聚羧酸减水剂生产工艺

合集下载

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述

浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。

聚羧酸高性能减水剂

聚羧酸高性能减水剂

目录1.减水机理 (2)2.优良的性能 (2)2.1 减水剂的匀质性分析 (2)2.2 水泥水化热-电性能分析 (3)2.3 早强效应 (3)2.4减水性能分析 (4)2.5 环保分析 (4)聚羧酸高性能减水剂聚羧酸系高性能混凝土减水剂是20世纪80年代中期由日本首先开发应用的新型混凝土减水剂。

它主要是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效、控制坍落度损失和抗收缩、不影响水泥的凝结硬化等作用。

聚羧酸系高性能减水剂是完全不同于萘磺酸盐甲醛缩合物NSF 和三聚氰铵磺酸盐甲醛缩合物MSF减水剂,即使在低掺量时也能使混凝土具有高流动性,并且在低水灰比时也具有低粘度和坍落度保持性能。

它与不同水泥有相对更好的相容性,是高强高流动性混凝土所不可缺少的材料。

聚羧酸系混凝土减水剂是继木钙和萘系减水剂之后发展起来的第三代高性能化学减水剂,与传统减水剂相比主要具有以下几个突出的优点:a.高减水率:聚羧酸高性能减水剂减水率可达25-40%。

b. 高强度增长率:很高的强度增长率,尤其是早期强度增长率较高。

c.保坍性优异:极好的保坍性能,可保证混凝土极小的经时损失。

d.匀质性良好:所配混凝土有非常好的流动性,容易浇注和密实,适用于自流平、自密实混凝土。

e. 生产可控性:可通过对聚合物分子量、侧链的长短、疏密及侧链基团种类的调整来调节该系列减水剂的减水率、保塑性和引气性能。

f.适应性广泛:对各种纯硅、普硅、矿渣硅酸盐水泥及各种掺合料制混凝土均具有良好的分散性及保塑性。

g.低收缩性:能有效提升混凝土的体积稳定性,较萘系减水剂混凝土28d收缩降低了20%左右,有效的减少了混凝土开裂带来的危害。

h.绿色环保:无毒性、无腐蚀性,不含甲醛及其他有害成分。

1.减水机理聚羧酸高性能减水剂是运用分子结构设计原理,以DLVO电荷排斥理论和空间位阻效应理论为基础,将带有不同功能的活性基团接枝到主链上聚合而成。

常温合成聚羧酸减水剂及其性能研究

常温合成聚羧酸减水剂及其性能研究

常温合成聚羧酸减水剂及其性能研究摘要:以乙二醇单乙烯基聚乙二醇醚(EPEG)为大单体,丙烯酸(AA)为共聚单体,采用过硫酸钾/硫酸亚铁氧化还原引发体系,巯基丙酸(MPA)为链转移剂,常温合成了聚羧酸减水剂。

研究了酸醚比、引发剂及链转移剂对水泥分散性的影响,确定减水剂的制备工艺。

1 引言聚羧酸减水剂由于分子结构可设计性、低掺量和高效减水的特点而在混凝土领域广泛应用。

目前,市场上广泛应用的聚羧酸减水剂产品主要是在40-80度条件下合成的,常用大单体有甲氧基聚乙二醇醚(MPEG)、甲基烯丙烯聚氧乙烯醚(HPEG)、异戊烯醇聚氧乙烯醚(TPEG)等,这类大单体活性较低,聚合需要加热到一定温度,反应速率低,势必增加生产能耗,另外该类减水剂对黏土适应性差。

乙二醇单乙烯基聚乙二醇醚(EPEG)是当前研发的新型2+2型聚醚大单体,因其大单体高聚合活性而受到行业关注。

与常用大单体分子结构不同的是,EPEG结构中特殊的C-O键分子结构,因不饱和双键与氧原子直接相连,从而改变了大单体在聚合时的电荷分布环境,提高了双键反应活性。

因此关于EPEG大单体在聚羧酸减水剂合成工艺中的应用与推广具有相当大的经济价值。

本文研究了乙二醇单乙烯基聚乙二醇醚(EPEG)大单体与丙烯酸(AA)共聚常温合成聚羧酸减水剂的工艺。

2 实验部分2.1减水剂的合成工艺称取EPEG大单体加入四口瓶中,再加入定量去离子水,搅拌至大单体全部溶解后,同时滴加由巯基丙酸、硫酸亚铁以及去离子水配置的A液体和由丙烯酸和水配的B液。

在实验过程中控制滴加速度,匀速滴加至底液中,滴加结束后保温3h,调节PH值为6~7。

3 结果与讨论3.1引发剂用量对减水剂性能影响固定n(AA):n(EPEG)=3:1,巯基丙酸占EPEG总质量的0.5%,其中m(过硫酸钾):m(硫酸亚铁)=2:1。

引发剂用量对减水剂分散性影响如图1a所示。

图1 (a)引发剂、(b)酸醚比和(c)链转移剂对减水剂分散性影响由图可知,引发剂用量占单体总质量0.5%~0.55%时,其水泥净浆初始流动度效果较好。

氧化还原引发体系合成聚羧酸系高效减水剂.

氧化还原引发体系合成聚羧酸系高效减水剂.

课题来源:重庆市建委资助项目(城科字1330第20号)。

聚羧酸系高效减水剂掺量低、减水率高、坍落度保持能力强,对混凝土增强效果显著,能降低混凝土收缩,有害物质含量极低,这些技术性能特点赋予混凝土出色的工作性、良好的强度发展以及优异的耐久性[1-4],十分符合现代混凝土工程的需要,具有综合的技术性能及环保优势。

本文采用自制大单体MPEG-1500MAA ,通过水溶液共聚反应合成聚羧酸系高效减水剂,着重研究了不同氧化还原引发体系下,反应温度、反应物掺量等对减水剂性能的影响。

1试验部分1.1试验原料聚乙二醇单甲醚-1500甲基丙烯酸酯MPEG-1500MAA ,自制;甲基丙烯磺酸钠SMAS,工业级;甲基丙烯酸MAA ,分析纯;过硫酸铵PASM ,分析纯;过氧化氢,分析纯;亚硫酸氢钠;硫酸亚铁;氢氧化钠;蒸馏水。

1.2合成工艺将一定量蒸馏水溶解SMAS 后加入到四口瓶中,待温度升至设定值时,通入氮气并搅拌,开始滴加MPEG -1500MAA 及MAA 混合溶液1~2h 和PASM 溶液2~3h ,恒温反应2~3h ,冷却至室温,加入40%浓度的NaOH 溶液,将减水剂PH 值调至6~7,得到约40%浓度的红棕色聚羧酸高效减水剂。

在采用氧化还原引发体系时,需先将过硫酸铵等氧化剂与SMAS 溶解后加入四口瓶中,通入氮气搅拌,同时滴加MPEG-1500MAA 及MAA 混合溶液1~2h 和还原剂(如亚硫酸氢钠)溶液2~氧化还原引发体系合成聚羧酸系高效减水剂Synthesis of poly-carboxylic acid superplasticizer via redox system张智强1胡向博1李凌峰2霍世超2(1重庆大学材料学院,重庆400045;2南川区规划服务中心,重庆408400)摘要:采用自制的聚乙二醇单甲醚1500甲基丙烯酸酯(MPEG1500-MAA )和甲基丙烯酸(MAA )试剂,在不同引发体系下合成聚羧酸系高效减水剂。

聚羧酸减水剂

聚羧酸减水剂

谢谢观看
应用范围
应用范围
适用于高速铁路、客运专线、工业与民用建筑、道路、桥梁、港口码头、机场等工程建设的预制和现浇混凝 土、钢筋混凝土及预应力混凝土。
特别适用于配制混凝土施工时间长,对混凝土坍落度保持要求高的工程,如核电工程。
使用方法
使用方法
掺量范围:一般情况下,折算20%含固量时掺量为胶凝材料重量的0.5~1.5%,推荐掺量为1.0%。
合成方法
合成方法
对于聚羧酸减水剂的合成,分子结构的设计是至关重要的,其中包括分子中主链基团、侧链密度以及侧链长 度等。合成方法主要包括原位聚合接枝法、先聚合后功能化法和单体直接共聚法。
1、原位聚合接枝法
以聚醚作为不饱和单体聚合反应的介质,使主链聚合以及侧链的引入同时进行,工艺简单,而且所合成的减 水剂分子质量能得到一定的控制,但这种方法涉及的酯化反应为可逆反应,在水溶液中进行导致接枝率比较低, 已经逐渐被淘汰E14]。
优劣特点
优劣特点
在很多混凝土工程中,萘系等传统高效混凝土由于技术性能的局限性,越来越不能满足工程需要。在国内外 备受的新一代减水剂,聚羧酸系高性能减水剂,由于真正做到了依据分散水泥作用机理设计有效的分子结构,具 有超分散型,能防止混凝土坍落度损失而不引起明显缓凝,低掺量下发挥较高的塑化效果,流动性保持性好、水 泥适应广分子构造上自由度大、合成技术多、高性能化的余地很大,对混凝土增强效果显著,能降低混凝土收缩, 有害物质含量极低等技术性能特点,赋予了混凝土出色的施工和易性、良好的强度发展、优良的耐久性、聚羧酸 系高性能减水剂具有良好的综合技术性能优势及环保特点,符合现代化混凝土工程的需要。因此,聚羧酸系高性 能减水剂正逐渐成为配制高性能混凝土的首选外加剂。据报道,日本聚羧酸外加剂使用量已占所有高性能外加剂 产品总量的80%以上,北美和欧洲也占了50%以上。在我国,聚羧酸系减水剂已成功应用仅在三峡大坝、苏通大桥、 田湾核电站、京沪高铁等国家大型水利、桥梁、核电、铁路工程,并取得了显著的成果。

浅析聚羧酸减水剂聚醚大单体工艺技术

浅析聚羧酸减水剂聚醚大单体工艺技术

浅析聚羧酸减水剂聚醚大单体工艺技术摘要:聚羧酸减水剂是最新研发的、较为环保的减水剂之一,因此它受到了国内外多方关注,是研究者关注的重点课题。

目前该减水剂的生产主要用到TPEG大单体、HPEG大单体等。

本文就以减水剂生产工艺当中出现的大单体生产工艺技术为主进行探究。

关键词:聚羧酸减水剂;大单体;生产工艺混凝土是建筑施工当中经常用到的原材料之一,其质量的优劣与聚羧酸减水剂的关联较大。

聚羧酸减水剂凭借其强大的优势成为当今应用效果最佳的减水剂之一,它的作用范围较为普遍,如铁路、轨道等建筑施工中所用的混凝土中都有聚羧酸减水剂的身影,且使用规模较大。

对于聚羧酸减水剂而言,聚醚大单体是主要生产原料,因此国内外对其关注度普遍较高,已经发展成为减水剂研究领域的热点之一。

1聚醚大单体种类我国在生产合成聚羧酸减水剂时会主要用到聚醚大单体,随着社会的不断发展,该大单体的种类也愈发多种多样,最开始只使用MPEG,后来逐渐发展APEG、TPEG、HPEG以及最新的EPEG和GPEG,其中TPEGH和HPEG两种大单体目前应用最普遍。

利用聚乙二醇单甲醚进行减水剂的制作需要历经两个步骤,其一是聚合,其二是酯化,由于该大单体不能做到彻底酯化,如果制作出的成品存在该大单体残留物,对于减水剂的性能会造成严重的不利影响,产品质量会不受控制。

利用烯丙基聚氧乙烯醚合成减水剂只需要将原溶剂与之聚合便足矣。

但是该大单体存在一个缺陷,在聚合时表现出的活性较差,与上一种大单体面临着相同的问题,当前利用其制备减水剂的效果不太理想,产量逐年下滑。

TPEG、HPEG两者合成减水剂的效果非常不错,当前在我国市场上所占比例较大,这两种大单体除了聚合活性高的优势以外,减水率也较为不错,并且制作工艺已经形成完整的体系,比较成熟。

2聚醚大单体生产工艺聚醚大单体从产生至今已有百年之久,在这段时期其工艺技术也得到了很大的突破,相对而言较为成熟。

基于工艺特点我们对生产技术进行了相应改进,在改进过程中出现了传统搅拌工艺、喷雾式生产工艺以及环路喷射式生产工艺,三种工艺技术各有优劣。

聚羧酸减水剂聚醚大单体工艺技术简析

聚羧酸减水剂聚醚大单体工艺技术简析

(4)仿真分析。

引进法国ESI专业复合材料设计模拟软件,主要包含PAM-CRASH、SYSPLY、PAM-RTM三大模块;二维设计软件Caxa、CAD,三维设计软件Solidworks、Catia;建立复合材料计算机设计仿真实验室。

在计算机仿真模拟技术的推动下,复合材料的成型材料、铺层设计和制造工艺广泛采用数字化仿真模拟技术,实现对产品测试的实际仿真,与产品性能协同的工艺参数微调以及评价产品在使用环境中的表现。

(5)加工制造。

基于以上研制的高性能复合树脂胶黏剂以及具有适宜活性的混杂纤维增强材料,采用层压技术与RTM 等技术相结合的复合手段,进行大型构件的成型,对成型工艺进行系统研究,探讨成型温度、压力、成型时间等关键参数对复合材料宏观及微观结构的影响。

依托复合材料 MBD 技术,完成零件制造阶段全三维数字化生产,从根本上改变传统复合材料的设计制造方式,采用数字量形式对产品进行全面描述和数据传递,实现了设计与制造之间数据的无缝集成。

(6)ATE测试工装系统。

记录并实时监控产品生产测试过程数据,并与信息系统有效的管理起来。

有效的控制与管理产品生产中的原始数据。

3 结语以工业4.0智能化生产流程作为重要支撑,解决了个性定制难以规模化生产的困难,做深全品类个性化定制领域。

将LFT、SMC、拉挤及缠绕生产线与后道工序通过智能化升级,基于云平台的创建,将资源进行全面整合,建立了多个联动控制系统。

产品生产每个环节的原始记录都采用计算机采集、记录、保存,提高了工作效率,保证了原始记录的完整性,提高了产品的合格率,车间生产产品的一次送检合格率均在99%以上。

网络数据平台的构建围绕着公司运作的几个大的职能部门,从销售订单的确定开始、到原材料的采购、原材料的检验入库、生产、销售打包、财务核算等各个环节,利用计算机软件技术,建立了一套协同工作的平台。

在这个平台上,各个部门之间能够及时的共享信息、协同工作,当一方面有需求发生变化时,另一方面能及时的了解到该信息,提高了工作效率。

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文•相关推荐浅谈聚羧酸高性能减水剂的合成及复配技术综述论文0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚 Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG聚醚类、酯类产品几乎已退出了市场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚羧酸减水剂生产工艺
一、引言
一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减
水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代
高性能减水剂阶段。

与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点: 1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合
成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。

2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线
形梳状结构,而不是传统减水剂单一的线形结构。

该类减水剂主链上聚合有多种
不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的
空间位阻效应。

由于其广泛的原料来源,独特的分子结构,故而具有前两代减水
剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已
成为混凝土外加剂研究领域的重点和热点之一。

但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系
高性能减水剂的合成工艺。

因此,本文在此予以简介之。

二、聚羧酸系高性能减水剂合成工艺简介。

聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。


酯类:包括酯化和聚合两个过程。

聚醚类:只有聚合一个过程。

(一)、聚酯类聚羧酸系高性能减水剂合成工艺。

1、合成工艺简图
冷凝器去离子水
聚乙二醇过硫酸铵↓
→→→→→→酯化→→→→→计量槽→→聚合中和成
甲基丙烯酸→→→→
→→→→→→反应→→→→→计量槽→→反应反应品
↑↑
↑↑
去离子水氢氧化钠
2、反应过程如下:
(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。

(经减压蒸馏脱水,酸化反应更为完全)。

(2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。

计量酯化产物即聚
乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。

计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。

加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。

A料3小时滴定完,B料3.5小时滴定完,保温 1.5小时。

(温度控制:90±2℃)。

(3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。

(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应→→中和反应→→成品
(2)、反应过程如下:
①、聚合反应:计量维生素C:2.975kg,疏基乙酸:4.375kg,配以580kg 去离子水,泵入滴定罐A备用,是为A料。

计量丙烯酸175.5kg,配以44kg去离子水,泵入滴定罐B备用,是为B料。

往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55℃,加入双氧水 6.2kg(配114kg去离子水),同时滴定A、B料,B料3小时滴定完,A料3.5小时滴定完,保温1小时。

(温度控制60±2℃)。

②、中和反应:将聚合物降温至50℃以下,边搅拌边加入片碱67.5kg,调节PH值6—7,反应完成。

继加去离子水1100kg,得到含固量为40%的聚醚类聚羧酸系高性能减水剂成品。

三、几点补充
1、在聚酯类聚羧酸系高性能减水剂的合成中,减水剂中间大分子单体聚乙二醇
单甲基丙烯酸酯的合成是决定减水剂性能的关键因素。

因此,我们应该通过对不同分子量的聚乙二醇与甲基丙烯酸在不同摩尔比,不同反应温度、不同阻聚剂掺量、不同催化剂掺量、不同反应时间等试验条件下的研究,确定最佳的酯化工艺,达到95%以上的酯化率。

2、通过对不同引发剂掺量、不同分子量调节剂掺量、不同反应温度、不同反应
时间等试验条件下的研究,确定最佳的聚合工艺。

3、关于PH值控制。

PH值在6—7范围内较好:当PH值低于4时,聚合物浑浊,其净浆流动度、混凝土坍落度全无;当PH值高于9时,其净浆流动度、混
凝土坍落度开始下降。

四、结束语
聚羧酸系高性能减水剂的研发,应用是混凝土外加剂发展史上的一个里程碑。

由于其分子结构可调性比较大,我们应该通过改变分子结构中官能团的种类和数量赋予其更高的性能。

如低温早期强度型、高坍落度保持型、抗收缩型、低粘型
等等。

无疑,聚羧酸系高性能减水剂将成为混凝土外加剂技术的发展方向,其市
场亦将面临一个极大的发展机遇。

相关文档
最新文档