压电材料的研究

合集下载

PVDF压电薄膜的力学性能和压电效应实验研究

PVDF压电薄膜的力学性能和压电效应实验研究

华中科技大学硕士学位论文摘要PVDF(Polyvinylidene fluoride,聚偏氟乙烯)压电薄膜作为一种新型高分子压电材料,由其制成的传感器具有灵敏度高、频带宽、声阻抗低、电压输出高和可加工成特定形状等优点,被广泛用于各个领域。

本文对镀银PVDF压电薄膜的基本力学性能,不同温度场下的振动特性和不同厚度薄膜的压电效应进行了实验研究与分析,具体研究内容及结论如下:首先,选用了厚度分别为40μm、64μm和122μm(上下表面镀银层均为6μm)的PVDF压电薄膜,利用纤维拉伸试验机对其平行分子链方向(1方向)和垂直分子链方向(2方向)分别进行拉伸力学性能测试,获得了相应的应力-应变曲线。

试验结果表明:在弹性阶段,两个方向的力学性能较为接近,但进入塑性阶段,两个方向的力学性能差异明显,表现出强烈的各向异性。

其次,制作了厚度分别为40μm、64μm和122μm的PVDF悬臂梁试样,利用非接触式振动测试系统,测试了其在不同温度场下的振动特性,并获得了其一阶固有频率。

实验结果表明:PVDF悬臂梁的一阶固有频率随着温度增加而减小,在初始升温阶段,频率值下降较为缓慢,而当温度升高到一定值时,频率值下降较快,同时,PVDF压电薄膜厚度越小,其固有频率受温度影响越大。

最后,基于非接触式振动测试系统,对PVDF压电薄膜的压电效应进行了实验研究。

三种不同厚度PVDF悬臂板压电效应实验结果表明:电压-频率曲线与幅频响应曲线具有很好的一致性,且输出电压峰值对应的激励频率与PVDF悬臂板共振频率一致,表明PVDF压电传感器输出电压与输入应变具有很好的线性关系,适宜于应变测量,且厚度较小的PVDF压电薄膜灵敏度较高。

本文对PVDF压电薄膜的基本性能进行了实验研究与分析,为PVDF压电传感器的设计与优化提供基础数据支撑,具有重要的工程应用价值。

关键词:PVDF压电薄膜;拉伸力学性能;振动特性;压电效应华中科技大学硕士学位论文AbstractAs a novel piezoelectric polymer material, the sensors made of PVDF(polyvinylidene fluoride) piezoelectric film have the advantages of high sensitivity, wide frequency band, low acoustic impedance, high voltage output, and can be processed into specific shapes,which are widely applied in various fields. In this paper, the basic mechanical properties, the vibration characteristics under different temperature fields, and the piezoelectric effect of silver-coated PVDF piezoelectric films were studied experimentally and analyzed. The specific research contents and conclusions are as follows: First, the PVDF piezoelectric films with different thickness of 40 μm, 64 μm, and 122 μm (the thickness of coated silver on the upper and lower surfaces is 6μm) were prepared. The tensile samples of PVDF piezoelectric film were tested in two directions using a fiber tensile tester,i.e.,parallel (1 direction) and perpendicular (2 direction) to the molecular chains, and the corresponding stress-strain curves were obtained. The experimental results show that: in the elastic stage, the mechanical properties of the two directions are practically identical,however ,in the plastic stage, the mechanical properties of the two directions are significantly different, showing a strong anisotropy.Next, PVDF cantilever specimens with thicknesses of 40μm, 64μm and 122μm were prepared respectively. The non-contact vibration test system was used to test the vibration characteristics of the PVDF cantilever beam under different temperature fields, and its first-order natural frequency was obtained. The experimental results show that the first-order natural frequency of the PVDF cantilever beam decreases with increasing temperature. In the initial heating stage, the frequency decreases more slowly, and when the temperature rises to a certain degree, it declines rapidly.Besides ,the smaller the PVDF film thickness is, the greater its natural frequency is affected by the temperature.Finally, based on the non-contact vibration test system, the piezoelectric effect of PVDF was investigated experimentally. The experimental results of three different thickness PVDF cantilever plates show that the voltage-frequency curve is in good agreement with the amplitude-frequency response curve, and the excitation frequency corresponding to the peak output voltage is consistent with the resonance frequency of the华中科技大学硕士学位论文PVDF cantilever plate, indicating the sensor’s output voltage has a good linear relationship with the input strain and is suitable for strain measurement. In the same time ,the sensor made of smaller thickness has higher sensitivity.In this paper, the basic properties of PVDF piezoelectric films were experimentally researched and analyzed,which provides the basic data reference for the design and optimization of PVDF piezoelectric sensors and has much significance in engineering application.Keywords: PVDF piezoelectric films; Tensile mechanical properties; Vibration characteristics; Piezoelectric effect.华中科技大学硕士学位论文目录摘要 (I)Abstract (II)目录 (IV)1绪论 (1)1.1研究背景和意义 (1)1.2PVDF压电薄膜基本特性 (2)1.3PVDF传感器在不同应用领域国内外研究现状 (5)1.4本文主要研究内容及安排 (13)2PVDF压电薄膜力学性能实验研究 (15)2.1PVDF压电薄膜表面形貌表征 (15)2.2PVDF压电薄膜拉伸力学性能 (16)2.3实验结果及分析 (18)2.4本章小结 (22)3不同温度场下PVDF悬臂梁振动特性实验研究 (23)3.1悬臂梁固有频率 (23)3.2PVDF悬臂梁振动测试实验 (24)3.3实验结果与讨论 (27)3.4本章小结 (33)4PVDF悬臂板压电效应实验研究 (34)4.1PVDF压电传感器信号调理电路 (34)4.2PVDF悬臂板压电效应实验 (37)华中科技大学硕士学位论文4.3实验结果与分析 (40)4.4本章小结 (46)5总结与展望 (47)5.1总结 (47)5.2展望 (48)致谢 (49)参考文献 (51)华中科技大学硕士学位论文1 绪论1.1 研究背景和意义在日常生产活动中,结构的振动是一个很普遍的问题。

pvdf压电系数

pvdf压电系数

pvdf压电系数【原创实用版】目录1.介绍 PVDF 压电材料2.阐述 PVDF 的压电系数3.讨论 PVDF 在压电应用领域的优势4.分析 PVDF 压电系数的影响因素5.总结 PVDF 压电系数的研究进展及前景正文【1.介绍 PVDF 压电材料】聚偏氟乙烯(PVDF)是一种有机压电材料,具有优良的压电性能、化学稳定性和热稳定性。

PVDF 压电材料在能量转换、传感器和执行器等领域具有广泛的应用。

【2.阐述 PVDF 的压电系数】PVDF 的压电系数是指在施加压力时,PVDF 材料产生的电荷密度与压力的比值。

PVDF 的压电系数是衡量其压电性能的重要参数,通常用 pC/N (皮库伦/牛顿)表示。

【3.讨论 PVDF 在压电应用领域的优势】相较于其他压电材料,PVDF 具有以下优势:(1)较高的压电系数:PVDF 的压电系数一般在 10~20 pC/N,表现出较高的压电性能。

(2)良好的综合性能:PVDF 压电材料具有优良的机械强度、化学稳定性和热稳定性,适用于各种恶劣环境。

(3)易于加工:PVDF 具有良好的可塑性,可制成各种形状和尺寸的压电器件。

【4.分析 PVDF 压电系数的影响因素】PVDF 压电系数受多种因素影响,主要包括:(1)分子结构:PVDF 分子链的极性和对称性对其压电性能有重要影响。

(2)材料制备工艺:不同的制备方法会影响 PVDF 的微观结构和性能。

(3)应力状态:在拉伸和压缩应力状态下,PVDF 的压电系数表现出较大的差异。

(4)温度:PVDF 的压电系数随温度的变化而变化,通常在较低温度下具有较高的压电性能。

【5.总结 PVDF 压电系数的研究进展及前景】PVDF 压电系数的研究已取得显著进展,但仍面临诸多挑战,如提高压电性能、优化制备工艺等。

压电陶瓷材料的性质研究与应用

压电陶瓷材料的性质研究与应用

压电陶瓷材料的性质研究与应用压电陶瓷材料是指在外加电场作用下能够发生形变,而在外加形变作用下又能够产生电荷分布的一种特殊材料。

它是一种具有卓越性能的功能材料,具有压电、电磁、光学、声学、磁学等多种特性,被广泛应用于传感、仪器、通讯、医疗、能源、军事等领域。

一、压电陶瓷材料的性质压电效应是指当施加压力时,材料会产生电荷分布是由于材料在压力下对晶格间距进行拉伸或压缩,从而导致材料在电性上产生变化。

与之相反,当施加电场时,材料也会发生形变。

压电陶瓷材料是一种非常优秀的压电材料,具有稳定的机械性能、良好的化学稳定性、高压电系数、极高的Q值、较大的耐热和耐湿性能。

目前,常用的压电陶瓷材料主要有PZT(铅锆钛)、PMN-PT(铅镁铌酸钛)、PNZT(铅钇锆钛)等。

二、压电陶瓷材料的应用压电陶瓷材料是一种功能材料,广泛应用于传感、控制、振动、谐振、储能等领域。

以下是几个典型的应用案例。

(1)传感器压电传感器是压电材料广泛应用的领域之一。

利用压电陶瓷材料的压电效应,将压电陶瓷材料作为敏感元件,制成各种传感器。

例如,对于水下传感器,采用压电陶瓷材料的压电效应,可以使传感器具有压力传感、压力传递、声波传输等功能。

同时,还可以使水下传感器具有扩张性、延伸性、防震性等优良性能。

(2)谐振器谐振器是利用谐振现象的设备,可以用于精确测量、频率控制、稳定器等领域。

压电陶瓷材料的高压电系数、低损耗、温度稳定性较好的性能,使它成为制备谐振器的优良材料。

例如,对于陶瓷振荡器,采用压电陶瓷材料可以制作出更为灵敏、更为精准的振荡器。

(3)控制器压电陶瓷材料可以通过改变外加电场的大小和方向,实现精密的机械控制。

而且由于压电效应是一种瞬态响应,因此压电陶瓷材料的机械响应很快,可以快速并精确地实现机械控制。

例如,对于固体流量控制器,采用压电陶瓷材料可以实现流量快速自动调节。

三、未来展望随着信息技术的快速发展,传感、通讯、能源等领域对功能材料的需求日益增加,压电陶瓷材料的应用前景非常广阔。

压电材料

压电材料
2 2 2 Ex Txx X x Txx e11 2 2C11 2C11
IT
第三章
§3.2
压电材料
压电材料的特征值
2 4e11 k 1C11
三、机电耦合系数 依 k 的定义式则:
不同方向 k 不同,因此有 k11, k22,k33,… kij 等, 例如,薄形长片长度伸缩模式的耦合系数为 k31, 圆柱体轴向 伸缩模式的耦合系数为k33,方片厚度切变模式的耦合系数为 k15, 薄圆片径向伸缩模式的耦合系数为 kP 等等。
EXIT
第三章
§3.2
压电材料
压电材料的特征值
四、介电常数 介电常数反映了材料的介电性质(或极化性质),通常 用ε 表示。当压电材料的电行为用电场强度 E 和电位移 D 作变量来描述时,则有: D= ε E 考虑到 D 和 E 均为矢量,在直角坐标系中,上式可以表 示为以下的矩阵形式:
EXIT
第三章
EXIT
第三章
§3.2
压电材料
压电材料的特征值
二、压电常数 应该指出,对于国际单位制有:
D=ε 0E+P 当外电场为零时,D=P,则上述各压电常数表示式中的 P 均可换为 D。ε 0为真空介电常数;D为压电体中的电位移。 它和极化强度P,电场强度E,应力T,应变均为矢量。
EXIT
第三章
§3.2
压电材料
EXIT
第三章
§3.1 压电效应的机理
压电材料
晶体共有 32 个点群,也就是按对称性分为 32 类。 其中20类是非中心对称的,它们有可能具有压电效应。 不过,无对称中心并不是产生压电效应的充分条件,即 使无对称中心并不足以保证具有压电性。 只有少数几种晶体材料才具有压电效应。 所有晶体在铁电态下也同时具有压电性,即对晶体施加 应力,将改变晶体的电极化。 但是,压电晶体不同时具有铁电性。 石英是压电晶体,但并非铁电体;钛酸钡既是压电晶体 又是铁电体。

压电材料参数

压电材料参数

压电材料参数压电材料是一类具有压电效应的材料,它们在外加电场或机械应力下会产生位移,而在受到位移时也会产生电荷。

压电材料参数是描述这种材料特性的重要参数,包括压电系数、介电常数、机械质量因子等。

这些参数对于压电材料的设计、制备和应用都具有重要意义。

首先,压电系数是衡量压电材料压电效应大小的重要参数。

它通常用d33表示,表示在材料厚度方向上的压电应变与施加在材料表面的电场强度之比。

压电系数越大,说明材料的压电效应越明显,因此在应用中更为理想。

压电系数的大小与材料的晶体结构、晶格畸变以及材料的制备工艺有关。

其次,介电常数是描述材料在外加电场下的响应能力的参数。

介电常数通常用ε表示,它是材料在电场作用下的电极化能力和电导率的比值。

介电常数的大小直接影响着材料在电场下的响应速度和效果。

对于压电材料而言,介电常数的大小也会影响到其压电效应的强弱,因此介电常数的控制对于压电材料的性能优化至关重要。

另外,机械质量因子是描述压电振荡器性能的重要参数。

它通常用Qm表示,表示压电振荡器在谐振频率附近的能量损耗情况。

机械质量因子越大,说明振荡器的能量损耗越小,谐振响应越尖锐。

对于压电传感器和压电谐振器而言,机械质量因子的大小直接影响着其灵敏度和稳定性。

总的来说,压电材料参数是评价和描述压电材料性能的重要指标,它们直接影响着材料在压电器件中的应用效果。

因此,在压电材料的研究和开发过程中,对这些参数的准确把握和控制至关重要。

通过对压电系数、介电常数和机械质量因子等参数的深入研究,可以更好地优化压电材料的性能,拓展其在传感器、换能器、滤波器等领域的应用,为现代电子科技的发展做出更大的贡献。

压电材料的原理与应用

压电材料的原理与应用

压电材料的原理与应用1. 压电材料的基本原理压电材料是一类具有压电效应的材料,意味着它们能够在受到外力作用时产生电荷或电势的变化。

压电效应是由于压电材料的晶体结构具有非对称性而引起的。

以下是压电材料的基本原理:•压电效应:压电效应是压电材料最重要的特性之一。

当压电材料受到外力作用时,它们的晶体结构发生变形,从而导致电荷分布的不均匀性。

这不均匀的电荷分布会在材料的表面产生电势差,形成电荷分离,从而产生电压。

•逆压电效应:逆压电效应是压电材料所具有的另一种特性。

在逆压电效应下,当压电材料的电场发生变化时,会导致晶体结构的变形。

逆压电效应实际上是压电效应的逆过程。

•压电系数:压电系数是衡量压电材料压电效应强度的指标。

它指的是压电材料在单位应力下产生的电子束或电势的比率。

压电系数越大,表示材料的压电效应越强。

2. 压电材料的应用领域压电材料由于其特殊的压电效应和逆压电效应,被广泛应用于许多领域。

以下是几个主要的应用领域:•传感器技术:压电材料通过测量电势差的变化,可以用作各种类型的传感器。

例如,压电材料可以用于压力传感器、加速度传感器、温度传感器等。

压电传感器广泛应用于汽车工业、医疗设备、机械工程等领域。

•声波技术:压电材料的压电效应可以将电能转化为声能,因此被广泛应用于声波技术领域。

例如,压电陶瓷可以用于制作声学换能器,将电信号转化为声音。

压电材料还可以用于声波发生器、超声波清洗器等设备。

•振动控制技术:压电材料的逆压电效应可以将电能转化为机械能,因此在振动控制技术中得到广泛应用。

压电材料可以用于制造振动阻尼器、振动传感器和振动发生器等。

•储能技术:压电材料可以用于储能技术中,通过电荷的积累和释放来存储和释放能量。

这使得压电材料成为用于制作电池、超级电容器等储能设备的理想材料。

3. 压电材料的未来发展趋势•多功能性:未来,压电材料将朝着多功能性的发展方向发展。

例如,研究人员正在努力将压电材料与其他功能材料结合,以实现多种功能,如光电一体化、声电一体化等。

压电材料的制备与应用

压电材料的制备与应用

压电材料的制备与应用压电现象是指当某些特定晶体或陶瓷材料受到机械应力时,会产生电荷分离并产生电势差。

这种现象被称为压电效应,在很多现代电子设备中有着重要的应用。

压电材料能够将机械能转化为电能,也能将电能转化为机械能。

本文将从压电材料的制备和应用两个方面来论述。

一、压电材料的制备1. 陶瓷方法陶瓷方法是压电材料制备的主要方法之一。

通过陶瓷方法制备出来的陶瓷材料具有压电性能稳定,结晶度高,不易被污染等优点,但也存在一定的制备难度和生产成本高的弊端。

2. 非晶合金方法非晶合金方法是一种新型的压电材料制备方法。

这种方法制备出来的材料具有良好的压电性能,优点是结晶度低、成本低,缺点是性能易受温度和湿度等因素影响。

3. 热压法热压法是一种比较常见的压电材料制备方法。

这种方法将压电材料粉末放置在一定的压力下,加热到一定温度,使其复合成形成一种具有压电性能的材料。

二、压电材料的应用1. 传感器压电材料可用于制作传感器,这种传感器利用压电效应将压力转化成电信号进行测量,可测量的范围包括低于1帕级别及大于100兆帕级别的压力,广泛应用于汽车、机械、管道等领域中。

2. 声音器件压电陶瓷材料也可以用于声音器件中。

它们的压电效应可以将电信号转换为压力震动,进而产生声音,这种材料可用于电子游戏、电视机等电子产品中。

3. 振动源压电材料可用于制作振动源,其先将电信号转化为机械肢体振动,再将机械肢体振动转化为声源振动,从而达到声音放大的效果。

这种振动源广泛应用于家庭影院、数字音响等领域中。

4. 移动器件压电材料可以调节移动器件的尺寸,可用于制作石英晶体谐振器、电声转换器等移动器件,能够实现电信号之间的转化。

总结压电材料的制备与应用是一门深奥的学科,从制备方法到应用领域都需要了解相关知识。

随着科技的不断发展,针对压电材料的研究将呈现出更大的发展空间。

简述铁电、压电和热电纳米材料的催化研究

简述铁电、压电和热电纳米材料的催化研究

简述铁电、压电和热电纳米材料的催化研究铁电、压电和热电纳米材料近年来在催化研究领域引起了广泛关注。

这些材料具有特殊的结构和性质,对催化反应具有重要作用。

本文将对铁电、压电和热电纳米材料的催化性能进行简要介绍,并分析其应用前景。

铁电材料是一类具有铁电性质的材料,其具有正负两个永久电偶极矩的材料。

研究表明,铁电材料可以用作催化剂,提高催化反应的速率和选择性。

铁电材料的催化性能主要归因于其特殊的电荷分布和表面性质。

例如,铁电材料可以通过调节电荷重排来改变催化活性位点的结合能,从而影响催化反应的速率和选择性。

此外,铁电材料还可以通过外加电场和应力来调控其催化性能。

因此,铁电材料已被广泛应用于氧化还原反应、电催化和光催化等领域。

压电材料是一类具有压电效应的材料,其具有在外力作用下产生电荷分离的特性。

研究表明,压电材料可以用作催化剂,提高催化反应的速率和选择性。

压电材料的催化性能主要归因于其特殊的结构和电荷分布。

例如,压电材料的晶格变形可以改变催化活性位点的结合能,从而影响催化反应的速率和选择性。

此外,压电材料还可以通过外加电压来调控其催化性能。

因此,压电材料已被广泛应用于氧化还原反应、电催化和光催化等领域。

热电材料是一类具有热电效应的材料,其具有在温度梯度下产生电荷分离的特性。

研究表明,热电材料可以用作催化剂,提高催化反应的速率和选择性。

热电材料的催化性能主要归因于其特殊的热导率和电子结构。

例如,热电材料的热导率可以影响催化反应的热量传递和分子扩散,从而调控反应速率。

此外,热电材料的电子结构可以影响催化活性位点的结合能和反应中间体的稳定性,从而影响反应选择性。

因此,热电材料已被广泛应用于热催化和光催化等领域。

目前,铁电、压电和热电纳米材料在催化研究中的应用还处于起步阶段,但已经取得了一些重要的进展。

例如,一些研究发现,通过调控铁电、压电和热电纳米材料的晶格结构和表面性质,可以实现催化活性位点的精确定位和调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档