聚羧酸减水剂合成工艺
浅谈聚羧酸系高效减水剂的作用机理及合成工艺

浅谈聚羧酸系高效减水剂的作用机理及合成工艺近几十年来,我国的混凝土工程技术取得了很大进步,高性能混凝土、自密实混凝土的应用越来越广泛,因此,对高效减水剂的要求也越来越高。
聚羧酸系高效减水剂是近几年发展的新型高效减水剂,其主要成分为聚羧酸盐或脂的聚合物,其分散能力强,减水率高,对水泥的适应性好,将是今后高效减水剂研究和发展的重点。
研究开发新型的聚羧酸系减水剂受到国内外广泛关注,代表了高效减水剂的主要发展方向。
1、聚羧酸系高效减水剂的作用机理聚羧酸系减水剂由于其优异性能而引起业内广泛的关注。
为了有效开发这一类型的减水剂,对其减水机理的研究非常重要。
减水剂分散减水机理主要包括以下几个方面。
1.1水化膜润滑作用。
聚羧酸减水剂由于分子结构中存在具有亲水性的极性基,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。
水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌合水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大,和易性好。
1.2静电斥力作用。
水泥颗粒的稳定性主要由静电斥力和范德华引力的平衡来决定。
减水剂加入到新拌混凝土中,其中的负离子就会在水泥粒子的正电荷的作用下定向吸附在水泥颗粒表面,形成扩散双电层的离子分布,使得水泥颗粒表面带上电性相同的电荷,产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。
1.3空间位阻作用。
一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,聚羧酸类减水剂吸附在水泥颗粒表面,虽然使水泥颗粒的负电位降低较小,静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。
1.4引气隔离“滚珠”作用。
碳五单体合成聚羧酸减水剂配方工艺

碳五单体合成聚羧酸减水剂配方工艺聚羧酸减水剂是一类常用于混凝土中的化学添加剂,它能够显著减小混凝土的水灰比,同时增加混凝土的可制动性和流动性。
在建筑工程中,使用聚羧酸减水剂可以大大提高混凝土的工作性能,从而提高施工效率和混凝土的强度。
碳五单体合成聚羧酸减水剂的配方工艺包括以下几个步骤:1. 原料准备:首先需要准备碳五单体(也称为磺化石油沥青),以及一些其他辅助原料。
其中,碳五单体是制备聚羧酸减水剂的主要原料,而其他辅助原料可以根据具体需要选择,如稳定剂、增稠剂和助剂等。
2. 真空脱气:将碳五单体倒入反应釜中,并进行真空脱气处理。
真空脱气的目的是去除碳五单体中的杂质和气体,以提高后续反应的效果。
3. 添加驱动剂:将事先准备好的驱动剂加入到碳五单体中。
驱动剂通常是二氧化硫(SO2)或硼酸(H3BO3),它们可以激活碳五单体的分子链,使其具有较好的反应性。
4. 添加辅助原料:根据具体需要,将一些辅助原料加入到反应釜中。
例如,稳定剂和增稠剂可以使聚羧酸减水剂具有更好的稳定性和流动性,助剂可以提高其使用效果。
5. 反应合成:将反应釜加热至适当温度(一般为80-100摄氏度),继续搅拌反应一段时间。
在反应过程中,碳五单体分子链之间会发生交联反应,形成聚羧酸减水剂。
反应时间一般为数小时,具体时间可以根据反应釜的规格和配方要求进行调整。
6. 过滤和干燥:将合成好的聚羧酸减水剂进行过滤,去除其中的杂质和固体颗粒。
然后,将过滤后的液体进行干燥,以去除其中的水分和溶剂。
7. 包装和存储:将干燥的聚羧酸减水剂装入适当的包装容器中,密封保存。
聚羧酸减水剂比较敏感,容易受到水分和温度的影响,因此在存储过程中需要注意避免潮湿和高温环境。
总之,碳五单体合成聚羧酸减水剂的配方工艺主要包括原料准备、真空脱气、添加驱动剂、添加辅助原料、反应合成、过滤和干燥、以及包装和存储等步骤。
通过这些步骤的合理控制,可以制备出性能稳定、效果良好的聚羧酸减水剂,提高混凝土的工作性能和施工效率。
粉体聚羧酸减水剂工艺

粉体聚羧酸减水剂工艺概述粉体聚羧酸减水剂是一种用于混凝土制备的添加剂,能够显著减少混凝土的水泥用量,提高混凝土的流动性和可泵性,同时保持其强度和耐久性。
本文将介绍粉体聚羧酸减水剂的工艺,包括生产、应用和质量控制等方面的内容。
一、粉体聚羧酸减水剂的生产工艺1. 原材料选择粉体聚羧酸减水剂的主要原料是聚羧酸醚单体和一些辅助材料,如稳定剂、助剂等。
原材料的选择对产品的性能和质量起着至关重要的作用。
2. 反应合成将聚羧酸醚单体与辅助材料按一定比例混合后,在一定温度下进行缩聚反应,生成聚羧酸醚聚合物。
反应过程需要控制好温度、反应时间和搅拌速度等参数,以确保产品的稳定性和一致性。
3. 干燥和粉碎反应合成后的聚羧酸醚聚合物需要进行干燥处理,以去除残余的溶剂和水分。
干燥后的产物需要经过粉碎处理,得到细粉体聚羧酸减水剂。
二、粉体聚羧酸减水剂的应用工艺1. 混凝土配制在混凝土的配制中添加粉体聚羧酸减水剂时,需要根据混凝土的设计强度、工作性能和施工要求等因素进行合理的剂量控制。
一般情况下,根据试验和经验选择合适的投加量,将粉体聚羧酸减水剂与混凝土的其它材料一同投入搅拌机进行搅拌。
2. 混凝土施工添加粉体聚羧酸减水剂的混凝土在施工过程中应注意控制水灰比和搅拌时间,以保证混凝土的流动性和可泵性。
同时,需要合理调整配合比和施工工艺,以确保混凝土的性能和质量满足要求。
3. 质量控制粉体聚羧酸减水剂的质量控制包括原材料的采购和检验、生产过程的监控和调整、产品的质检和包装等环节。
在生产过程中,需要严格控制反应条件和工艺参数,确保产品的稳定性和一致性。
同时,对成品进行严格的质检,确保产品符合相关标准和要求。
三、粉体聚羧酸减水剂工艺的优势和应用前景1. 优势粉体聚羧酸减水剂具有良好的流动性、可泵性和保水性能,能够显著提高混凝土的工作性能和施工效率。
同时,由于减少了水泥的用量,可以降低混凝土的成本,并减少对环境的影响。
2. 应用前景粉体聚羧酸减水剂在混凝土工程中的应用前景广阔。
聚羧酸减水剂生产工艺的制作方法

图片简介:本技术介绍了一种聚羧酸减水剂生产工艺,在常温状态下,往反应箱内加入占总溶液总比重20%50%的聚醚时,后加入占总溶液总比重30%71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到8085摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时。
技术要求1.一种聚羧酸减水剂生产工艺,其特征在于:在常温状态下,往反应箱(1)内加入占总溶液总比重20%-50%的聚醚时,后加入占总溶液总比重30%-71.7%的水进行溶解,自由基聚合:往进行溶解后的溶液内滴加占总溶液总比重3%-7.5%的丙烯酸,滴加完毕后开始滴加占总溶液总比重0.3%的巯基乙酸,接枝反应:对经过自由基聚合的溶液进行加热直到80-85摄氏度,开始滴加一个半小时的混合物,所述混合物由占总溶液总比重0.5%过硫酸铵和占总溶液总比重4.5%-10.5%水混合而成,保温:将经过接枝反应中的溶液在80摄氏度下,保温一个半小时至两个小时;其中,所述的反应箱(1)侧壁上设有出料管(11),所述反应箱(1)设有加热块(13),所述反应箱(1)内设有传动轴(14),所述传动轴(14)上设有搅拌杆(141),所述反应箱(1)侧壁上设有保温层(12),所述反应箱(1)顶部设有多个进料口(15),所述反应箱(1)顶部设有多个与所述进料口(15)相配合的连接管(3),所述连接管(3)顶部设有储料箱(2),所述连接管(3)侧壁上设有第一通槽,所述第一通槽内设有固定板(31),所述连接管(3)内设有支撑板(5),所述支撑板(5)上设有连接轴(4),所述连接轴(4)穿设于所述储料箱(2)内,所述支撑板(5)底部设有导块(55),所述支撑板(5)上设有下料口(54),所述下料口(54)设于所述导块(55)上方;在制备聚羧酸减水剂时,将聚醚和水加入到反应箱(1)内,传动轴(14)带动搅拌杆(141)转动,聚醚与水在反应箱(1)内混合;将丙烯酸放入到其中一个储料箱(2)内,再将巯基乙酸、硫酸铵和水的混合物放入另外的储料箱(2)内,推动连接轴(4)带动支撑板(5)移动,根据需要滴加的量确定支撑板(5)的位置;当支撑板(5)位置确定后,储料箱(2)内的液体进入到连接管(3)内,连接管(3)内的液体从下料口(54)处往下运动,液体粘沿导块(55)往下滑落,将液体滴入到反应箱(1)内,根据先后顺序依次将相应的液体加入到反应箱(1)内,当聚羧酸减水剂制备完成后,将聚羧酸减水剂出料管(11)内排出,获得初成品聚羧酸减水剂。
聚羧酸盐类高效减水剂的原料与合成工艺

聚羧酸盐类高效减水剂的原料与合成工艺本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。
(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。
这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。
日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的商品混凝土外加剂。
其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为23个)、200份甲基丙烯酸、150份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40份10%过硫酸按水溶液。
滴加完毕后,再在1h内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000的聚合物水溶液为最终成品。
(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。
这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。
此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。
典型合成工艺:以烷氧基胺H2N(BO)—R为反应物与聚授酸接技出(BO代表氧化烯基团,n为整数,R为C1~C4烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。
反应时,胺反应物加量一般为—COOH摩尔数的10%~20%。
聚羧酸减水剂生产工艺

二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚 酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
(3)、中和反应,将反应好的聚合物降温至50C以下,边搅拌边加入片 碱100kg,调节PH值6—乙反应完成,得到含固量为30%勺聚酯类聚羧酸系高 性能减水剂成品。
(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应―中和反应―成品
(2)、反应过程如下:
1、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵 入滴定罐A备用,是为A料。计量丙烯酸,配以44kg去离子水,泵入滴定罐B备用,是为B料。往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55C,加入双氧水(配114kg去离子水),同时滴定A B料,B料3小时滴定完,A料小时滴定完,保温1小时。(温度控制60±2C)。
聚羧酸减水剂生产工艺
一、引言
一般认为, 减水剂的发展分为三个阶段: 以木质素磺酸钙为代表的第一代普通减 水剂阶段; 以萘系为代表的第二代高效减水剂阶段; 以聚羧酸系为代表的第三代 高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚 羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合 成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、 (甲基)丙烯酸、 烯丙醇聚氧乙烯醚等。2.在分子结构上, 聚羧酸系高性能减水剂的分子结构是线 形梳状结构, 而不是传统减水剂单一的线形结构。 该类减水剂主链上聚合有多种 不同的活性基团,如羧酸基团(一COOH羟基基团(一0H、磺酸基(一S03Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的 空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水 剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已 成为混凝土外加剂研究领域的重点和热点之一。
聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。
2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。
该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。
由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。
因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。
聚酯类:包括酯化和聚合两个过程。
聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。
聚羧酸减水剂生产流程

聚羧酸减水剂生产流程
聚羧酸减水剂是混凝土施工中常用的一种添加剂,它能够有效地改善混凝土的工作性能,降低水灰比,提高混凝土的强度和耐久性。
因此,聚羧酸减水剂的生产流程显得尤为重要。
首先,聚羧酸减水剂的生产需要原料的准备。
常见的原料包括丙烯酸、甲基丙烯酸、丙烯酸乙酯等。
这些原料需要经过一系列的反应和精炼处理,才能得到符合要求的产品。
接着,原料经过预处理后,需要进行聚合反应。
聚合反应是聚羧酸减水剂生产的关键步骤,其反应条件的控制对产品的质量有着直接的影响。
在聚合反应过程中,需要控制反应温度、压力和反应时间,确保聚合反应能够高效进行。
随后,得到的聚合物需要进行后续的加工处理。
这包括溶剂的去除、产品的精炼和纯化等步骤。
通过这些加工处理,可以得到高纯度、高稳定性的聚羧酸减水剂产品。
最后,经过严格的质量检验和包装,聚羧酸减水剂产品就可以投入市场使用了。
在整个生产流程中,质量控制是至关重要的,只
有确保每一个环节的质量,才能最终得到优质的产品。
总的来说,聚羧酸减水剂的生产流程涉及到原料准备、聚合反应、加工处理和质量控制等多个环节,每个环节都需要严格把控,确保产品的质量和稳定性。
只有如此,才能生产出符合标准要求的聚羧酸减水剂产品,为混凝土施工提供优质的添加剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 前言混凝土减水剂可以较好地分散水泥颗粒,减少达到规定工作度的用水量,它既可以用来提高混凝土强度,也可以用来提高混凝土的工作性能,是混凝土材料中的关键组分之一。
目前广泛使用的混凝土减水剂主要有 4 大类,即萘系、密胺系、聚羧酸系和氨基磺酸盐系。
其中聚梭酸系高性能混凝土减水剂在1985 年由日本研发成功后, 20 世纪90 年代中期己正式工业化生产,是继木钙和萘系减水剂后发展起来的第三代高性能混凝土减水剂,以高减水率、高保坍、高增强、与水泥适应性强等特点,以及超分散性和超稳定性引起了人们的密切关注,目前在欧美一些发达国家得到了广泛应用[ 1 ]。
聚羧酸型减水剂分子链上具有较多的活性基团,主链上连接的侧链较多,分子结构自由度大,高性能化潜力大,因此聚羧酸型减水剂是近年来国内外研究较为活跃的高性能减水剂之一,同时也是未来减水剂发展的主导方向。
本文在合成聚醚甲基丙烯酸酯大单体的基础上, 采用水溶液共聚的方法合成出了聚羧酸系高效减水剂,通过因素试验确定最佳的合成工艺, 并研究了其应用性能。
2 实验2.1 实验原料及试验设备聚醚(分子量为1200,上海台界化工有限公司) ;对甲苯磺酸(国药集团化学试剂厂) ;对苯二酚(天津市大茂化学试剂厂) ;甲基丙烯磺酸钠(余姚市东泰精细化工有限公司) ;甲苯(天津市大茂化学试剂厂) ;甲基丙烯酸(成都科龙化工试剂厂) ;过硫酸铵(天津市大茂化学试剂厂) 等。
聚羧酸系减水剂:进口聚羧酸(p s1, 60% ) ;国内聚羧酸(p s2, 40% ) ;自制聚羧酸(p s3, 20% ) 。
水泥:炼石P·O 42.5 级普通硅酸盐水泥;建福P ·O42.5 级普通硅酸盐水泥。
500ml 三颈烧瓶;集热式恒温磁力搅拌器;温度计; 250ml 滴液漏斗;旋转蒸发器等。
2.2 合成方法2.2.1 大单体的合成将一定量的聚醚、甲基丙烯酸、阻聚剂对苯二酚和催化剂对甲苯磺酸加到装有温度计的三颈瓶中,以甲苯为带水剂,在130℃下酯化8h。
反应结束后,真空除去其中的带水剂和少量杂质,得到所需的大单体。
在130℃下反应即是为减少甲基丙烯酸的挥发,又能提高了酯交换反应的安全度。
2.2.2 聚羧酸盐减水剂的合成将预定的水和甲基丙烯磺酸钠加入到三颈瓶中, 90℃下分别滴加制备的大单体、甲基丙烯酸混合液和引发剂水溶液,约 1.5h 滴完并保温搅拌 2.5h。
反应结束后冷却至70℃用NaOH 水溶液(30% )中和pH 值为6~7,得到黄色或棕红色的水溶液(浓度为20% ) 。
2.2.
3 水泥净浆及混凝土性能试验按照GB8077 - 2000 和GB8076 - 1997 对聚羧酸型减水剂进行净浆和混凝土性能测试。
3 结果与讨论3.1 反应温度对聚羧酸性能的影响本聚合反应是吸热反应,聚合温度影响了反应的进程及产物的性能。
如果温度选择过低, 则引发剂的半衰期过长,在一般的聚合时间内,引发剂残留分率大,单体的转化率就底;而温度过高,则半衰期过短,早期即有大量分解,聚合后期将无足够的引发剂来保持适当的聚合速率, 造成聚合产物的分子结构不均匀。
同时温度愈高,聚合速率愈大,同时聚合物分子量愈低[ 2 ]。
聚合温度对反应的影响如表1 所示。
随着温度的升高,水泥净浆分散性先增大,后随之降低,100℃时所合成的减水剂对水泥净浆分散性最差。
这可能是因为一方面温度升高,分子量减小,从而影响它对水泥净浆流动度的保持,另一方面,主链上的侧链因为是酯类化合物,在高温下发生可逆反应,部分侧链发生脱落从而造成分散性保持的降低。
3.2 反应时间对减水剂性能的影响随着反应的进行,单体浓度逐步降低,聚合物浓度则相应提高,延长反应时间主要是为了提高转化率,对产物性能的影响较小。
反应时间对聚羧酸系减水剂的分散性能的影响如表2。
如果聚合时反应时间较短,则共聚体系中单体的转化率较低,溶液中还存在着一定的单体,这对于水泥净浆流动度的保持不利。
反应的时间越长,侧链脱落的数目就越多,以致于难以“屏蔽”主链上的发挥减水作用的功能基团如羧基、磺酸基,从而引起水泥净浆流动度保持能力的下降。
3.3 引发剂用量的影响在聚合反应过程中,引发剂用量对产物的分子量大小、分子量分布和单体的转化率有十分重要的影响。
其中分子量的大小和分子量分布影响着减水率和混凝土的保坍性能单体;而单体转化率关系到聚羧酸聚合物的产率和有效含量。
具体数据如表3 所示。
从表中可以看出,引发剂用量在2.5%时,净浆流动度达到最大值,同时其经时损失最小。
3.4 混凝土性能试验一般认为,聚羧酸系减水剂的分散能力除了静电斥力外,主要是通过其梳形结构提供了空间位阻效应,即水泥颗粒的表面被一种嵌段或接枝共聚物分散剂所稳定,以防发生无规凝聚,同时聚羧酸分子中的羟基、羧基吸附在水化物的晶核上,延缓了结晶、水化硬化的速度, 从而有利于混凝土的保坍性能[ 3 ]。
为了进一步比较合成产物的性能,将所合成的聚羧酸与国外的p s1 聚羧酸减水剂、国内p s2 聚羧酸减水剂进行了混凝土性能试验。
注:混凝土配合比/kg, C (水泥) : S(砂子) : G(石子) = 1: 2.04: 2.6 通过混凝土试验,自制的聚羧酸减水剂具有较好的使用性能,已经到达或优于国内合成聚羧酸的水平,但比起国外的聚羧酸减水剂,还有一定的差距。
根据以上的试验分析,我们得出了最佳的合成工艺条件。
4 结论⑴当聚合条件为:反应温度90℃,反应时间4h,引发剂用量 2.5%时,合成出的聚羧酸具有最佳的使用效果。
⑵根据混凝土试验,自制的聚羧酸减水剂已经具有较好的使用效果,且部分性能已经优于国内大多聚羧酸的水平。
⑶减水剂在水溶液下生产,工艺条件温和、无污染,符合环保发展方向,将有广泛的发展前途。