损耗
附加损耗
对于光纤损耗的成因及其解决方案,在这里不做深入的研究,了解即可。
微弯损耗
弯曲损耗
接续损耗
N/A
GSK/GMK/GCF
B5
G656
N/A
B6
G657
N/A
多模62.5/125
A1b
N/A
OM1
MCF
OM2
ACF
多模50/125
A1a
G651.1
OM3
OM4
我们公司最常用的光 纤为G652D和G655
G.652是常规单模光纤,零色散 点在1300nm,此点色散最小;同 时根据PMD又分为G. 652A、B、C、 D四种。
按传输模式分类
类型
解释
纤芯只能传输 单模光纤 单个模式的光
纤
多模光纤
纤芯能传输多 个模式的光纤
纤芯直径 包层外径
8μm-10μm 125μm
50μm、 62.5μm
125μm
2. 光纤分类
2.3 总结
光纤 类型
单模 光纤
传输模式
只能传输单 模式的光纤
多模 光纤
能传输多个 模式的光纤
传输距离 传输距离远
6. 光缆简介
6.2 光缆分类
用途
光纤种类
光纤芯数
加强件配置
传输导体、介质状况 铺设方式
结构方式
用户光缆 单模光缆 单芯光缆
光纤光缆基础知识PPT课件

2021/5/18
第18页/共27页
光缆型号的命名方法
• 执行标准:YD/T 908-2000 • 1、型号的组成:由型式和规格两部分组成。 • 2、型式由5个部分构成,各部分均用代号表示。其中结构特征指
缆芯结构和光缆派生结构特征。
1、分类 2、加强构件 3、结构特征 4、护套 5、外护层
一次被覆层作用: ①保护光纤的机械 强度;②隔绝能够 引起微变损耗的外 应力。
定义——传输光能的介质波导,由纤芯和包层组成。
2021/5/18
第3页/共27页
光纤的种类 单模光纤种类:
• 1、B1.1(G.652)非色散位移光纤,在1550nm窗口衰减小,但 色散较大,不利于高速系统的长距离传输;
度聚乙烯或阻燃料、防蚁层等外 护层,侧重于抗侧压和耐磨。
2021/5/18
第17页/共27页
护套
• 挤塑方式可分为:挤压式与挤管式
其区别为:
• 挤压式:出胶速度慢,偏芯调节困难,绝缘厚薄不易控制,挤出 的塑胶层结构紧密。
• 挤管式:塑料不是直接压在缆芯上,而是沿着管状尾径部分向前 移动,易调偏芯,减小内应力,降低护套的后收缩,先形成管状, 然后经拉伸再包覆在缆芯上。
光通信发展史
• 2000多年前 烽火台——灯光、旗语
• 1880年 光电话——无线光通信
• 1970年 光纤通信
1966年——高锟博士首次提出光纤通信的想法 1970年——贝尔研究所林严雄研究出在室温下可连续工作的半导
体激光器; 1970年——康宁公司首先开发出损耗为2.0dB/公里的光纤
2021/5/18
光缆型号的命名方法 • 8、外被层或外套
2021/5/18
代号 1 2 3 4 5
光缆的基本知识及常识

光缆小常识光缆基本知识介绍一、光纤的组成与分类1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。
塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。
2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图:光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。
3、石英光纤的分类单模光纤G.652A(B1.1简称B1)G.652B(B1.1简称B1)G.652C(B1.3)G.652D(B1.3)G.655A光纤(B4)(长途干线使用)G.655B光纤(B4)(长途干线使用)多模光纤50/125(A1a简称A1)62.5/125(A1b)二、光缆的结构1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。
每种光缆的结构特点:①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。
②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。
此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。
绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。
层绞式光缆芯数可较大,目前层绞式光缆芯数可达216芯或更高。
松套层绞式普通光缆 (GYTA - GYTS - GYTA53 - GYTY53 - GYTA33 - GYTA(Y)533)③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。
光纤光缆基础知识讲议

光纤应用发展新趋势
核心网应用: G.655 、G.656是发展方向。 城域网应用: G.652C光纤/ G.652D ,G.655 , G.656。 接入网应用: G.652B/D光纤、G.657光纤。 局域网应用: G.651多模光纤( 50 m芯径)。 室内布线应用:G.652B光纤将向G.657和塑料光纤 发展。 光纤研究动态:光子晶体光纤。。。
5
中国较大的光纤光缆公司
具备预制棒生产能力及光缆生产能力 长飞 YOFC 烽火 Fiberhome 亨通 富通 中天
6
第二章 光纤光缆基础知识
光纤与传输的关系-光纤媒质的必然
传输介 质
带宽MHz
衰减系数 dB/km
中继距 离km
抗电磁干 扰性能
尺寸与重量
敷设安装
接续
对绞线
6
20(4MHz) 1~2
GYTS—金属加强构件、松套层绞填充式、钢—聚乙烯粘 结护套通信用室外光缆
GYTA53—金属加强构件、松套层绞填充式、铝—聚乙烯 粘结护套、纵包皱纹钢带铠装、聚乙烯套通信 用室外光缆
GYFTY—非金属加强构件、松套层绞填充式、聚乙烯套通 信用室外光缆
37
通信用主要几种光纤
a.按传输模式分:单模光纤、多模光纤。 b.按传输波长分:短波长光纤、长波长光纤、超长
波长光纤。 c.材料组分: 石英光纤、塑料光纤、液芯光纤、晶
体光纤、多组分光纤。 d.按套塑类型: 紧套光纤、松套光纤。 e.按折射率分布:阶跃型(SI)光纤、渐变型(GI)光纤。
38
光缆用光纤带
光纤带类型 根据粘结材料用量的多少,光纤带的典型结构可分 为边粘型和包覆型
典型的边粘型光纤带结构
典型的包覆型光纤带结构
光纤光缆的基本知识三篇

光纤光缆的基本知识三篇篇一:光纤、光缆的基本知识1.简述光纤的组成。
答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。
3. 产生光纤衰减的原因有什么?答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。
造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。
4.光纤衰减系数是如何定义的?答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。
5.插入损耗是什么?答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。
6.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
7.光纤的色散有几种?与什么有关?答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。
取决于光源、光纤两者的特性。
8.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。
9.什么是截止波长?答:是指光纤中只能传导基模的最短波长。
对于单模光纤,其截止波长必须短于传导光的波长。
10.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。
影响误码率的大小,和传输距离的长短,以及系统速率的大小。
11.什么是背向散射法?答:背向散射法是一种沿光纤长度上测量衰减的方法。
光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。
在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。
12.光时域反射计(OTDR)的测试原理是什么?有何功能?答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。
光纤光缆基本知识

★单纵模半导体激光器常用的有哪两种?
答:DFB激光器和DBR激光器,二者均为分布反馈激光器,其光反馈是由光腔内的 分布反馈布拉格光栅提供的。
★光接收器件主要有哪两种?
答:主要有光电二极管(PIN管)和雪崩光电二极管(APD)。
★光纤通信系统的噪声产生的因素有哪些?
★光缆主要由什么组成?
答:主要由:纤芯、光纤油膏、护套材料、PBT(聚对苯二甲酸丁二醇酯) 等材料组成。
★光缆的铠装是指什么?
答:是指在特殊用途的光缆中(如海底光缆等)所使用的保护元件(通常 为钢丝或钢带)。铠装都附在光缆的内护套上。
★光缆护套用什么材料?
答:光缆护套或护层通常由聚乙烯(PE)和聚氯乙烯(PVC)材料构成, 其作用是保护缆芯不受外界影响。
答:光缆弯曲半径应不小于光缆外径的20倍,施工过程中(非静止状态) 不小于光缆外径的30倍。
★在ADSS光缆工程中,需注意什么?
答:有三个关键技术:光缆机械设计、悬挂点的确定和配套金具的选择与 安装。
★光缆金具主要有哪些?
答:光缆金具是指安装光缆使用的硬件,主要有:耐张线夹,悬垂线夹、 防振器等。
★ OPGW光缆的应用结构有几种?
答:主要有: 1)塑管层绞+ 铝管的结构;2) 中心塑管+ 铝管的结构;3) 铝骨架结构;4) 螺旋铝管结构;5) 单层不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结 构);6) 复合不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结构)。
★ OPGW光缆缆芯外的绞线线材主要由什么组成?
G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大, 一般为17~22psnm·km,系统速率达到2.5Gbit/s以上时,需要进行色散补偿, 在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光 纤。
光纤、光缆的基本知识

.OTDR的盲区是指什么?对测试会有何影响?
在实际测试中对盲区如何处理?
通常将诸如活动连接器、机械接头等特征点产生反射引起 的OTDR接收端饱和而带来的一系列“盲点”称为盲区。 光纤中的盲区分为事件盲区和衰减盲区两种:由于介入活 动连接器而引起反射峰,从反射峰的起始点到接收器饱和 峰值之间的长度距离,被称为事件盲区;光纤中由于介入 活动连接器引起反射峰,从反射峰的起始点到可识别其他 事件点之间的距离,被称为衰减盲区。 对于OTDR来说,盲区越小越好。盲区会随着脉冲展宽的 宽度的增加而增大,增加脉冲宽度虽然增加了测量长度, 但也增大了测量盲区,所以,在测试光纤时,对OTDR附 件的光纤和相邻事件点的测量要使用窄脉冲,而对光纤远 端进行测量时要使用宽脉冲。
阶跃折射率光纤的数值孔经(NA)有 何意义?
数值孔经(NA)表示光纤的收光能力, NA越 大,光纤收集光线能力越强。
.什么是单模光纤的双折射?
单模光纤中存在两个正交偏振模式,当光纤 不完全园柱对称时,两个正交偏振模式并不 是简并的,两个正交偏振的模折射率的差的 绝对值即为双折射。
根据光纤纤芯折射率的变化情况, 光纤如何分类?
光纤衰减系数是如何定义的?
用稳态中一根均匀光纤单位长度上的衰减 (dB/km)来定义。
插入损耗是什么?
是指光传输线路中插入光学部件(如插入 连接器或耦合器)所引起的衰减。
光纤的带宽与什么有关?
光纤的带宽指的是:在光纤的传递函数中, 光功率的幅值比零频率的幅值降低50%或 3dB时的调制频率。光纤的带宽近似与其长 度成反比,带宽长度的乘积是一常量。
光缆弯曲半径应不小于光缆外径的20倍, 施工过程中(非静止状态)不小于光缆外 径的30倍。
在ADSS光缆工程中,需注意什么?
《光纤光缆基本知识》课件

光纤光缆的组成结构
光纤光缆主要由纤芯、包层和外护套组成。纤芯是传输光信号的核心部分, 包层则用于保护光信号免受损耗,而外护套则提供对整个光缆的机械保护。
光纤光缆的工作原理
光纤光缆的工作原理基于光的全内反射现象。光信号被注入纤芯后,在纤芯 内不断进行全内反射,从而实现信号的传输。通过控制光的入射角度和纤芯 的折射率,可以实现信号的传输和解码。
光纤光缆的应用领域
光纤光缆广泛应用于通信领域,包括长距离通信、互联网接入、数据中心连接等。它的高带宽、低延迟和抗干 扰等特点使其成为现代通信的重要基础设施。
光纤光缆的优势与特点
高速传输
光纤光缆能以光的速度进行信号传输,实现高 速、稳定的通信。
抗干扰能力
光纤光缆对电磁干扰的敏感性较低,能够提供 稳定的通信质量。
长距离传输
光纤光缆的信号传输距离可以达到几十甚至上 百公里,适用于远距离通信。
高带宽
光纤光缆具有广阔的频带宽度,能够支持大量 数据的传输。
光纤光缆的未来发展趋势
1
更高的速度与带宽
随着技术的进步,光纤光缆将继续提供更高的传输速度和更大的带宽,满足未来通信需求。
2
更小更轻的设计
光纤光缆将变得更加紧凑轻便,随着光纤光缆技术的成熟,制造成本将进一步降低,使其更加普及和可靠。
总结与展望
光纤光缆作为一个重要的通信技术,已经在各个领域大放异彩。随着技术的不断创新与进步,光纤光缆的应用 将更加广泛,为人们的生活和工作带来更多便利。
《光纤光缆基本知识》 PPT课件
本课件将介绍光纤光缆的基本知识,包括定义与发展、组成结构、工作原理、 应用领域、优势与特点、未来发展趋势。让我们一同探索这个引人入胜的领 域。
光纤光缆的定义与发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。
光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。
光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。
涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。
正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。
2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。
光纤外层加上塑料保护套管及塑料外皮就成了光缆。
光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。
但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。
多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。
所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。
3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。
在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。
在选择传输波长时,主要综合考虑光纤损耗和散射。
目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。
在传输中信号强度的损耗就是衰减。
衰减度与波形的长度有关,波形越长,衰减越小。
光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。
并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。
4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。
5.什么是光纤的色散?光纤色散是指由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,从而导致信号的畸变。
光纤色散分为材料色散,波导色散和模式色散。
前两种色散由于信号不是单一频率所引起,后一种色散由于信号不是单一模式所引起。
信号不是单一模式会引起模式色散。
单模光纤只传单一基模,所以只有材料色散和波导色散,没有模式色散。
而多模光纤则存在模间色散。
光纤的色散不仅影响光纤的传输容量,也限制了光纤通信系统的中继距离。
6.产生光纤衰减的原因是什么?造成光纤衰减的原因主要有散射、吸收、弯曲、挤压、以及连接器和熔接接头造成的光功率损耗。
衰减的单位为dB/km,每公里光纤对光信号功率的衰减值。
瑞丽散射、固有吸收等是光纤的固有损耗,其中还有部分光纤内的光会在光纤弯曲时因散射而损失掉、或者在受到挤压时产生微小的弯曲而造成的损耗等。
同时光纤对接时也会产生损耗,如不同轴、端面与轴心不垂直、端面不平、对接心径不匹配和熔接质量差等。
7.光纤的带宽与什么有关?光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
8.什么是插入损耗?插入损耗是Insertion Loss(通常简称为IL),主要是指光纤中两个固定点之间损耗的光的度量。
可以理解为光通信系统光纤链路中由于光器件的介入而引起的光功率的损失,单位是dB。
计算公式: IL=-10 lg(Pout /Pin), Pout 为输出光功率,Pin 为输入光功率。
插入损耗的数值越小表示性能越好,例如,插入损耗为0.3dB优于0.5dB。
一般来说,熔接和手动连接之间的衰减差异(小于0.1 dB)会小于光纤连接器之间的连接。
数据中心光纤布线的建议的最大dB 损耗量:LC多模光纤连接器最大为15dB, LC单模连接器为最大15dB,MPO/MTP多模光纤连接器最大为20dB,MPO/MTP单模光纤连接器最大为30dB。
9.什么是回波损耗?当光纤信号进入或离开某个光器件组件时(例如光纤连接器),不连续和阻抗不匹配将导致反射或回波,反射或返回的信号的功率损耗,即为回波损耗,Return Loss(简称RL)。
插入损耗主要是测量当光链路遇到损耗后的结果信号值,而回波损耗则是对光链路遇到组件接入时对反射信号损耗值的测量。
计算公式:RL=-10 lg(P0/P1), P0表示反射光功率,P1表示输入光功率。
回波损耗值表示为dB,通常为负值,因此回波损耗值越大越好,典型规格范围为-15至-60 dB。
按照行业标准,Ultra PC抛光光纤连接器的回波损耗应大于50dB,斜角抛光的回波损耗通常大于60dB。
PC类型应大于40dB。
对于多模光纤,典型的RL值介于20至40 dB 之间。
10.光纤的纤芯尺寸是多少?纤芯尺寸就是光纤纤芯的物理尺寸。
多模光纤的纤芯尺寸介于7um和3mm之间,最常见的是50um,62.5um,100um和200um。
数据通信的行业标准现在是使用石英玻璃纤维的50um和62.5um多模。
单模石英玻璃纤维的典型芯尺寸为8.3um。
对于塑料光纤,其纤芯尺寸范围为0.25mm至3mm,其中最受欢迎的是1mm。
11.什么是模场直径?模场直径(MFD--Mode Field Diameter),用来表征在单模光纤的纤芯区域基模光的分布状态。
尽管大多数光信号在光纤纤芯内部传播,但实际上它会传播通过稍大的体积,包括光纤包层的内边缘。
该有效面积成为光纤的模场直径。
在截止值以上工作的电信光纤中,纤芯直径可能约为9 µm,MFD约为10.4 µm。
使用非常高的NA光纤(约0.2或0.3),纤芯直径仅为几微米,而MFD可能约为5 µm。
对于传输光纤而言,模场直径越大越好。
12.什么是数值孔径NA?光纤的集光能力不仅取决于光纤芯的尺寸,还取决于其接收角度。
接受角是光线可以进入光纤并被捕获在光纤芯中的角度范围。
接受角和数值孔径是用于描述与光在光纤中传播相关的角度的品质因数。
接收角半角的正弦值称为数值孔径– NA(Numeric Aperture),NA=sin θ。
通常,对于50um渐变折射率多模光纤,数值孔径为0.20。
对于62.5um渐变折射率多模光纤,数值孔径为0.28。
13.什么是截止波长(Cutoff Wavelength)截止波长是指单模光纤通常存在某一波长,当所传输的光波长超过该波长时,光纤就只能传播一种模式(基模)而在该波长之下,光纤可能传播多种模式。
当波长大于某一值时,某特定模式不再存在,该波长就称为此模式的截止波长。
14.什么是零色散波长(Zero Dispersion Wavelength)当波导色散与材料色散在某个波长互相抵消,使总的色度色散趋近于零时,该波长即为零色散波长。
常规型单模光纤的零色散波长在1310nm附近,最低损耗在1550nm附近。
在1550nm处有一个较高的正色散值。
ITU—T建议的G.652光纤和G.654光纤都属于这种类型。
零色散波长在1300~1324 nm,最大色散D(λ)<3.5 ps/(nm•km)。
色散斜率S。
≤0.093/(nm²•km)。
15.什么是色散位移型光纤(DSF)?色散位移光纤就是通过改变光纤的结构参数、折射率分布形状,力求加大波导色散,从而将零色散点从1310nm位移到1550nm,实现1550nm处最低衰减和零色散波长一直。
这种光纤工作波长在1550nm 区域。
它非常适合于长距离单信道光纤通信系统。
16.什么是非零色散型光纤(NZDF)?光纤在1550nm波长处色散不为零,故称为非零色散位移光纤。
它在1550nm波长区域具有合理的低色散,足以支持10Gbit/s的长距离传输而无需色散补偿,同时其色散值又保持非零特性来抑制四波混频和交叉相位调制等非线性效应的影响。
这种光纤主要使用密集波分复用传输系统。
17.光纤如何分类如按光的模式可分为单模光纤、多模光纤。
按折射率分:跳变式光纤和渐变式光纤。
按组成成分分为石英光纤、含氟光纤、塑料光纤。
按工作波长分为短波长光纤(波长典型值为850nm),长波长光纤(波长为1310nm,1550nm)18.目前用于传输网建设的光纤主要有哪些?其中根据ITU标准,将光纤分为七种:G651,G652,G653,G654,G655,G656,G657,其中常用的是G652、G657。
G.651光纤(多模渐变型折射率光纤)G.652(色散非位移单模光纤)G.653(色散位移光纤)G.654(截止波长位移光纤)G.655(非零色散位移光纤)G.656(低斜率非零色散位移光纤)G.657(耐弯光纤)19.什么是单模光纤、多模光纤?单模光纤(Single Mode Fiber),光以一特定的入射角度射入光纤,在光纤和包层间发生全发射,当直径较小时,只允许一个方向的光通过,即为单模光纤;单模光纤的中心玻璃芯很细,芯径一般为8.5或9.5μm,并在1310和1550nm的波长下工作。
多模光纤(Multi Mode Fiber),就是允许有多个导模传输的光纤。
多模光纤的纤芯直径一般为50μm/62.5μm,由于多模光纤的芯径较大,可容许不同模式的光于一根光纤上传输。
多模的标准波长分别为850nm和1300nm。
还有一种新的多模光纤标准,称为WBMMF(宽带多模光纤),它使用的波长在850nm到953nm之间。
单模光纤和多模光纤,两者的包层直径都为125μm。
单模光纤和多模光纤20.OS1, OS2, OM1, OM2, OM3, OM4, OM5OS1和OS2都是单模光纤,OS1:较早前使用的普通单模光纤;OS2:现正在使用的普通光纤,低水峰光纤。
一般来说,OM1为常规62.5/125um;OM2为常规50/125um;OM3是850nm激光优化的50um 芯径多模光纤,在采用850nm VCSEL的10Gb/s以太网中,光纤传输距离可以达到300m;OM4是OM3的升级版,OM4多模光纤优化了OM3多模光纤在高速传输时的产生的差模延迟(DMD),因此传输距离有大幅度的提高,光纤传输距离可以达到550m;OM5光纤跳线是TIA和IEC定义的光纤跳线新标准,纤径为50/125μm,与OM3和OM4光纤跳线相比,OM5光纤跳线可以用于更高带宽的应用。
不同等级传输时的带宽和最大距离不同。
OS1, OS2, OM1, OM2, OM3, OM4, OM5亿源通是全球行业内领先的无源光器件OEM/ODM及解决方案提供商,专注于为客户提供高效制造、优质产品和深入研发。