圆周运动中的临界问题
第五讲:圆周运动临界问题

第五讲:圆周运动临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态,分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2 r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.例、如图所示,质量相等的A、B物体置于粗糙的圆盘上,圆盘的摩擦因数为μ,A、B通过轻绳相连,随圆盘一起做圆周运动且转动的角速度ω由0逐渐增大,A的转动半径为r,B的转动半径为2r,重力加速度为g,分析:①A、B滑动的临界角速度大小;①此时若A、B间轻绳被拉断,分析A、B的运动情况.【解析】①方法一:整体法:2μmg=mrω2+m·2r·ω2方法二:等效质点法:质心在AB的中点处【例题】如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑最大静摩擦力提供向心力:2μmg =2m·32r·ω2,故临界角速度:ω=μg 3r. ①绳断瞬间:A 的向心力小于最大静摩擦力,故仍做圆周运动;B 的向心力大于最大静摩擦力,B 做离心运动.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例、如图所示,用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,重力加速度为g ,分析:F T 随ω2变化的图像.【解析】情况一:a ≤g tan θ,小球与锥面接触,对小球受力分析,将向心加速度分解到沿绳方向和垂直绳方向.则有:T =m g cos θ+ml sin 2θω2,N =mg sin θ-12ml sin2θω2情况二:a >g tan θ,小球离开锥面,绳力T =mlω2 故T 与ω2的函数图像如图所示.【例题】一转动轴垂直于一光滑水平面,交点O 的上方h 处固定一细绳的一端,细绳的另一端固定一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动,并在光滑水平面上做匀速圆周运动,如图所示,要使小球不离开水平面,转动轴的转速的最大值是(重力加速度为g )( )A.12πg hB.πghC.12πg l针对训练题型1:摩擦力有关的临界问题1.如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g 取10m/s2)(多选)2.如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω<时,绳子没有弹力B.当ω>时,A、B仍相对于转盘静止C.ω在<ω<范围内时,B所受摩擦力大小不变D.ω在0<ω<范围内增大时,A所受摩擦力大小先不变后增大(多选)3.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆外C.此时圆盘的角速度为D.此时烧断绳子,A仍相对盘静止,B将做离心运动4.如图所示,表面粗糙的水平圆盘上叠放着质量相等的两物块A、B,两物块到圆心O的距离r=0.2m,圆盘绕圆心旋转的角速度ω缓慢增加,两物块相对圆盘静止可看成质点.已知物块A与B间的动摩擦因数μ1=0.2,物块B与圆盘间的动摩擦因数μ2=0.1,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,则下列说法正确的是()A.根据f=μF N可知,B对A的摩擦力大小始终等于圆盘对B的摩擦力大小B.圆盘对B的摩擦力大小始终等于B对A的摩擦力大小的2倍C.圆盘旋转的角速度最大值ωmax=rad/sD.如果增加物体A、B的质量,圆盘旋转的角速度最大值增大(多选)5.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg的A、B两个物块,B物块用长为0.25m的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计。
圆周运动——临界问题

mg
F1
此时最低点的速度为:
问:当v2的速度等于0时,杆对球的支持力为多少?
F支=mg
此时最低点的速度为:
结论:使小球能做完整的圆周运动在最低点的速度
拓展:物体在管型轨道内的运动
如图,有一内壁光滑、竖直放置的管型轨道,其半径为R,管内有一质量为m的小球有做圆周运动,小球的直径刚好略小于管的内径。
四、圆周运动的周期性 利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。
例:长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,则下列说法中正确的是:( ) A.小球过最高点时速度为零 B.小球开始运动时绳对小球的拉力为m C.小球过最高点时绳对小的拉力mg D.小球过最高点时速度大小为
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A、B的质量均为m,它们到转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求: (1)当细线上开始出现张力,圆盘的角速度; (2)当A开始滑动时,圆盘的角速度
思考:在最高点时,什么时候外管壁对小球有压力,什么时候内管壁对小球有支持力什么时候内外管壁都没有压力?小球在最低点的速度v至少多大时,才能使小球在管内做完整的圆周运动?
21圆周运动中的临界问题

§21圆周运动中的临界问题【知识要点】在竖直平面内的圆周运动,是典型的变速圆周运动,对于物体在竖直平面人内的做变速圆周运动的问题,中学物理中主要是研究物体通过最高点和最低点的情况,并且经常出现临界状态。
1、圆周运动中的临界问题的分析方法:首先选定,其次明确,正确对研究对象受力分析,然后确定列出。
由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。
2、特例:(1)没有物体支承的物体,在竖直平面内做圆周运动通过最高点的情况:(a)临界条件:。
(b)能过最高点条件:。
(c)不能最高点的条件:。
问:在最低点能否出现这样的情况呢?(2)有物体支承的物体,在竖直平面内做圆周运动通过最高点的临界条件:。
(3)如图所示,图中的小球过最高点时(或者圆形管道),管道或圆环对球的产生力的情况:(a)当v= ,杆对球表现为。
大小。
(b)当,杆对球表现为。
大小。
(c)当v= ,杆对球表现为。
大小。
(d)当v> ,杆对球表现为。
大小。
【例题解析】1、绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量为m=0.5kg,绳长l=60cm,求:(1)最高点水不流出的最小速率?(2)水在最高点速率v=3m/s时,水对桶底的压力?2、如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内的作圆周运动,求:(1)小球在最高点时速率v A为多大时,才能使杆对小球m的作用力为零?(2)如m=0.5kg,L=0.5m,v A=0.4m/s,则在最高点A和最低点B时,杆对小球m的作用力各是多大?是推力还是拉力?(3)当小球在最高点时的速度为4m/s时,杆对球的作用力是多大?是推力还是拉力?3、如图所示,光滑圆形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量为m,半径比r略小的光滑小球以水平初速度v0射入圆管,(1)若要小球能从C端出来,初速度v0多大?(2)在小球从C端出来瞬间,对管壁压力有哪几种典型情况,初速度v0各应满足什么条件?4、如图所示,两绳系一个质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长L=2m,两绳都拉直时与轴夹角分别为30°和45°,问球的角速度在什么范围内,两绳始终张紧?【例题解析】1、所示,滑雪者滑到圆弧形的山坡处,圆弧的半径为R ,长度是圆周长的1/4。
圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。
(2)接触面分离临界:F N=0。
(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。
2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。
圆周运动的临界问题

汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题
圆周运动中的临界问题ppt课件

C.当角速度 ω>
g ltan
θ,b
绳将出现弹力
图 Z4-6
D.若 b 绳突然被剪断,则 a 绳的弹力一定发生变化
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛
顿第二定律列出方程,F 合=F 向。 (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态
联系起来列方程。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
FN=0,如图 Z4-4 甲所示,设此时小球的线速度为 v0,则 F=mvr02=mLsivn0230°=mgtan 30°
解得 v0=
3gL 6
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
甲
乙
丙
图 Z4-4
突破二
竖直平面内的圆周运动中的临界问题
竖直面内圆周运动类问题的解题技巧
(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高
点的临界条件不同。
(2)确定临界点:抓住绳模型中最高点 v≥ gR及杆模型中 v≥0 这 两个临界条件。
(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和
最低点的运动情况。
解析:两物块共轴转动,角速度相等,b 的转动半径是 a
的 2 倍,所以 b 物块最先达到最大静摩擦力,最先滑动,A 正
专题-物理-L26-圆周运动中的临界问题

本课小结
问题分析
两种类型
典型例题
下节课 再见
北京奥运会上一位质量为60 kg的体操运动员 “单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图4-3-4所示,此过 程中,运动员到达最低点时手臂受的拉力至少约为(忽略空气阻力,g=10 m/s2)( A.600 N B.2 400 N C.3 000 N D.3 600 N ,v最小时F最小, )
解析: (1)若要小球刚好离开锥面,则小球受到重力和细线拉力.小球做匀速圆周运动的轨迹圆在 水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式: 解得:ω 02= ,即ω 0= = rad/s.
(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式:
解得:ω ′2= ,即ω ′= = rad/s.
C.
D.
解析:以小球为研究对象,小球受三个力的作用:重力G、水平面支持力FN、绳子拉力F. 在竖直方向合力为零,在水平方向合力为所需向心力,绳与竖直方向夹角为 θ ,则 R = htan θ ,Fcos θ +FN=mg Fsin θ =mω 2R=m4π2n2htan θ
当球即将离开水平面时FN=0,转速n有最大值,即
rg rg
rg rg
2.对有物体支撑的小球,如小球固定在轻质杆的一端,在竖直平面内做圆周运动,过最高点的临界 条件是杆对小球的弹力恰好为重力G,若小球做圆周运动的半径为r,它在最高点的临界速度为v0=0, 杆对小球的支持力大小等于小球重力mg.
(1)当0<v<
(2)当v= (3)当v>
时,小球受向上的支持力且随v的增大而减小到零.
2可知,当物块到转轴
知识点三 竖直平面内圆周运动过最高点的临界条件 1.细绳系着的小球在竖直平面内做圆周运动,过最高点的临界条件是绳子对小球恰无弹力的作 用.若小球做圆周运动的半径为r,它在最高点的临界条件是v0= . (1)当v> (2)当v= (3)当0<v< 时,小球能通过最高点且绳子有拉力. 时,小球恰能通过最高点且绳子无拉力. 时,小球不能通过最高点,实际上小球未到达最高点就脱离了轨道.
圆周运动中的临界问题

答案:C
图 D40
图 Z4-3
(1)当 v1= g6L时,求细线对小球的拉力大小.
(2)当 v2= 3g2L时,求细线对小球的拉力大小. 解:小球离开圆锥面的临界条件为圆锥体对小球的支持力
FN=0,如图 Z4-4 甲所示,设此时小球的线速度为 v0,则 F=mvr02=mLsivn0230°=mgtan 30°
解得 v0=
FT′sin α=Lmsivn22α
FT′cos α=mg
解得
FT′=2mg
FT
1 2
mg舍去
.
【触类旁通】 1.(多选)如图 Z4-5 所示,叠放在水平转台上的物体 A、B、 C 能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为 3m、2m、m,A 与 B、B 和 C 与转台间的动摩擦因数都为μ,A 和 B、C 离转台中心的距离分别为 r、1.5r.设本题中的最大静摩
圆周运动中的临界问题
突破一 水平面内的匀速圆周运动中的临界问题
水平面内圆周运动的临界极值问题通常有两类,一类是与 摩擦力有关的临界问题,一类是与弹力有关的临界问题.
1.与摩擦力有关的临界极值问题 物体间恰好不发生相对滑动的临界条件是物体间恰好达到 最大静摩擦力. 如图 Z4-1(a)所示:汽车转弯时,只由摩擦力提供向心力,
Ffm=mrv2.
图(b):绳两端连物体,其中一个在水平面内做圆周运动时, 存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界 条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离 圆心和沿半径指向圆心.
图(c):两个物体分处转动中心两侧时,临界条件为两物体 同时发生相对滑动,且摩擦力方向同向.
A.a 绳的张力不可能为零 B.a 绳的张力随角速度的增大而增大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的临界问题
1、在竖直平面内作圆周运动的临界问题
⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况
①临界条件:绳子或轨道对小球没有力的作用 v 临界=Rg
②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。
⑵如图3所示情形,小球与轻质杆相连。
杆与绳不同,它既能产生拉力,也能产生压力
①能过最高点v 临界=0,此时支持力N =mg
②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0
④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大
例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。
现给小球一初速度,使它做圆周运动。
图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( )
A 、a 处为拉力,b 处为拉力
B 、a 处为拉力,b 处为推力
C 、a 处为推力,b 处为拉力
图 1
v 0
图
2
图 3
D 、a 处为推力,b 处为推力
例2 长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2
,则此时细杆OA 受到 ( )
A 、6.0N 的拉力
B 、6.0N 的压力
C 、24N 的拉力
D 、24N 的压力
例3 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:
①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时
2、在水平面内作圆周运动的临界问题
在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
例4 如图6所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大?
图 5
C
图 6
例5 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平肌,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。
现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s 2
)说明:一般求解“在什么范围内……”这一类的问题就是要分析两个临界状态。
3、巩固练习
1、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的3
4 。
如果使汽
车驶至桥顶时对桥恰无压力,则汽车的速度为 ( )
A 、15 m /s
B 、20 m /s
C 、25 m /s
D 、30m /s
2、如图8所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力的μ倍。
求:
⑴当转盘角速度ω1=μg
2r
时,细绳的拉力T 1。
⑵当转盘角速度ω2=3μg
2r
时,细绳的拉力T 2。
三、小结
1、解圆周运动的问题时,一定要注意找准圆心,绳子的悬点不一定是圆心。
2、把临界状态下的某物理量的特征抓住是关键。
如速度的值是多大、某个力恰好存
图 8
图 7
在还是不存在以及这个力的方向如何。
答案
例1分析:答案A 是正确的,只要小球在最高点b 的速度大于gL ,其中L 是杆的长;答案B 也
是正确的,此时小球的速度有0<v <gL ;答案C 、D 肯定是错误的,因为小球在最低点时,杆对小球一定是拉力。
例2解法:小球在A 点的速度大于gL 时,杆受到拉力,小于gL 时,杆受压力。
V 0=gL =10×0.5 m /s = 5 m /s
由于v =2.0 m /s < 5 m /s ,我们知道:过最高点时,球对细杆产生压力。
小球受重力mg 和细杆的支持力N 由牛顿第二定律 mg -N =m v
2
L
N =mg -m v
2L
=6.0N 故应选 B 。
例3
解法一:(同上例) 小球的速度大于 5 m /s 时受拉力,小于 5 m /s 时受压力。
①当v 1=1m /s < 5 m /s 时,小球受向下的重力mg 和向上的支持力N 由牛顿第二定律 mg -N =m v
2
L
N =mg -m v
2L
=16N
即杆受小球的压力16N 。
②当v 2=4m /s > 5 m /s 时,小球受向下的重力mg 和向下的拉力F 由牛顿第二定律 mg +F =m v
2L
F =m v
2
L -mg =44N
即杆受小球的拉力44N 。
解法二:小球在最高点时既可以受拉力也可以受支持力,因此杆受小球的作用力也可以是拉力或者
是压力。
我们可不去做具体的判断而假设一个方向。
如设杆竖直向下拉小球A ,则小球的受力就是上面解法中的②的情形。
由牛顿第二定律 mg +F =m v
2
L
N
得到 F =m (v
2
L
-g ) 当v 1=1m /s 时,F 1=-16N F 1为负值,说明它的实际方向与所设的方向相反,即小球
受力应向上,为支持力。
则杆应受压力。
当v 2=4m /s 时,F 2=44N 。
F 2为正值,说明它的实际方向与所设的方向相同,即小球
受力就是向下的,是拉力。
则杆也应受拉力。
例4解析:①当角速度ω很小时,AC 和BC 与轴的夹角都很小,BC 并不张紧。
当ω逐渐增大到30°时,
BC 才被拉直(这是一个临界状态),但BC 绳中的张力仍然为零。
设这时的角速度为ω1,则有:
T AC cos30°=mg
T AC sin30°=m ω12
Lsin30°
将已知条件代入上式解得 ω1=2.4 rad /s
②当角速度ω继续增大时T AC 减小,T BC 增大。
设角速度达到ω2时,T AC =0(这又是一个临界状态),则有: T BC cos45°=mg
T BC sin45°=m ω22Lsin30°
将已知条件代入上式解得 ω2=3.16 rad /s
所以 当ω满足 2.4 rad /s ≤ω≤3.16 rad /s ,AC 、BC 两绳始终张紧。
本题所给条件 ω=3 rad /s ,此时两绳拉力T AC 、T BC 都存在。
T AC sin30°+T BC sin45°=m ω2
Lsin30° T AC cos30°+T BC cos45°=mg
将数据代入上面两式解得 T AC =0.27N , T BC =1.09N
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad /s 时,T BC =0,AC 与轴的夹角小于30°。
如果ω>3.16rad /s 时,T AC =0,BC 与轴的夹角大于45
例5解析:要使m 静止,M 也应与平面相对静止。
而M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对M 的静摩擦力的方向背
离圆心,大小等于最大静摩擦力2N 。
此时,对M 运用牛顿第二定律。
有 T-f m=Mω12r 且 T=mg
解得ω1=2.9 rad/s
当ω为所求范围最大值时,M有背离圆心运动的趋势,水平面对M的静摩擦力的方向向着圆心,大小还等于最大静摩擦力2N。
再对M运用牛顿第二定律。
有 T+f m=Mω22r
解得ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s。