Influence of pores on the thermal insulation behavior of thermal barrier
工程类专业英文术语,大学生必看

专业英文术语A【返回检索】Abram's rule阿勃拉姆规则Abrasion磨耗Accelerated strength testing快速强度试验Acid resistance耐酸性Adiabatic temperature rise绝热升温Admixture外加剂Aggregate集料(混凝土)Air entrainment引气(加气)Autoclave高压釜Accelerated curing快速养护Absorbed water吸附水Added water附加水Aggregate bulk density集料松散容重Auti-corrosion Admixture防锈剂Anisotropic materials各向异性材料Air-entrained concrete引气混凝土Air Entrain Admixture引气剂Aggregate porosity集料孔隙率Artificial marble人造大理石Alite阿利特Alkali-aggregate reaction碱-集料反应Alkalies in Portland cement波特兰水泥中的碱Alkali-silica reaction碱-二氧化硅反应Anhydrite无水石膏(硬石膏)Autoclave expansion test高压釜膨胀试验Air-entrained concrete加气混凝土Adhesion agent粘着剂Accelerating agent速凝剂All mesh ferrocement无筋钢丝网水泥Allyl-Butadiene-Styrene丙烯氰-丁二烯-苯乙烯共聚树脂(ABS)Air pockets鼓泡Axial tensive property轴心受拉性能Axial compressive property轴心受压性能Air impermeability气密性Abnormal Polypropylene无规聚丙烯(APP)Asbestos fibres石棉纤维Asbestos insulation石棉绝热制品Autoclave expansion test压蒸法Artificial人造石Air entraining and water-reducing admixture 引气减水剂Active addition活性混合材Addition of cement水泥混合材Aluminoferic cement clinker铁铝酸盐水泥熟料Age龄期,时期Aluminum silicate wool硅酸铝棉Aluminum foil铝箔Air space insulation封闭空气间层Areal thermal resistance(specific thermal resistance)比热阻(热导率的倒数)Absorptivity吸收率Air permeability(Air penetration coefficient)空气渗透率BBrick 绝热砖Bond strength 粘结强度Bleeding 泌水Bitumen-determination of penetration 沥青针入度测定法Battery-mold process 成组立模工艺Bar spacing 加筋间距Binder bonding agent 粘合剂Barytes 重晶石Batchhing 称量(配料)Belite 贝利特Biaxial behavior 双轴向性质Blaine fineness 勃来恩,细度Blast-furnace slag 高炉矿渣Blast-furnace slag cements 高炉矿渣水泥Blended portland cements 掺混合料的波兰水泥Bogue equations 鲍格方程式Bond 粘结Brucite 氢氧镁石(水镁石)Bulking of sand 砂的湿胀Bull-float 刮尺Board(block)insulation 绝热板Bitumastic paint 沥青涂料Bituminous road materials 沥青筑路材料Blowing agent 发泡剂Bar between mesh 加筋Ball impact test (冲击强度)落球试验法Basic constituent 碱性组分基本成分Basicity 碱度,碱性Batch mixture 配合料Bend stress 弯曲应力Bituminous paint 沥青涂料Bituminous concrete 沥青混凝土Block brick 大型砌块Blunger 搅拌器,打浆机Brick setting 砖砌体(brickwork)Brittle point of asphalt 沥青冷脆点Broken stone 碎石Bubbing potential 发泡能力Building brick 建筑红砖Building system 建筑体系,建筑系统Brittle material 脆性材料C【返回检索】Calcium aluminate cement 铝酸钙水泥Calcium aluminates 铝酸钙Calcium chloride 氯化钙Calcium ferroaluminates 铁铅酸钙Calcium hydroxide 氢氧化钙Calcium oxide 氧化钙Calcium silicate hydrate 水化硅酸钙Calcium silicate 硅酸钙Calcium sulfates 硫酸钙Calcium sulfoaluminate 硫铅酸钙Calcium sulfoaluminate hydrates 水化硫铝酸钙Capillary voids(pores)in cement 水泥中的毛细管Capillary water 毛细管水Carbon dioxide 二氧化碳Cavitation 混凝土中的大孔洞,空蚀作用Cement fineness 水泥细度Cement paste 水泥浆Cement soundness 水泥安定性Cement specifications 水泥规范Cement strength 水泥强度Cement types 水泥品种Cold rolled steel 冷轧钢Cellular concrete 多孔混凝土Complex accelerator based on triethanolamine 三乙醇胺复合早强剂Component 组分,成分,构件Compliance 柔度Composite 复合,合成,复合材料Composite insulation 复合绝热层Composite portland cement 复合硅酸盐水泥Concrete 混凝土Condensed silica fume 浓缩(凝聚)的二氧化硅烟雾(硅粉)Consistency 绸度Core tests 钻芯试验Corrosion of steel in concrete 混凝土中钢筋的腐蚀Cost of concrete 混凝土成本Cracking 开裂Creep 徐变Critical aggregate size 临界集料尺寸C-S-H 水化硅酸钙Ceramsite 陶粒Chalcedony 玉髓Chemically combined water 化学结合水Chert 燧石(黑硅石)Chloride 氯化物Chloroprene Rubber 氯丁橡胶(CR)Chord modulus 弦弹性模量Clinker 熟料Coarse aggregate 粗集料Cold-weather concreting 冷天浇筑混凝土Compacting factor test 捣实系数试验Compaction(consolidation)捣实(捣固)Compressive strength 抗压强度Computer control system 计算机控制系统Concrete batching plant 混凝土搅拌站Concrete composition 混凝土配合比Concrete products 混凝土制品Concrete pump 混凝土输送泵Coefficient of permeability of concrete 混凝土渗透系数Carbonated lime sand brick 碳化灰砂砖Carbonating 碳化处理Cement resistance to chemical 水泥抗化学侵蚀性Coefficient of thermal expansion 热膨胀系数Conductivity 导热性Coefficient of shrinkage 收缩系数Coefficient of permeability of concrete 混凝土收缩系数Cement mortar 水泥胶砂Crescent ribbed bars 月牙肋钢筋Concrete block 混凝土砌块Cold-drawn reinforcement bar 冷拉钢筋Cold rolled steel 冷轧钢Condensation polymerization 缩聚反应Critical degree of saturation 临界饱和度Critical stress 临界压力Cryogenic behavior 低温性质Crystallization pressure of salts 盐的结晶压力Crystal structure and reactivity 结晶结构和活性Curing 养护Civil Engineering 土木工程Cement 水泥Crack 裂缝Calcium silicate insulation 硅酸钙绝热制Cube size 立方体试件尺寸Characteristic strength 特征强度Coarse aggregate ratio to fine 粗集料玉细集料之比Carbonated shrinkage 碳化收缩Calcium silicate insulation 硅酸钙绝热制品Cellular(foamed)glass 泡沫玻璃(多孔玻璃)Composite insulation 复合绝热层品Cement mortar 水泥砂浆Cork 软木Cork insulation 软木绝热制品Cellular(foamed)plastics 泡沫塑料(多孔塑料)Cellular(foamed)polystyrene 聚苯乙烯泡沫塑料Cellular(foamed)polyurethane 聚氨脂泡沫塑料Calcium-resin insulating board 钙塑绝热板Cellular(foamed)rubber 泡沫橡胶D【返回检索】Darby 刮尺D-cracking D行裂缝Deicing salts action 除冰盐作用Diatomaceous earth 硅藻土质泥土Dicalcium silicate(C2S)硅酸二钙Dynamic modulus of elasticity 动弹性模量Dolomite 白云石Drying shrinkage 干燥收缩(干缩)Ductility 延性Durability 耐久性Durability factor 耐久性因素Decoration glass 装饰玻璃Decoration mortar 装饰砂浆Deformed bar 变形钢筋,螺纹钢Defoamer 消泡剂Dense concrete 密实混凝土Diatomaceous silicate 硅藻土(Kieselguhr,diatomite)Diatomite insulation 硅藻土绝热制品Density 密度Deformation 变形钢筋Degree of hardness 硬度Degree of humidity 湿度E【返回检索】Early-age behavior早期性质Ecological benefit生态效应Effective absorption有效吸收Efflorescence白霜Elastic modulus弹性模量Electron micrographs电子显微图Energy requirement能量需要Entrained air引入的空气Extensibility可伸长性Emerging wire露丝Emerging mesh露网Expanded perlite膨胀珍珠岩Epoxy Resin环氧树脂Erosion 冲刷风化、剥蚀Ettringite 钙矾石Expanded clay and shale 膨胀粘土和页岩Expanded slag aggregate 膨胀矿渣集料Expansive cement concrete 膨胀水泥混凝土Expansive cement 膨胀水泥Expansive phenomena in concrete 混凝土中的膨胀现象Expanded vermiculite 膨胀蛭石Expanded rermiculite insulation 膨胀蛭石制品Expanded plastics 多孔塑料Engineering plastics 工程塑料F【返回检索】Fabriform 土工模袋False set假凝Feldspar长石Fiber-reinforced concrete纤维增强混凝土Final set终凝Fine aggregate细集料Fineness modulus细度模量Flowing concrete流动混凝土Fly ash粉煤灰Foamed slag泡沫矿渣Formwork removal拆模Ferromanganese锰钢Flow of cement mortar水泥胶砂流动度Fiber reinforced plastics纤维增强塑料Fiber-glass reinforced plastics玻璃纤维增强塑料Facebrick饰面砖,面砖Facing tile外墙面砖Faience mosaic嵌花地砖,釉陶锦砖Fiber cement纤维水泥Figured glass压花玻璃Fine sand细砂Fineness of cement水泥细度Finishing抹面(修整)Flash set闪凝(瞬间凝结)Flexural strength弯曲强度Flint燧石Floating刮平Fracture toughness断裂韧性Free calcium oxide游离氧化钙Freeze-thaw resistance抗冻融性Fresh concrete新拌混凝土Facing面层Fiber insulation纤维绝热材料Flexible insulation柔性绝热制品Frost action on aggregate骨料受到冰冻作用Frost action on cement paste水泥浆受到冰冻作用Future of concrete混凝土的前景Fire resistance耐火性Ferrocement钢丝网水泥Ferrocement with skeletal bar加筋钢丝网水泥Flexural property受弯性能Fatigue resistance耐疲劳性Forst resistance抗冻性Fineness modulus细度模数(M)Flexural rigidity抗弯刚度(B)Foamed concrete泡沫混凝土Fiber board纤维板Frost action on concrete混凝土受到冰冻作用G【返回检索】Gamma raysγ-射线Gel pores凝胶孔Gel/space ratio凝胶/空隙比(对强度的影响)(Effect on strength)Geonet 土工网Geotextile 土工格栅Geotextile 木织物Glass geogrid 土工复合排水材Geomat 土工垫Gradation级配Gypsum石膏Granulated wood粒状棉Giving an acid reaction发生酸性反应Grading颗粒级配Grain-size refinement级配曲线Gravel砾石、卵石Graywacke杂砂岩Grout薄浆(灌浆)Granite花岗岩Graph图表、图解Green concrete新拌混凝土Gritly粗砂状的Ground slag矿渣粉Gypsum wall board石膏墙板Glass geogrid 玻纤网Glassfiber Reinforced Plastics玻璃纤维增强塑料Glass wool玻璃棉Granular(powder)insulation颗粒绝热材料Gap-graded aggregate间断级配材料Gas concrete加气混凝土Glass玻璃体Giving a basic reaction发生碱性反应Gypsum concrete石膏混凝土H【返回检索】Hardening 硬化Hcp 水化水泥浆的简写Heat of hydration 水化热Heavyweight aggregate 重集料Heavyweight concrete 重混凝土Hemihydrate 半水化物High-alumina cement 高铝水泥High-early strength cement 高早强水泥High-strength concrete 高强混凝土High-workability concrete 高工作性混凝土Hot-weather concreting 热天浇筑混凝土Hydrophilic and hydrophobic 亲水与憎水Hydrated(portland)cement paste 已水化的水泥浆Hydration of portland cement 波特兰水泥的水化Hydration reaction of aluminates 铝酸盐的水化Hydration reaction of silicates 硅酸盐的水化反应Hydraulic cement 水硬性水泥Hydraulic pressure 水压力Honeycomb 蜂窝Heat transfer rate 热流量Homogeneous materials 均质材料High-tensile reinforcing steel 高强度钢筋High-tensile wire 高强钢丝High carbon steel 高碳钢High strength concrete 高强混凝土High performance concrete 高性能混凝土I 【返回检索】Igneous rocks for aggregate 作为集料的岩浆岩Impact strength 冲击强度Impregnation with polymers 用聚合物浸渍Initial set 初凝Initial tangent modulus 初始正切模量Interlayer space in C-S-H C-S-H中的层间空间Interlayer water in C-S-H C-S-H中的层间水Impact strength 抗冲击强度Impermeability 抗渗性,不渗透性Impermeability to water 抗渗水性,不透水性Impregnate 浸渍,渗透Index of quality 品质指标,质量控制标准Inhomogeneous 不均匀的,多相的Iron blast-furnace slag 化铁高炉渣Iron ores aggregate(heavyweight)铁矿石(重集料)Isotropic materials 各向同性材料Iron wire 低碳钢丝Impact ductility 冲击韧性Initial shrinkage 早期收缩Initial strength 早期强度Insulating layer 隔热层Intarsia 玻璃锦砖Impact resistance 抗冲击性J 【返回检索】Jet set cement 喷射水泥Jolting table 振动台Job mix 现场配合Jaw crusher 颚式破碎机"Jian-1" water reducer "建-1"型减水剂K 【返回检索】Killed steel 镇静钢Kiln dust 窑灰,飞灰Kiln building 窑房Kiln plant 窑设备Kilogram calorie 千卡,大卡Knot 木节Kominuter 球磨L【返回检索】Low PH value cement 低碱水泥Laitance 浆皮Leaching of cement paste 水泥浆渗漏Lime cement 石灰水泥Limestone 石灰石Lightweight aggregates 轻集料Lightweight concrete 轻混凝土Lignosulfonate 木质磺酸盐Low heat Portland cement 低热波特兰水泥Laboratory 实验室Lean concrete 贫混凝土Loss of slump of concrete 混凝土的坍落度损失Le chatelier soundness test 雷氏夹法Loss on ignition 烧失量Light weight ferrocement 轻质钢丝网水泥Longitudinal bar 纵筋Longitudinal bar spacing 纵筋间距Loose fill insulation 松散填充绝热层Low alloy steel 低合金钢Low caron colddrawn steel 冷拔低碳钢丝Longitudinal rib 纵肋Lumber grading 木材等级M 【返回检索】Macrostructure 宏观结构Magnesium oxide 氧化镁Magnesiun salts solution effect on concrete 镁盐溶液对混凝土的影响Map cracking 地图形裂纹Marcasite 白铁矿Mass concrete 大体积混凝土Maturity concept 成熟度概念Maturity meters 成熟度测定仪Microcracking 微裂缝Microsilica 微细二氧化硅(硅粉)Minimum crack spacing 最小裂缝间距Microcrack 微裂Modulus of deformation 变形模量(EB)Mineral wool insulation 矿棉绝热制品Mineral fibres 矿棉纤维Masonry cement 砌筑水泥Mild steel 低碳钢Medium carbon steel 中碳钢Moisture content of wood 木材含水量Moisture 湿度水分Moisture condition 含水状态Mumicipal-waste aggregate 城市废物集料Moisture absorption 吸湿率(water vapour absorption)Moisture content of aggregate 骨料含水量Matrix 基材Mesh-bar placement and tying 铺网扎筋Manual plastering 手工抹浆Maximum size of sand 砂的最大粒径Mortar consistency 砂浆绸度Mortar strength 砂浆强度Maximum crack width 最大裂缝宽度Mix proportion by absolute volume 绝对体积配合比(设计)Mix proportion by loose volume 现场松散体积配合比(设计)Mixed-in-place 现场拌和Mix proportion by weight 重量配合比Mixed process 混合过程Mixing time 拌和时间Mixing water 拌和水Modility 流动性Membreane curing 薄膜养护Mocromolecule high polymer 高分子Microstructure 微观结构Mixing of concrete 矿物外加剂Mixing water 拌合用水Mix proportioning(designing)配合比(设计)Mix proportions 配合比Modified portland cement 改性的波特兰水泥Modulus of elasticity 弹性模量Modulus of rupture 挠折模量(破裂模量)Monosulfate hydrate 单硫酸盐水化物Mortar 砂浆Multiaxial strength 多轴向强度Map cracking 龟裂Mastic 玛脂Modulus of elasticity concrete 混凝土弹性模量Modulus of water-glass 水玻璃模数Masonry mortar 砌筑砂浆Maximum aggregate size 最大集料粒径Marber 大理岩Moderate heat portland cement 中热硅酸盐水泥Moderate heat of hydration 中热Moderate sulfate resistance 中抗硫酸盐Magnitude of self-stress 自应力N 【返回检索】NDT 非破损试验的缩写Neutron radiation 中子辐射Neoprene 氯丁橡胶NNO water reducer NNO型减水剂Non-hydranlic cement 气硬性水泥Non-destructive tests 非破损试验Nuclear shielding concrete 核屏蔽混凝土Normal distribution 正太分布Non-evaporable water 非蒸发水Nominal diameter 公称直径Normal consistency of cement paste 水泥净浆标准绸度Neat cement paste 水泥净浆Needle crystal 针状晶体Needle penetrometer 维卡仪O 【返回检索】Oscillating screen 振动筛Oscillation generator 振动器Oscillator 振动器Oil-well platform concrete 油井平台混凝土Opal 蛋白石Overlays of concrete 混凝土覆盖层Oriented water 定向的水Osmotic pressure 渗透压力Oven-dry aggregate 炉干骨料Overall thermal conductance 总导热系数Organosilicon 有机硅Organosilicon resin 有机硅树脂Oscillate 振动,振荡Ordinary low-alloy steel 普通低合金钢Ordinary oil well cement 普通油井水泥Ordinary portland cement 普通硅酸盐水泥P 【返回检索】Particle size 颗粒尺寸Penetration resistance 抗贯入性Periclase 方镁石Perlite 珍珠岩Permeability 渗透性Phosphate 磷酸盐Phenolic Formaldehyde 酚醛树脂(PF)Placing of concrete 混凝土的浇筑Plaster of paris 建筑石膏Polypropylene 聚丙烯(PP)Polystyrene 聚苯乙烯(PS)Polystyrene-plywood laminate 聚苯乙烯胶合木板Polyester plastics 聚酯塑料Plastic veneer 塑料贴面板Plastic-steel window 塑钢窗Polyester 聚酯Polyester Resin 聚酯树脂(PR)Plastic shrinkage 塑性收缩Poisson's ratio 泊松比Polymer concrete 聚合物混凝土(PC)Polymer-impregnated concrete 聚合物浸渍混凝土(PIC)Polymer-cement concrete 聚合物水泥混凝土(PCC)Polymethylmethacrylate 聚甲基丙烯酸甲酯Prestressed steel 预应力钢筋Pumped concrete 泵送混凝土Pumice concrete concrete block 浮石混凝土砌块Plastics 塑料Polythene 聚乙烯(PE)Polyvinyl Alcohol 聚乙烯醇(PV A)Polyvinyl Acetate 聚醋酸乙烯(PV AC)Polyvinyl Chloride 聚氯乙烯(PVC)Polyvinyl Formal 聚乙烯醇缩甲醛(PVFO)Porosity 孔隙率Portland cement 波特兰水泥Portland blast-furnace slag cement 高炉矿渣波特兰水泥Portlandite 氢氧钙石Portland pozzolan cement 火山灰质波特兰水泥Potential compound composition 潜在化合物成分Pyrite pyrrhotite 硫化铁,黄铁矿Particle size distribution 粒度分布Pat test 试饼法PH-value PH值Pozzolan 火山灰Pozzolanic reaction 火山灰质反应Preplaced aggregate concrete 预填集料混(PMMA)Pore-size distrbution 孔径分布Pore-size refinement 孔径尺寸修整Prestressded ferrocement 预应力钢丝网水泥Plain round bar 光圆钢筋凝土Proportioning 配合Pulverized fuel ash 磨细粉煤灰Pull-out test 拔出试验Pumice 浮石Q 【返回检索】Quality assurance 质量保证Quick set 快凝Quality 质量Quality control 质量控制Quartz glass 石英玻璃Quartz glass fiber 石英玻璃纤维Quartz sand 石英砂Quick lime 生石灰[CaO] Quartz 石英Quatzite 石英岩Quick-taking cement 快凝水泥Quick hardening 水硬性水泥Quench 水淬,骤冷R 【返回检索】Radiation shielding concrete辐射屏蔽混凝土Rapid setting and hardening cement快凝与快硬水泥Revibration重新振捣Rice husk ash谷糠灰Ready-mixed concrete预拌混凝土Recycled-concrete aggregate再生混凝土集料Regulated-set cement调凝水泥Retarding admixtures缓凝外加剂Retempering重新调拌Roller-compacted concrete滚筒-压实混凝土Reinforced plastics加筋塑料Reinforcement mat钢筋网Resistance to chemical attack of mortar砂浆耐蚀性Rock wool岩石棉Rigid insulation刚性绝热制品Rib height肋高Rib spacing肋间距Ribbed bars带肋钢筋Rich concrete富混凝土Residue on sieve筋余Raw limestone石灰石Raw gypsum二水石膏S 【返回检索】Salt crystallization pressure 盐的结晶压力Sand 砂Sandstone 砂岩Saturated surface dry condition 饱和面干条件Scaling 起皮,鳞片状剥落Schmidt rebound hammer 希密特回弹仪Screeding 抹平Seawater 海水Secant elastic modulus 正割弹性模量Sedimentary rocks for aggregate 作为集料的沉积岩Segregation 离析Self-stressing cement 自应力水泥Setting of cement paste 水泥浆的凝结Special hydraulic cement 特种水硬性水泥Specifications 规范Specific heat 比热Specific surface area 比表面积Sphericity 圆度Splitting tension strength 劈裂抗拉强度Standard specifications 标准规范Standard test method 标准试验方法Stiffening of cement paste 水泥浆的变硬Strain 应变Self-stressing cement mortar 自应力水泥砂浆Shear steel 剪切钢筋Saturation capacity 饱和含水量Saturation point 饱和点Stearic acid 硬脂酸Surface-active agents 表面活性剂Synthetic resin binder 树脂粘结剂Synthetic lightweight aggregate 人造轻集料Shotereting process 喷浆工艺Scaling 麻面Surface dusting 表面起砂Sandwich 夹层Shrinkage crack 收缩裂缝Stressed crack 受力裂缝Special steel 特种钢Sawdust concrete 锯屑混凝土Softening point test 软化点试验Solidification 凝固作用Stress 应力Stress intensity factor 应力强度因素Stress-strain curve 应力-应变曲线Surface moisture 表面水Splitting strength 劈裂强度Splitting failure 劈裂破坏Strength 强度Setting of concrete 混凝土的凝结Shear-bond failure 剪切粘结破坏Shear strength 剪切强度Shotcreting 喷射混凝土浇筑Shrinkage 收缩Shrinkage-compensating concrete 收缩补偿混凝土Sieve analysis of aggregate 集料的筛分析Silica fume 硅粉Slag 矿渣Slip-formed concrete 滑模混凝土Slump cone test 坍落度锥体试验Slump loss in concrete 混凝土中坍落度损失Solid/space ratio 固体∕空隙比Solid-state hydration 固态水化Soundness 安定性Spacing-factors of entrained air 引入空气的间距因素Structural lightweight concrete 结构轻混凝土Structure(microstructure)of concrete 混凝土的(微观)结构Structures(concrete)in photographs 混凝土结构照片Standard error 标准误差Stand sieve 标准筛Static modulus 静弹性模量Steam curing 蒸汽养护Strength grading 强度级别Strength of cube 立方体强度Strength at 28 days 28天强度Stress concentration 应力集中Styrene Butadiene Rubber 丁苯橡胶(SBR)Styrene-Butadiene-Styrene 苯-丁-苯乙烯Sulphoaluminate cement clinker 硫铝酸盐熟料Surface energy 表面能Surface hardness 表面强度Surface tension 表面张力Sand-lime brick 灰砂砖Saturated aggregate 饱和水集料Superplasticized admixture 超塑化外加剂Surface area 表面积Strength of aggregate 集料强度Strength of cylinders 圆柱体强度Supersulphated cement 石膏矿渣水泥Setting time of concrete 混凝土的凝结时间Standard of concrete 混凝土强度Standard deviation 标准差Sulfate attack 硫酸盐侵蚀Sulfate resisting cement 抗硫酸盐水泥Sulfates in portland cement 波特兰水泥中的硫酸盐Sulfides and sulfate aggregate 硫化物与硫酸盐集料Standard sand 标准砂Strength of cement mortar 水泥胶砂强度Strength grade of cement 水泥强度等级Spiral reinforcement 螺纹钢筋Stirrup 箍筋Struture lightweight concrete 结构用轻混凝土Specimen 试件Self-stressing concrete 自应力混凝土Sand grading 砂的级配Sand grading curve 砂的级配曲线Sand grading standard region 砂的级配标准区Self-stressing ferrocement 自应力钢丝网水泥Structure high density concrete 结构高表观密度混凝土Steel-fibre concrete 钢纤维混凝土Set retarder admixture 缓凝剂Set retarding and water-reducing admixture 缓凝减水剂Superplasticizer admixture 高效减水剂Superplasticized concrete 超塑性混凝土Setting time 凝结时间Sulphonated formaldehyde melamine 磺化甲醛三聚氰胺Saturated and surface-dry aggregate 饱和面干集料T 【返回检索】Tangent modulus of elasticity 正切弹性模量Temperature effects 温度效应Tensile strain 拉伸应变Tensile strain capacity 拉伸应变能力Tensile strength 拉伸强度(抗拉强度)Test methods 试验方法Thermal conductivity 导热性Thermal expansion coefficient 热膨胀系数Thermal shrinkage 热收缩Truckmixing 卡车搅拌Total water/cement ratio 总水灰比Trial mixes 试拌合物The particle grading 颗粒级配Tough aggregate 韧性集料Timber 木材Thermal insulation material 保温材料Test sieve 试验筛Through-solution hydration 通过溶液的水化Time of set 凝结时间Tobermorite gel 莫来石凝胶Topochemical hydration 局部水化Testing of material 材料试验Testing sieve shaker 试验用振动筛分机Test load 试验负荷Test method 试验仪表Test report 试验报告Test result 试验结果Tetracalcium aluminate hydrate 水化铝酸四钙Texture of wood 木材纹理Theories of cement setting and hardening 水泥凝结硬化理论Thermal contraction 热收缩Thermal diffusivity 热扩散性Thermosetting plastics 热固性塑料Technical manual 技术规范Test method of ferrocement panels in flexure 钢丝网水泥板受弯试验方法Transverse barspacing 横筋间距Thermo plastics 热塑性塑料Transverse rib 横肋Transverse bar 横筋Toughness 韧性Transition zone 过渡区Transporting concrete 混凝土输送Tricalcium aluminate 铝酸三钙Tricalcium silicate 硅酸三钙Triethanolamine 三乙醇胺Temperature shrinkage 温度收缩Thermal insulation material 绝热材料Thermal insulation properties 保温性能Thermal insulating concrete 绝热混凝土Thermal insulating plaster(Thermal insulating mortar)绝热砂浆U 【返回检索】Ultrasonic pulse velocity 超声脉冲速度Unixial compression behavior 单轴向受压状况Ultimate creep 极限徐变Ultimate strain 极限应变Unlimited swelling gel 无限膨胀凝胶Units of measurement 计量单位Unit weight 单位重量Ultimate gation 极限伸长值Ultimate principles 基本原理Ultrasonic inspection 超声波样份Uncombined CaO 游离CaOV 【返回检索】Vander Wale force 范德华力Vebe test 维勃试验Vermiculite 蛭石Very high early strength cement 超高早强水泥Vibration 振动,振捣Vicat apparatus 维卡仪V oid in hydrated cement paste 水化水泥浆中的孔隙V olcanic glass 火山玻璃Vinsol resin 松香皂树脂Viscometer 粘度仪Viscosity 粘度粘滞性Viscosity of asphalt 沥青粘滞性Voids ratio 孔隙率Vibro-moulding process 振动成型工艺Vibrating stamping process 震动模压工艺Vibrating vacuum-dewater process 振动-真空脱水工艺Vacuum insulation 真空绝热Vapour barrier,water vapour retarder 隔汽Vapor pressure 蒸汽压力Variegated glass 大理石纹Veneer 墙面砖、饰面砖Vesicular structure 多孔结构Vicat needle 维卡仪层Vibrating table 振动台Voids detection 空隙的测定V-B test(vebe test)维勃证W 【返回检索】Water 水Water/cement ratio 水灰比Water-reducing admixture 减水剂Water tightness 水密性、不透水性Water content 用水量Water requirement 需水量Water-lightness 透水性Water-reducing retaders 缓凝减水剂White cement 白水泥Windsor probe 温莎探针Winter concreting 混凝土冬季浇筑Workability 工作性(工作度)Wetting agents 温润剂Water solubility 水溶性Water retentivity 保水性Water storage 在水中养护Water repellent 疏水的、不吸水的、憎水的Workability loss of with time 和易性随时间损失Workability of ready-mixed concrete 预拌混凝土和易性Workability of light-weight concrete 轻混凝土和易性Water-reducing admixture 普通减水剂Water-proofing 防水的Water-proofing admixture 防水剂Wire rope 钢绞线Workability measurement 和易性测量Wire mesh 钢丝网Welded mesh 焊接网Wood wool slab 木丝板Water content(moisture content)含水率(湿度)Water absorption 吸水率Water resistance 抗水性Water vapor 水蒸汽Wearability 耐磨性Weather resistance 耐候性Workability 可加工性Wood-preserving process 木材防腐处理Work done by impact 冲击功Weighting error 称量误差Wet screening 湿法筛分,湿筛析Wetting and drying 潮湿与干燥Workability control 和易性控制Workability definition 和易性定义Water pepellent admixture 防水剂Water requirement for normal consistency of cement paste 水泥净浆标准绸度用水量Water proofing compound 防水化合物X 【返回检索】X-ray diffiraction analysis X射线衍射分析X-ray phase analysis X射线相分析X-rayogram X射线图式X-ray spectrometer X射线光谱仪Y 【返回检索】Yield limit 屈服极限Yield point 屈服点Yield strength 屈服强度Yield stress 屈服应力Yield of steel 钢材的屈服Z 【返回检索】Zeolite 沸石Zones for sand grading 砂级配区Zeta-potential ζ-电位Zone of heating 预热带。
多孔介质内对流换热的非热平衡模型相关问题研究

介质中的流动传热现象。
对多孔介质内的流动,可使用考虑非达西效应的Darcy –Brinkman -Forchheimer [1]模型进行分析;而对于多孔介质内的传热过程,能量方程可用热平衡(local thermal equilibrium,LTE)模型或非热平衡(local thermal non-equilibrium,LTNE)模型进行分析。
其中,热平衡模型被广泛用于分析多孔介质中的对流换热过程,该模型假设多孔固体骨架温度与流体温度局部相等(T s =T f ),适用于多孔固体骨架与流体局部温差不大的场合。
热平衡模型控制方程如下[2-4]:()[]()()()T T c T c c t ∇+∇=∇+-+∂∂d m p pf f ps s pf f 1λλερερερu (1)式中λm 为有效滞止导热系数[5],λd 为热弥散导热系数。
然而,当多孔固体骨架与流体局部温差不能忽略(T s ≠T f )时,热平衡模型便会引起较大误差,应该采用非热平衡模型。
非热平衡模型考虑多孔固体骨架与流体的对流换热,其控制方程包括流体能量方程和多孔固体骨架能量方程[3,6-9]:()()()[]()f s sf sf f d f f p pf f f pf f T T a h T T c T c t -+∇+∇=∇+∂∂λελερερu (2)()[]()[]()f s sf sf s s s ps s 11T T a h T T c t --∇-∇=-∂∂λεερSchumann 最早在1929年就考虑了非热平衡模型,但在他的研究中忽略了导热项的影响。
Quintard [10]在1998年第11届国际传热大会的主旨报告中,对在多孔介质中采用局部非热平衡模型进行理论建模做了系统分析,并在非热平衡模型中考虑了颗粒与流体间界面热阻的影响。
不少研究者已经使用非热平衡模型进行了一系列的研究。
如多孔介质中的瞬态传热Nouri-Borujerdi 等[11]、混合对流Shi 和Vafai [12]、强制对流Jiang 等[3,6-9,13-17]、双扩散多孔介质Nield 和Kuznetsov [18]等。
二氧化硅气凝胶在保温隔热领域中的应用

二氧化硅气凝胶在保温隔热领域中的应用张德忠【摘要】Aerogel is a kind of synthetic porous material ,in which the liquid component of the gel is replaced with a gas .Aerogel has the translucent structure and remarkably lower thermal conductivity ( ≈ 0 .013 W/(m ・ K)) than the other commercial insulating materials .Therefore , it is considered as one of the most promising thermal insulating materials .Although current cost of aerogel still remains higher compared to the conventional insulation materials ,intensive efforts are made to reduce its manufacturing cost and hence enable it to become widespread all over the world .In this study ,a comprehensive review on SiO 2 aerogel and its utilization in the field of thermal insulation are presented .%二氧化硅(SiO2)气凝胶是通过使用气体来置换湿溶胶中的液体,从而得到一种结构可控的新型轻质纳米多孔固态材料.SiO2气凝胶材料与其他保温隔热材料相比,具有较低的导热系数(≈0.013 W/(m ・ K))和较高的透明性,在保温隔热领域中开发潜力巨大,有望替代传统的保温隔热材料.尽管气凝胶目前的成本高于传统的隔热材料,但是我们相信通过科学家和工程学家的不断努力,气凝胶的生产成本会被不断的降低,最终遍及世界各地.本文作者综述了 SiO2气凝胶材料在隔热领域的多种应用形式,介绍了目前国内外气凝胶公司研发产品情况以及实际应用案例.【期刊名称】《化学研究》【年(卷),期】2016(000)001【总页数】8页(P120-127)【关键词】气凝胶;二氧化硅;溶胶-凝胶【作者】张德忠【作者单位】神华科技发展有限责任公司,北京 102211【正文语种】中文【中图分类】O646保温节能材料对于促进能源资源节约和合理利用,缓解我国能源资源供应与经济社会发展的矛盾,加快发展循环经济以及实现经济社会的可持续发展有着举足轻重的作用,是保障国家能源安全、保护环境、提高人民生活质量、贯彻落实科学发展观的一项重要举措.保温节能材料的研究与应用将推动我国节能、低碳技术以及绿色经济的发展.SiO2气凝胶材料是世界上最好的隔热(导热系数最低)固体材料之一,在常温和常压下导热系数可低至0.013 W/( m ·K)\[1\].SiO2气凝胶不仅能够减少热能损失,而且环境友好,代表着未来保温隔热材料的发展方向.气凝胶材料属于国家工信部颁布的《新材料产业“十二五”发展规划》第六大项前沿新材料、新技术中的纳米材料领域,并且在《新材料产业“十二五”重点产品目录》中,SiO2气凝胶材料(编号330)被列为“十二五”期间重点发展的高新技术产品.1.1 SiO2气凝胶制备SiO2气凝胶的制备主要包含3个步骤.第一步是湿凝胶的制备.目前制备SiO2湿凝胶的主要方法是溶胶-凝胶法,其工艺根据原材料的不同分为两大类: 1)以正硅酸乙酯或正硅酸甲酯类为前驱体,通过水解和缩合反应形成三维网状结构的SiO2湿凝胶; 2)将硅酸钠通过离子交换树脂除去Na+,然后硅酸水解并聚合形成SiO2的湿凝胶;第二步是湿凝胶的老化.当SiO2溶胶达到凝胶点之后,SiO2凝胶网络结构中的硅骨架上仍然连接着大量的没有反应的烷氧基,需要继续发生水解和缩合反应,以增加SiO2凝胶网络结构的强度.通常在老化的过程中,会添加适量的反应单体,来增加SiO2凝胶的交联度.当老化完成后,需要用乙醇来冲洗凝胶,除去交联网络孔洞结构中残留的水份和未反应完全的单体材料;第三步是SiO2湿凝胶的干燥.湿凝胶的网络孔隙中充满的是反应后残余的液体试剂,要想获得孔隙中充满空气的气凝胶,还必须通过干燥将试剂蒸发出来,同时固体骨架应仍保持原有的网络多孔结构,这样便得到了低密度高孔隙率的气凝胶.避免湿凝胶在干燥过程中由于毛细管力产生的收缩塌陷的干燥方法主要有CO2超临界干燥、常压表面改性干燥和真空冷冻干燥.超临界干燥是最早被用来干燥湿凝胶制备气凝胶的干燥方法,也是目前商业化最常用的干燥方式.在超临界干燥过程中,液态CO2先置换掉凝胶网络孔洞中的有机溶剂,之后液态CO2逐渐从凝胶中排出\[2\].虽然超临界方法是目前最通用的干燥气凝胶方法,但仍有一些局限性限制了它的推广应用,例如大型超临界设备的昂贵成本,过程控制以及高压反应下的安全问题.在20世纪90年代,BRINKER团队发展了一种逐渐商业化的常压表面改性干燥方法.他们通过一系列的溶剂交换以及用疏水基团替代羟基中的氢元素的表面改性方法来降低毛细管力,从而在常压下干燥获得SiO2气凝胶.常压法干燥通过溶剂交换以及表面改性减小了气凝胶孔洞的毛细管力,并且减弱凝胶骨架表面的相互反应活性,但是其并不能完全避免气/液界面的产生,所以在干燥过程中不能完全避免气凝胶的破裂,仅仅能够得到粉末或者碎块状的SiO2气凝胶.采用冷冻干燥制备气凝胶,凝胶孔洞中的液体被冷冻成固体,然后使其在真空的条件下升华.为了避免在冷冻过程中孔洞中溶剂由于结晶固化,破坏凝胶网络的骨架结构,真空冷冻干燥之前必须加长老化时间以增强骨架强度,并且要使用低膨胀系数和具有高升华压力的溶剂来置换出孔洞中的乙醇(或甲醇)溶剂.冷冻干燥过程中需要使用冷冻干燥室、制冷系统和真空装置,成本较高,并且干燥操作周期长,只能得到粉末状的凝胶粉末,不适宜规模化的工业生产,目前很少有报到通过此方法得到性能良好的气凝胶.1.2 SiO2气凝胶产品以及具体应用形式SiO2气凝胶目前在保温隔热领域的主要应用产品形式有4种\[3-6\]: 1)气凝胶粉体或颗粒; 2)气凝胶毡; 3)气凝胶板; 4)气凝胶玻璃.本节分别对这4种形式的产品逐一进行介绍.1.2.1气凝胶粉体或颗粒SiO2气凝胶粉体的制备方法非常成熟,也是最早工业化、商业化的气凝胶产品之一.气凝胶粉体制备方法主要有两种: 1)通过超临界方法制备大块状的气凝胶,然后通过不同的破碎方法,制备不同粒径的气凝胶粉体材料; 2)通过常压干燥成型的方法制备气凝胶粉体材料.SiO2气凝胶粉体几乎各大气凝胶生产商都有出售.例如,国内纳诺高科目前就有气凝胶粉体和颗粒在售,粒径为0.5~5 mm,比表面积600~1 000 m2/g,使用温度在-50~650℃.由于气凝胶粉体材料不易成型,SiO2气凝胶粉末一般不单独作为保温隔热材料使用.但是它可以作为功能结构材料的夹层,填充层使用;或者与其他材料复合和粘结作为保温隔热材料来使用.SiO2粉末可以添加到某些涂料中,复合成为具有保温效果的保温隔热涂料\[7,8\].河南工业大学何方等\[9\]将SiO2气凝胶微球加入到纯丙乳液中,混合其他助剂制成SiO2气凝胶隔热涂料,并将它涂覆于普通马口铁基材上,制得隔热涂层.所得的涂层表面光滑平整,附着力强,硬度好,耐水耐热性能较好,隔热性能突出,可以很好的满足隔热涂料的基本需要.2 011年,法国的ACHARD等\[10\]发表一项专利,用于建筑外墙保温的灰泥砂浆.灰泥砂浆由水、无机矿物材料、有机水凝粘合剂、气凝胶颗粒绝热填充层和其他添加剂组成,其中气凝胶颗粒取代了传统灰泥砂浆中的部分沙子.测试数据显示,该涂层的导热系数为0.027 W/( m·K),密度为200 kg/m3,比热为1 100J/( kg·K).该产品使用便利,即它可以预制成型(图1C),制备成预期厚度和形状的型材,可在建筑外墙中直接使用,也可以在施工现场直接加水混合成具有一定粘度的砂浆,通过机器喷涂或人工直接砌在建筑物的外表面(图1).1.2.2气凝胶毡气凝胶毡是将SiO2气凝胶在湿溶胶阶段与纤维增强材料复合,然后经过凝胶和干燥制备得到气凝胶毡.它即保留了气凝胶良好的保温绝热的特点,又通过与纤维材料的复合有效的解决了气凝胶机械强度低、易碎、易裂等问题.气凝胶毡纤维增强材料一般分为两大类:一类是韧性,强度较好的有机纤维,例如芳纶纤维、聚氨酯纤维等;另一类是耐高温的无机纤维,例如玻璃纤维、玄武岩纤维、高硅氧纤维、莫来石纤维、石英纤维、硅酸铝纤维等.气凝胶毡类工业化产品的生产方法最早是在1999年由美国Aspen公司提出\[11\],具体生产步骤如图2所示.将SiO2溶胶、催化剂以及掺杂剂按照一定比例混合,通过滚镀镀膜的方法使溶胶充分浸润纤维材料,之后通过超临界萃取,干燥,打包成型,制备得到气凝胶毡.气凝胶毡类的制备过程比较成熟,难点主要是前期复合阶段凝胶点的溶胶含量的控制以及后期干燥方法的选择(常压干燥和超临界干燥).目前关于气凝胶毡类产品的研究多集中在如何降低成本,提高生产效率以及产品性能.例如,KIM等\[12\]以廉价的硅酸钠为主要原料,通过离子交换膜得到SiO2水溶胶,然后浸润玻璃纤维,通过溶剂交换,三甲基氯硅烷表面改性等方法,并经过常压干燥制备了疏水型的气凝胶毡.气凝胶毡类产品具有良好的保温隔热效果、疏水性能和极好的柔韧性等优点,是一种理想的保温隔热材料,被广泛的应用到各个行业的保温隔热领域\[13-15\].例如,航空航天领域的保温材料,耐高温的各类工业管道、罐体及其他弧面设备的保温隔热.1.2.3气凝胶板气凝胶板与气凝胶毡类产品类似,主要是通过气凝胶和其他材料复合制成板材.与气凝胶毡类产品不同的是,气凝胶板类产品不是在溶胶阶段和纤维材料复合,而是将纯气凝胶和纤维、颗粒、砂浆、金属、有机高分子等复合制成刚性的板材.由于气凝胶板是通过气凝胶材料与其他材料复合后经二次浇筑成型,所以可以制备气凝胶异型元器件,满足不同工作场合的需要.目前,已有生产厂家结合真空绝热板的生产技术制备出导热系数小于0.004 W/( m ·K)的气凝胶真空绝热板.气凝胶板除了应用在建筑物和冰箱﹑冷藏﹑冷冻容器等的工业用保温材料外,还可以应用到军工以及航空和航天领域.2003年5月和6月,美国太空总署发射“火星探测漫步者”(勇气号和机遇号),并与2004年1月成功登陆火星,开始探测活动.火星探测器机器人重要的器件工作温度绝对不能超过-40~40℃.为了抵御火星地表昼夜100℃的温差,维持器件工作温度的恒定,在探测器机体内壁附着了一层气凝胶片装的复合材料用于隔热保温,维持元、器件工作温度的恒定(图3A).2011年,美国又成功发射“火星科学实验室”( Mars Science Laboratory,MSL),又名“好奇号”火星车.气凝胶被用来作为“好奇号”放射性同位素热电转换器( Multi-Mission Radioisotope Thermoelectric Generator)装置上热交换器的隔热材料(图3B).其热交换器面板为树脂基材六角蜂窝孔洞结构,采用气凝胶和石墨复合材料对孔洞进行填充,交换器面板树脂基材起到结构支撑作用,而气凝胶起到隔热作用\[16\].1.2.4气凝胶玻璃保温材料除了在工业领域的重要作用外,在建筑行业也起到举足轻重的作用.据统计,在美国和欧洲建筑行业的能量消耗占社会总能量需求的20%~40%,甚至超过工业和交通运输业的总和\[17-18\].窗户是建筑物结构中必不可少的一部分,光线以及新鲜的空气可以通过窗户进入到室内,能够给我们创造一个良好和舒适的内部生活环境.但是,窗户对于建筑物保温存在着不利影响,在建筑围护结构中的能量耗散中大约有50%的热量是通过窗户所消耗的.因此,透明隔热的保温材料在民用住宅以及商业建筑的节能环保领域起着至关重要的作用\[19-21\].气凝胶与其他保温隔热材料相比,除了具备低的导热系数,低密度,阻燃等特性外,它还具有透明性.纯的SiO2气凝胶具有类似玻璃的高透过率,可见光波段内透光率能够达到90%以上\[22-23\].但是,气凝胶极限拉伸强度很小,质脆,易碎,要避免直接的机械撞击.由于结构本身的缺陷,目前气凝胶产品很难作为玻璃直接应用,需和普通玻璃结合使用.主要有气凝胶镀膜玻璃和真空夹层气凝胶玻璃两大类.气凝胶镀膜玻璃就是在普通玻璃表面增加一层气凝胶薄膜来提高隔热性能\[24-25\].南京工业大学材料化学工程国家重点实验室陈洪龄等\[26\]通过聚甲基氢硅氧烷和正硅酸乙酯制备了超疏水的气凝胶涂层,该涂层在可见光范围内透过率达到90%,并且该涂层可以通过十六烷基三甲氧基硅烷改性处理变为超亲水涂层.虽然气凝胶涂层玻璃兼顾了气凝胶材料的绝热性和透明性,但是涂层对节能性能提高有限,并且涂层与玻璃的附着性也是一大问题.自1980年以来,气凝胶作为透明的绝热材料逐渐被应用到窗户体系中.产品主要是在中空玻璃的夹层填充气凝胶材料,用于制备具有低导热系数和高透明度的气凝胶玻璃.真空夹层气凝胶玻璃按照夹层内气凝胶的形状又分为两大类: 1)夹层填充物为SiO2气凝胶颗粒; 2)夹层填充物为整块气凝胶.整块填充的气凝胶玻璃透明度要优于颗粒填充的气凝胶玻璃,10 mm厚的整块填充的气凝胶玻璃窗户的透过率能够达到90%,然而颗粒填充的气凝胶玻璃窗户透过率最大也只能够达到50%\[27-30\].图4为这两种气凝胶玻璃的形貌图.对于气凝胶玻璃窗户的保温隔热以及透光率性能的研究早期多集中在欧洲,这主要是由于欧洲的地理位置以及气候所决定.欧洲纬度较高,冬天寒冷漫长,房间需要供暖周期较长.从二十世纪80年代后,由于制备气凝胶材料工艺的发展,气凝胶成本下降,再加上人们对节能环保和高效利用能源的重视,使得气凝胶玻璃门窗系统的研究才逐渐开展起来.1986年,CAPS和FRICKE\[31\]测试了透明气凝胶材料的红外辐射传热性能,得到气凝胶材料的辐射热导率大约是0.002W/( m·K).在1998-2005年,欧盟审议并且通过了两个关于气凝胶玻璃窗户项目( HILIT和HILIT+)的研究,大大加快了气凝胶玻璃窗户体系的研究与工业化进程.在该项目研究中,瑞典的Airglass AB公司成功的将气凝胶玻璃由实验室研发阶段转换到工业试制阶段.图5展示了该公司生产的气凝胶玻璃窗户,该窗户厚度大约15 mm,每块气凝胶玻璃的尺寸大约58 cm×58 cm,热导率为0.002 W/( m·K),可见光透过率达到75%.由于气凝胶内部孔洞结构,以及SiO2骨架的刚性结构,决定气凝胶材料质地脆弱易碎,工业化生产整块大面积的气凝胶仍然是一个巨大的挑战,目前气凝胶玻璃最大尺寸60 cm×60 cm,并且产品的良率不是很高,整块大面积的气凝胶玻璃现阶段只是应用在科学研究领域,工业化进程道路依然非常漫长.气凝胶颗粒填充的气凝胶玻璃虽然只有20%~50%的透过率,但是它能够避免气凝胶易碎的问题,可以应用在大型剧院、商场、游泳馆等无需良好视觉效果的位置\[32\].图6展示了美国底特律艺术学院和纽约州立大学石溪分校诺贝尔大厅使用的美国Kalwall公司气凝胶玻璃\[33\].气凝胶通常是指以具有纳米量级微细颗粒相互聚集构成的纳米多孔网络结构,并在纳米量级的网络骨架中充满大量气态分散介质的轻质纳米固态材料,其中SiO2气凝胶最受关注,也是近年来研究最多的气凝胶.与碳气凝胶、Al2O3和TiO2等其他气凝胶相比,SiO2气凝胶原材料来源丰富,制备工艺简单,可控性好.在性能方面,SiO2气凝胶同时兼有玻璃的高透明性,聚苯乙烯、聚氨酯类有机高分子材料的低热导率特性,以及炭黑材料的高比表面积等特性\[34-38\].图7显示了SiO2气凝胶具有优良的抗压强度、显著的绝热特性和低密度特性.与发泡聚苯乙烯、岩棉棉等其他隔热材料相比,气凝胶同时兼有玻璃的高透明性,低热导率特性以及高的燃烧等级等特性\[39-40\].表1为常用保温隔热材料的特性对比.国外气凝胶生产企业主要集中在欧美地区(图8),其中美国占据世界一半以上份额.美国从事气凝胶的生产企业有10家左右,主要有Aspen、Cabot和Thermablok公司,这3家公司在美国国内占据65%以上的市场份额.Aspen气凝胶公司是美国航空航天管理局下属的一家公司,创立于2001年,继承了应用于美国宇航局( NASA)的专业宇航纳米保温技术,将超临界气凝胶保温毯生产技术工业化,全球年产能达上亿平方英尺.2010年,德国BASF公司旗下的Venture Capital公司向Aspen投资2 150万美元,Aspen公司的气凝胶产品应用于BASF公司在比利时Antwerp的工厂.Cabot公司是一家拥有130年历史,专业生产特殊化工产品和特种化工材料的全球性跨国公司,目前该公司在建筑用气凝胶方面已经有了一定的应用,主要有气凝胶节能窗、气凝胶涂料、气凝胶新型板材和屋面太阳能集热器.Thermablok公司是美国Acoustiblok公司的子公司,主要生产韧性的气凝胶绝热胶条,其产品主要用在住宅建筑的地板、墙壁、天花板边缘.目前,国内仅有绍兴纳诺高科有限公司、广东埃力生高新科技有限公司和航天海鹰(镇江)特种材料有限公司等少数几家公司能够生产气凝胶产品.纳诺高科成立于2004年,是国内首家进行SiO2气凝胶商业化和产业化的公司.公司以生产气凝胶SiO2粉末为主,年生产能力为2 000立方米,主要产品是隔热毡.广东埃力生亚太电子有限公司是一家集研发、生产、销售气凝胶复合隔热材料和真空绝热材料为一体的创新型高新技术企业.公司主要经营纳米气凝胶粉末,和纳米气凝胶毡.航天海鹰(镇江)特种材料有限公司成立于2011年,由航天三院、航天特种材料及工艺技术研究所(代号三○六所)、镇江新区高新技术产业投资有限公司共同出资组建,公司超临界生产线年产量将达到1 500立方米.以航天三院技术研发为支撑和航空航天市场为依托,航天海鹰气凝胶后续生产发展能力值得期待,势必会对纳诺、埃力生等老牌气凝胶生产厂商形成强有力的冲击.SiO2气凝胶材料由于具有独特的结构,显示出低密度、透明、隔音、绝热等特性,在建筑围护结构、管道保温、涂料以及航空航天领域有着极其广泛地的应用.但是若要取代传统的无机矿物棉以及有机保温材料,气凝胶材料还必须解决好以下两点问题:一是成本问题.气凝胶目前的市场价格大约是其他保温材料的10倍,必须改进生产工艺,并降低原材料的成本;二是粉尘问题.气凝胶材料在生产和使用阶段会产生大量粉尘,并且这些粉尘依据现有生产和施工条件难以完全去除.随着建设资源节约型、环境友好型社会已经成为落实科学发展观的必备条件,国家必定在节能和环保领域有更多的需求与投入,传统的保温材料将逐渐被气凝胶材料所取代,因此气凝胶材料必将有着更广阔的发展空间与市场前景.【相关文献】[1]CUCE E,CUCE P M,WOOD C J,et al.Toward aerogel based thermal superinsulation in buildings: A comprehensive review \[J\].Renewable and Sustainable Energy Review,2014,34: 273-299.\[2\]PIERRE A C,PAJONK G M.Chemistry of aerogels and their applications \[J \].Chem Rev 2002,102: 4243-4265.\[3\]CARLSON G,LEWIS D,MCKINLEY K,et al.Aerogel commercialization-technology,markets and costs \[J \].J Non-Crystal Solids,1995,186: 372-379.\[4\]HERRMANN G,IDEN R,MIELKE M,et al.On the way to commercial production of silica aerogel \[J \].J Non-Crystal Solids,1995,186: 380-387.\[5 \]HRUBESH L W.Aerogel applications \[J \].J Non-Cryst Solids,1998,225: 335-342.\[6\]SCHMIDT M,SCHWERTFEGER F.Applications for silica aerogel products \[J \].J Non-Cryst Solids,1998,225: 364-368.\[7\]邹雪艳,赵彦保,李宾杰.不同形貌纳米二氧化硅的制备及形成机理研究\[J\].化学研究,2011,22( 4) : 8 -10.\[8\]赵俊伟,宋立华,陈利娟.二氧化硅/环氧树脂复合涂层的制备及其疏水性能\[J \].化学研究,2009,20 ( 3) : 80-82.\[9\]豆新丰,何方.二氧化硅气凝胶隔热涂料的性能评价\[J\].河南化工,2014,1: 31-34.\[10 \]IBRAHIM M,BIWOLE P H,WURTZ E,et al.A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating \[J\].Building and Environment,2014,81: 112 -122.\[11\]KWON Y C.A Study on the Architectural Applications of Aerogel \[J\].Journal of Civil Engineering and Architecture,2013,7( 12) : 1494-1500.\[12\]KIM C Y,LEE J K,KIM,B I.Synthesis and pore analysis of aerogel-glass fiber composites by ambient drying method[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,14: 179-182.\[13 \]IHARA T,GAO T,GRYNNING S,et al.Aerogel granulate glazing facades and their application potential from an energy saving perspective \[J \].Appl Energy,2015,142: 179-191.\[14\]RIFFAT S B,QIU G.A review of state-of-the-art aerogel applications in buildings \[J \].Int J Low-Carbon Technol,2013,8( 1) : 1-6.\[15 \]FESMIRE J E.Aerogel insulation systems for space launch applications \[J \].Cryogenics,2006,46: 111-117.\[16\]AEGERTER M A,LEVENTIS N,KOEBEL M M.Aerogels handbook \[M\].New York: Springer,2011.733.\[17\]COTANA F,PISELLO A L,MORETTI E,et al.Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy,lighting and acoustic performance \[J\].Building and Environment,2014,81: 92-102.\[18\]GAO T,JELLE B P,IHARA T,et al.Insulating glazing units with silica aerogel granules: The impact of particle size \[J\].Applied Energy,2014,128: 27-34.\[19 \]BAETENS R,JELLE B P,GUSTAVSEN A.Aerogel insulation for building applications: A state-of-the-art review \[J\].Energy and Buildings,2011,43 ( 4) : 761-769.\[20\]BURATTI C,MORETTI E.Glazing systems with silica aerogel for energy savingsin buildings \[J\].Applied Energy,2012,98: 396-403.\[21\]CUCE E,CUCE P M,WOOD C J,et al.Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings \[J \].Energy and Buildings,2014,77: 28-39.\[22\]SHUKLA N,FALLAHI A,KOSNY J.Aerogel thermal insulation-technology review and cost study for building enclosure applications \[J \].ASHRAE Trans,2014,120 ( 1) : 294-307.\[23\]PAJONK G M.Transparent silica aerogels \[J \].J Non-Cryst Solids,1998,225: 307-314.\[24\]CHA J,KIM S,PARK K W,et al.Improvement of window thermal performance using aerogel insulation film for building energy saving \[J\].J Therm Anal Calorim,2014,116: 219-224.\[25\]KIM G S,HYUN S H.Synthesis of window glazing coated with silica aerogelfilms via ambient drying \[J \].J Non-Crystal Solids,2003,320: 125-132.\[26\]LIN J,CHEN H,FEI T,et al.Highly transparent and thermally stablesuperhydrophobic coatings from the deposition of silica aerogels \[J \].Applied Surface Science,2013,273: 776-786.\[27\]HUANG Y,NIU J L.Energy and visual performance of the silica aerogel glazing system in commercial buildings of Hong Kong \[J \].Construction and Building Materials,2015,94: 57-72.\[28\]SCHULTZ J M,JENSEN K I.Evacuated aerogel glazings \[J\].Vacuum,2008,82 ( 7) : 723-729.\[29\]SCHULTZ J M,JENSEN K I.KRISTIANSEN F H.Superinsulating aerogel glazing \[J\].Solar Energy Materials and Solar Cells,2005,89: 275-285.\[30\]GAPONIK N,HERRMANN A K,EYCHMÜLLER A.Colloidal Nanocrystal-Based Gels and Aerogels: Material Aspects and Application Perspectives \[J \].The Journal of Physical Chemistry Letters,2012,3 ( 1) : 8-17.\[31\]CAPS R,FRICKE J.Infrared radiative heat transfer in highly transparent silica aerogel \[J\].Sol Energy,1986,36: 361-364.\[32\]REIM M,BECK A,KORNER W,et al.Highly insulating aerogel glazing for solar energy usage \[J\].Solar Energy,2002,72: 21-29.\[33\]BERARDI U.The development of a monolithic aerogel glazed window for an energy retrofitting project \[J\].Applied Energ,2015,154: 603-615.\[34\]HÜSING N,SCHUBERT U.Aerogels—airy materials: chemistry,structure,and properties \[J \].Angewandte Chemie International Edition,1998,37 ( 1/2) : 22-45.\[35\]REIM M,REICHENAUER G,KORNER W,et al.Silica-aerogel granulate-structural,optical and thermal properties \[J\].J Non-Cryst Solids,2004,350: 358-363.\[36\]KOEBEL M,RIGACCI A,ACHARD P.Aerogel-based thermal superinsulation: an overview \[J\].J Sol-Gel Sci Technol,2012,63: 315-339.\[37 \]GAPONIK N,HERMANN A K,EYCHMULLER A.Colloidal nanocrystal-basedgels and aerogels: material aspects and application perspectives \[J \].J Phys Chem Lett,2012,3: 8-17.\[38\]ANDERSON A M,WATTLEY C W,CARROLL M K.Silica aerogels prepared via rapid supercritical extraction: effect of process variables on aerogel properties \[J \].J Non-Cryst Solids,2009,2: 101-109.\[39\]郭晓煜,张光磊,赵霄云,等.气凝胶在建筑节能领域的应用形式与效果\[J \].硅酸盐通报,2015,34 ( 2) : 444-449.\[40\]张鑫,王毓薇,白志鸿,等.纳米气凝胶与常用管道保温材料的性能对比\[J\].油气储运,2015,34( 1) : 77-80.。
88j2一3a《墙身一加气混凝土》(2007)

88j2一3a《墙身一加气混凝土》(2007) Question: 88j2一3a "Wall Construction with Aerated Concrete" (2007)Answer:The publication titled "Wall Construction with Aerated Concrete" was released in 2007 under the code 88j2一3a. This comprehensive guide offers valuable insights into the construction techniques and applications of aerated concrete in wall construction.Aerated concrete, also known as cellular concrete or gas concrete, is a lightweight material composed of cement, sand, lime, and water. It contains numerous air pores that give it excellent insulation properties and low density compared to traditional concrete.The book provides a detailed analysis of the advantages and disadvantages of using aerated concrete in wall construction. One of its main benefits is thermalinsulation. Aerated concrete walls have higher energy efficiency compared to conventional brick or wooden walls, making them ideal for both residential and commercial buildings.Moreover, aerated concrete offers sound insulation properties due to its porous structure. This makes it an excellent choice for buildings located in noisy areas or those requiring superior acoustic performance, such as theaters or recording studios.The publication delves into the various techniques used for aerated concrete wall construction. It covers topics like proper mixing ratios, forming techniques, curing processes, and finishing options. These insights enable architects and builders to design aesthetically pleasing structures while ensuring durability and safety.In addition to detailing the construction process itself, the book explores maintenance considerations. It explains how aerated concrete walls require minimal upkeep due to their inherent resistance to mold growth and pests.Furthermore, it highlights the importance of regular inspections and necessary repairs to maintain structural integrity over time.The content also includes case studies from real-life projects that showcase successful implementations ofaerated concrete for wall construction. These examplesserve as inspiration for architects and builders looking to incorporate this innovative material into their designs.Overall, the publication aims to provide a comprehensive understanding of using aerated concrete in wall construction. It offers practical insights, technical guidance, and real-life examples to help professionals make informed decisions when considering this material for their projects.解答:《墙身一加气混凝土》(2007年)是以编号88j2一3a发布的书籍。
Thermal_conductivity

Thermal conductivityIn physics, thermal conductivity, , is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction. Thermal conductivity is measured in watts per kelvin-meter (W·K−1·m−1, i.e. W/(K·m) or in IP units (Btu·hr−1·ft−1·F−1, i.e. Btu/(hr·ft⋅F). Multiplied by a temperature difference (in kelvins, K) and an area (in square meters, m2), and divided by a thickness (in meters, m), the thermal conductivity predicts the rate of energy loss (in watts, W) through a piece of material. In the window building industry "thermal conductivity" is expressed as the U-Factor [1], which measures the rate of heat transfer and tells you how well the window insulates. U-factor values are generally recorded in IP units (Btu/(hr·ft⋅F)) and usually range from 0.15 to 1.25. The lower the U-factor, the better the window insulates.The reciprocal of thermal conductivity is thermal resistivity.MeasurementThere are a number of ways to measure thermal conductivity. Each of these is suitable for a limited range of materials, depending on the thermal properties and the medium temperature. There is a distinction between steady-state and transient techniques.In general, steady-state techniques are useful when the temperature of the material does not change with time. This makes the signal analysis straightforward (steady state implies constant signals). The disadvantage is that a well-engineered experimental setup is usually needed. The Divided Bar (various types) is the most common device used for consolidated rock samples.The transient techniques perform a measurement during the process of heating up. Their advantage is quicker measurements. Transient methods are usually carried out by needle probes.Standards•IEEE Standard 442-1981, "IEEE guide for soil thermal resistivity measurements", ISBN 0-7381-0794-8. See also soil thermal properties. [2] [3]•IEEE Standard 98-2002, "Standard for the Preparation of Test Procedures for the Thermal Evaluation of Solid Electrical Insulating Materials", ISBN 0-7381-3277-2 [4] [5]•ASTM Standard D5334-08, "Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure" [6]•ASTM Standard D5470-06, "Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials" [7]•ASTM Standard E1225-04, "Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique" [8]•ASTM Standard D5930-01, "Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique" [9]•ASTM Standard D2717-95, "Standard Test Method for Thermal Conductivity of Liquids" [10]•ISO 22007-2:2008 "Plastics -- Determination of thermal conductivity and thermal diffusivity -- Part 2: Transient plane heat source (hot disc) method" [11]•Note: What is called the k-value of construction materials (e.g. window glass) in the U.S., is called λ-value in Europe. What is called U-value (= the inverse of R-value) in the U.S., used to be called k-value in Europe, but is now also called U-value in Europe.DefinitionsThe reciprocal of thermal conductivity is thermal resistivity, usually measured in kelvin-meters per watt (K·m·W−1). When dealing with a known amount of material, its thermal conductance and the reciprocal property, thermal resistance, can be described. Unfortunately, there are differing definitions for these terms.ConductanceFor general scientific use, thermal conductance is the quantity of heat that passes in unit time through a plate of particular area and thickness when its opposite faces differ in temperature by one kelvin. For a plate of thermal conductivity k, area A and thickness L this is kA/L, measured in W·K−1 (equivalent to: W/°C). Thermal conductivity and conductance are analogous to electrical conductivity (A·m−1·V−1) and electrical conductance (A·V−1).There is also a measure known as heat transfer coefficient: the quantity of heat that passes in unit time through unit area of a plate of particular thickness when its opposite faces differ in temperature by one kelvin. The reciprocal is thermal insulance. In summary:•thermal conductance = kA/L, measured in W·K−1•thermal resistance = L/(kA), measured in K·W−1 (equivalent to: °C/W)•heat transfer coefficient = k/L, measured in W·K−1·m−2•thermal insulance = L/k, measured in K·m²·W−1.The heat transfer coefficient is also known as thermal admittanceResistanceWhen thermal resistances occur in series, they are additive. So when heat flows through two components each with a resistance of 1 °C/W, the total resistance is 2 °C/W.A common engineering design problem involves the selection of an appropriate sized heat sink for a given heat source. Working in units of thermal resistance greatly simplifies the design calculation. The following formula can be used to estimate the performance:where:•Ris the maximum thermal resistance of the heat sink to ambient, in °C/Whs•is the temperature difference (temperature drop), in °Cis the thermal power (heat flow), in watts•Pthis the thermal resistance of the heat source, in °C/W•RsFor example, if a component produces 100 W of heat, and has a thermal resistance of 0.5 °C/W, what is the maximum thermal resistance of the heat sink? Suppose the maximum temperature is 125 °C, and the ambient temperature is 25 °C; then the is 100 °C. The heat sink's thermal resistance to ambient must then be 0.5 °C/W or less.TransmittanceA third term, thermal transmittance , incorporates the thermal conductance of a structure along with heat transfer due to convection and radiation. It is measured in the same units as thermal conductance and is sometimes known as the composite thermal conductance . The term U-value is another synonym.SummaryIn summary, for a plate of thermal conductivity k (the k value [12] ), area A and thickness t :•thermal conductance = k /t , measured in W·K −1·m −2;•thermal resistance (R-value ) = t /k , measured in K·m²·W −1;•thermal transmittance (U-value ) = 1/(Σ(t /k )) + convection + radiation, measured in W·K −1·m −2.•K-value refers in Europe to the total insulation value of a building. K-value is obtained by multiplying the form factor of the building (= the total inward surface of the outward walls of the building divided by the total volume of the building) with the average U-value of the outward walls of the building. K value is therefore expressed as (m 2·m −3)·(W·K −1·m −2) = W·K −1·m −3. A house with a volume of 400 m³ and a K-value of 0.45 (the new European norm. It is commonly referred to as K45) will therefore theoretically require 180 W to maintain its interiortemperature 1 K above exterior temperature. So, to maintain the house at 20 °C when it is freezing outside (0 °C),3600 W of continuous heating is required.ExamplesIn metals, thermal conductivity approximately tracks electrical conductivity according to the Wiedemann-Franz law,as freely moving valence electrons transfer not only electric current but also heat energy. However, the general correlation between electrical and thermal conductance does not hold for other materials, due to the increased importance of phonon carriers for heat in non-metals. As shown in the table below, highly electrically conductive silver is less thermally conductive than diamond, which is an electrical insulator.Thermal conductivity depends on many properties of a material, notably its structure and temperature. For instance,pure crystalline substances exhibit very different thermal conductivities along different crystal axes, due to differences in phonon coupling along a given crystal axis. Sapphire is a notable example of variable thermal conductivity based on orientation and temperature, with 35 W/(m·K) along the c-axis and 32 W/(m·K) along the a-axis.[13]Air and other gases are generally good insulators, in the absence of convection. Therefore, many insulating materials function simply by having a large number of gas-filled pockets which prevent large-scale convection. Examples of these include expanded and extruded polystyrene (popularly referred to as "styrofoam") and silica aerogel. Natural,biological insulators such as fur and feathers achieve similar effects by dramatically inhibiting convection of air or water near an animal's skin.Ceramic is used for its low thermal conductivity on exhaust systems to prevent heat from reachingsensitive componentsLight gases, such as hydrogen and helium typically have high thermalconductivity. Dense gases such as xenon and dichlorodifluoromethanehave low thermal conductivity. An exception, sulfur hexafluoride, adense gas, has a relatively high thermal conductivity due to its highheat capacity. Argon, a gas denser than air, is often used in insulatedglazing (double paned windows) to improve their insulationcharacteristics.Thermal conductivity is important in building insulation and relatedfields. However, materials used in such trades are rarely subjected tochemical purity standards. Several construction materials' k values are listed below. These should be considered approximate due to the uncertainties related to material definitions.The following table is meant as a small sample of data to illustrate the thermal conductivity of various types of substances. For more complete listings of measured k -values, see the references.Experimental valuesExperimental values of thermal conductivity.This is a list of approximate values ofthermal conductivity, k , for somecommon materials. Please consult thelist of thermal conductivities for moreaccurate values, references anddetailed information.Material Thermal conductivityW/(m·K)Silica Aerogel 0.004 - 0.04Air 0.025Wood0.04 - 0.4Hollow Fill Fibre Insulation 0.042Alcohols and oils0.1 - 0.21Polypropylene0.25 [14]Mineral oil0.138Rubber0.16LPG0.23 - 0.26Cement, Portland0.29Epoxy (silica-filled)0.30Epoxy (unfilled)0.59Water (liquid)0.6Thermal grease0.7 - 3Thermal epoxy1 - 7Glass1.1Soil1.5Concrete, stone1.7Ice2Sandstone2.4Stainless steel 12.11 ~ 45.0Lead35.3Aluminium237 (pure)120—180 (alloys)Gold318Copper401Silver429Diamond900 - 2320Graphene(4840±440) - (5300±480)Physical originsHeat flux is exceedingly difficult to control and isolate in a laboratory setting. Thus at the atomic level, there are no simple, correct expressions for thermal conductivity. Atomically, the thermal conductivity of a system is determined by how atoms composing the system interact. There are two different approaches for calculating the thermal conductivity of a system.•The first approach employs the Green-Kubo relations. Although this employs analytic expressions which in principle can be solved, in order to calculate the thermal conductivity of a dense fluid or solid using this relation requires the use of molecular dynamics computer simulation [15].•The second approach is based upon the relaxation time approach. Due to the anharmonicity within the crystal potential, the phonons in the system are known to scatter. There are three main mechanisms for scattering:•Boundary scattering, a phonon hitting the boundary of a system;•Mass defect scattering, a phonon hitting an impurity within the system and scattering;•Phonon-phonon scattering, a phonon breaking into two lower energy phonons or a phonon colliding with another phonon and merging into one higher energy phonon.Lattice wavesHeat transport in both glassy and crystalline dielectric solids occurs through elastic vibrations of the lattice (phonons). This transport is limited by elastic scattering of acoustic phonons by lattice defects. These predictions were confirmed by the experiments of Chang and Jones on commercial glasses and glass ceramics, where mean free paths were limited by "internal boundary scattering" to length scales of 10−2 cm to 10−3 cm. [16][17]The phonon mean free path has been associated directly with the effective relaxation length for processes without directional correlation. Thus, if Vgis the group velocity of a phonon wave packet, then the relaxation length is defined as:where t is the characteristic relaxation time. Since longitudinal waves have a much greater phase velocity thantransverse waves, Vlong is much greater than Vtrans, and the relaxation length or mean free path of longitudinalphonons will be much greater. Thus, thermal conductivity will be largely determined by the speed of longitudinal phonons. [16][18]Regarding the dependence of wave velocity on wavelength or frequency (dispersion), low-frequency phonons of long wavelength will be limited in relaxation length by elastic Rayleigh scattering. This type of light scattering form small particles is proportional to the fourth power of the frequency. For higher frequencies, the power of the frequency will decrease until at highest frequencies scattering is almost frequency independent. Similar arguments were subsequently generalized to many glass forming substances using Brillouin scattering. [19][20][21][22]EquationsFirst, we define heat conduction, H:where is the rate of heat flow, k is the thermal conductivity, A is the total cross sectional area of conductingsurface, ΔT is temperature difference, and x is the thickness of conducting surface separating the 2 temperatures. Dimension of thermal conductivity = M1L1T−3K−1Rearranging the equation gives thermal conductivity:(Note: is the temperature gradient)I.E. It is defined as the quantity of heat, ΔQ, transmitted during time Δt through a thickness x, in a direction normal to a surface of area A, per unit area of A, due to a temperature difference ΔT, under steady state conditions and when the heat transfer is dependent only on the temperature gradient.Alternatively, it can be thought of as a flux of heat (energy per unit area per unit time) divided by a temperature gradient (temperature difference per unit length)Typical units are SI: W/(m·K) and English units: Btu/(h·ft·°F). To convert between the two, use the relation 1 Btu/(h·ft·°F) = 1.730735 W/(m·K). [Perry's Chemical Engineers' Handbook, 7th Edition, Table 1-4]In the textile industry, a tog value may be quoted as a measure of thermal resistance in place of a measure in SI units.References[1]/index.cfm?c=windows_doors.pr_ind_tested[2]/servlet/opac?punumber=2543[3]IEEE Standard 442-1981- IEEE guide for soil thermal resistivity measurements, doi:10.1109/IEEESTD.1981.81018[4]/servlet/opac?punumber=7893[5]IEEE Standard 98-2002 - Standard for the Preparation of Test Procedures for the Thermal Evaluation of Solid Electrical InsulatingMaterials, doi:10.1109/IEEESTD.2002.93617[6]ASTM Standard D5334-08 - Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal NeedleProbe Procedure, doi:10.1520/D5334-08[7]/cgi-bin/SoftCart.exe/DATABASE.CART/REDLINE_PAGES/D5470.htm?E+mystore[8]/cgi-bin/SoftCart.exe/DATABASE.CART/REDLINE_PAGES/E1225.htm?L+mystore+wnox2486+1189558298[9]/cgi-bin/SoftCart.exe/STORE/filtrexx40.cgi?U+mystore+wnox2486+-L+THERMAL:CONDUCTIVITY+/usr6/htdocs//DATABASE.CART/REDLINE_PAGES/D5930.htm[10]/cgi-bin/SoftCart.exe/DATABASE.CART/REDLINE_PAGES/D2717.htm?L+mystore+wnox2486+1189564966[11]/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40683[12]Definition of k value from Plastics New Zealand (/page.asp?id=468)[13]/sapphire.htm[14]Walter Michaeli, Extrusion Dies for Plastics and Rubber, 2nd Ed., Hanser Publishers, New York, 1992.[15].au/~evans/evansmorrissbook.htm[16]P.G. Klemens (1951). "The Thermal Conductivity of Dielectric Solids at Low Temperatures". Proc. Roy. Soc. Lond. A208: 108.doi:10.1098/rspa.1951.0147.[17]G.K. Chan, R.E Jones (1962). "Low-Temperature Thermal Conductivity of Amorphous Solids". Phys. Rev.126: 2055.doi:10.1103/PhysRev.126.2055.[18]I. Pomeranchuk (1941). "Thermal conductivity of the paramagnetic dielectrics at low temperatures". J. Phys.(USSR)4: 357.ISSN 0368-3400.[19]R.C. Zeller, R.O. Pohl (1971). "Thermal Conductivity and Specific Heat of Non-crystalline Solids". Phys. Rev. B4: 2029.doi:10.1103/PhysRevB.4.2029.[20]W.F. Love (1973). "Low-Temperature Thermal Brillouin Scattering in Fused Silica and Borosilicate Glass". Phys. Rev. Lett.31: 822.doi:10.1103/PhysRevLett.31.822.[21]M.P. Zaitlin, M.C. Anderson (1975). "Phonon thermal transport in noncrystalline materials". Phys. Rev. B12: 4475.doi:10.1103/PhysRevB.12.4475.[22]M.P. Zaitlin, L.M. Scherr, M.C. Anderson (1975). "Boundary scattering of phonons in noncrystalline materials". Phys. Rev. B12: 4487.doi:10.1103/PhysRevB.12.4487.Further reading•Callister, William (2003). "Appendix B". Materials Science and Engineering - An Introduction. John Wiley & Sons, INC. pp. 757. ISBN 0-471-22471-5.•Halliday, David; Resnick, Robert; & Walker, Jearl(1997). Fundamentals of Physics (5th ed.). John Wiley and Sons, INC., NY ISBN 0-471-10558-9.•Srivastava G. P (1990), "The Physics of Phonons." Adam Hilger, IOP Publishing Ltd, Bristol.•TM 5-852-6 AFR 88-19, Volume 6 (Army Corp of Engineers publication)External links•Table with the Thermal Conductivity of the Elements (/yogi/periodic/ thermal.html)•Calculation of the Thermal Conductivity of Glass (/thermal-conductivity/) Calculation of the Thermal Conductivity of Glass at Room Temperature from the Chemical Composition •Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air (http://www.boulder.nist.gov/div838/theory/refprop/NAO.PDF)•Conversion of thermal conductivity values for many unit systems (/units/ convert_units.cfm?From=245)Article Sources and Contributors8Article Sources and ContributorsThermal conductivity Source: /w/index.php?oldid=421624822 Contributors: -xfi-, Aanidaani, Aazn, AdamW, Adams13, Akilaa, Alex Crikey, Alex43223, Alfio, Andy Dingley, Andy G, AquaDTRS, Aulis Eskola, AxelBoldt, Az7997, Baderimre, Barak Sh, Bendzh, Blazotron, Bo-Kaj-R, Bobblewik, Brockert, Brossow, Bryan Derksen, Buster2058, C-Therm,CMD Beaker, CSTAR, Cadmium, Carandbike, Ccrrccrr, Cfsenel, Charles Matthews, Chronodm, Ciphers, Clarince63, Cperabo, Craklyn, Cxz111, CyrilB, Dan Pangburn, David Biddulph, DavidH. Flint, David Haslam, Dfeuer, Dhollm, Discospinster, DocWatson42, Doubleplusjeff, Dougthebug, Draxtreme, Druiids, Durplub, EagleFan, El C, Electron9, Elvire, Ericl234, Ezzt, FF2010,Falk Lieder, Femto, Fizicist, Fiziker, Frap, Fyyer, Gene Nygaard, Geniescience, Gentgeen, Ghostwo, Giftlite, Gknor, Glacier Wolf, Glane23, Glenn, Glloq, Gonzonoir, Gouryella24, Gralo,Gscshoyru, HamburgerRadio, Hankwang, Hbent, Headbomb, Heron, Hukseflux, Icairns, Ido50, Illinoisavonlady, Inc ru, Isaac Dupree, Itub, IvanLanin, Jaganath, Jdpipe, JesperDoffe, Jim1138, Joanjoc, John254, Jswaim, Jth299, Kdn1982, Kittell, Kjkolb, Kmarinas86, Kungfuadam, Kuru, KyraVixen, L33tminion, Leon7, Lightdarkness, Lights, LilHelpa, Logger9, LokiClock, Loodog, Looxix, MER-C, MONGO, Magioladitis, Maniadis, Marie Poise, Mark Foskey, Mat-C, Matt H, Mav, Mdf, Mdkoch84, Melchoir, Metaphase2, Micah Fitch, Michael Hardy, Mike92591,Mikiemike, Mjager, Montgomery '39, Mr Gronk, Mrdarrett, Munden, Mxn, N3362, NPKResults, Nelienke, Nemontemi, Nickersonl, Nirmos, Nirvelli, OliRG2, Omegatron, On5deu, Orionus,Patrick, Peterlin, Pharaoh of the Wizards, Polonium, Proepro, Pyrotec, R'n'B, RSRScrooge, Radon210, RazorICE, RexNL, Riana, Rich 988, Rl, Rlsmalling, Ronhjones, Rtdrury, Rxjensen,SCEhardt, Salih, Salsa Shark, Sbmehta, Scanrod, Sebastian, SebastianHelm, Shepplestone, SimonP, Smjg, Somerandom, Srleffler, Stan J Klimas, StanBrinkerhoff, Stevenmitchell, Stevertigo,Strait, , Tantalate, Tardis, Tavernsenses, Temporaluser, That Guy, From That Show!, The Anome, The Anonymous One, The Thing That Should Not Be, Thegeneralguy, TomR,ToobMug, Trevor MacInnis, Tunheim, UberCryxic, Uiteoi, Vadim Makarov, Wahoofive, Why Not A Duck, WilfriedC, William Avery, Wizard191, Woohookitty, Wraith69, Yamamoto Ichiro, Yurik, Zavod219, Zolot, Þjóðólfr, Јованвб, 452 anonymous editsImage Sources, Licenses and ContributorsFile:Coloured ceramic thermal barrier coating on exhaust component.jpg Source:/w/index.php?title=File:Coloured_ceramic_thermal_barrier_coating_on_exhaust_component.jpg License: Attribution Contributors: File:Thermal conductivity.svg Source: /w/index.php?title=File:Thermal_conductivity.svg License: Public Domain Contributors: User:GknorLicenseCreative Commons Attribution-Share Alike 3.0 Unported/licenses/by-sa/3.0/。
空调表冷器几何参数对换热性能的影响

第21卷第5期凋卒窒词2021年5月REFRIGERATION AND AIR-CONDITIONING10-14+技术研究f {本栏目投稿邮箱:} +zldt@chinajourn |空调表冷器几何参数对换热性能的影响郭月姣顾鑫鑫顾忱徐彤苏梦雨冯国增(江苏科技大学能源与动力学院)摘要表冷器的换热效率受几何结构设计参数影响较大。
为此,本文以某表冷器为研究对象,针对影响表冷器换热性能的主要结构尺寸参数,如管间距,肋片厚度,肋片间距以及管径进行研究。
首先,根据理论分析的方法研究各结构参数对换热性能的影响规律,得出各结构参数的优化范围;然后利用田口正交试验法设计了25组混合正交试验表以研究结构参数对换热效率的耦合影响;最后通过进行参数分析,得出影响表冷器换热性能因素从高到低的顺序为:肋片间距、管径、管间距、肋片厚度。
结果表明:当管间距20.5mm,肋片厚度0.31mm,肋片间距2.65mm,管径9.0mm时,表冷器单位体积换热量最高为7939.22kW/m30研究为表冷器结构参数设计提供了一定的科学依据。
关键词空调表冷器;换热效率;正交试验设计;结构优化Influence of air conditioner cooler geometric parameters on heat exchangeperformanceGuo Yuejiao Gu Xinxin Gu Chen Xu Tong Su Mengyu Feng Guozeng(School of Energy and Power Jiangsu University of Science and TechnologyABSTRACT The heat exchange efficiency of the surface air cooler is greatly affected bythe geometric design parameters.Therefore,this article takes a surface air cooler as theresearch object,and studies the main structural size parameters that affect the heat exchange performance of the surface air cooler?such as tube spacing,fin thickness,fin spacing and tube diameter.First,according to the method of theoretical analysis,the influenceof each structural parameter on the heat transfer performance was studied,and the optimization range of each structural parameter was obtained.Then,using the Taguchi orthogonal test method,25sets of mixed orthogonal test tables were designed to study thestructural parameters on heat transfer.Coupling effect of efficiency.Finally?through parameter analysis,the order of factors affecting the heat exchange performance of the surface cooler from high to low is:fin spacing,tube diameter,tube spacing,fin thickness.The results show that when the tube spacing is20.5mm,the fin thickness is0.31mm,the fin spacing is2.65mm,and the tube diameter is9.0mm,the maximum heat transferper unit volume of the surface air cooler is7793.22kW/m3.The research provides a certain scientific basis for the design of the structural parameters of the surface air cooler.KEY WORDS air-conditioning surface air cooler;heat exchange efficiency;orthogonalexperiment design;structure optimization基于住房与城乡建设部报告中数据显示,我不断上升的趋势①,这与全球低碳节能减排的大趋国建筑能耗占全国能耗的比例约为33%,并具有势相悖。
探究聚苯乙烯泡沫塑料板表观密度与导热系数之间的内在联系
探究聚苯乙烯泡沫塑料板表观密度与导热系数之间的内在联系发表时间:2020-09-28T16:14:04.550Z 来源:《基层建设》2020年第17期作者:梁雅琪1 蔡浩2 徐磊2 肖艳1 潘小红1 龚关2 [导读] 摘要:收集整理建筑节能市场上常用的XPS板的表观密度和导热系数的检测数据,并对其进行分析和总结。
1.湖北华祥建设工程质量检测有限公司湖北武汉 430034;2.湖北省地质实验测试中心湖北武汉 430034 摘要:收集整理建筑节能市场上常用的XPS板的表观密度和导热系数的检测数据,并对其进行分析和总结。
研究表明,除周围环境因素外,板材自身如生产板材所用的发泡剂等因素对XPS板材的导热系数也有很大影响。
在控制生产工艺等因素条件下,市场上常见的表观密度范围内,XPS板的表观密度与导热系数之间有明显的正相关关系。
关键词:XPS板;表观密度;导热系数 Exploring the intrinsic relationship between apparent density and thermal conductivity of the extruded polystyrene foam Liang Yaqi1,2, Cai Hao2, Xu Lei2, Xiao Yan1,Pan Xiaohong1,Gong Guan21.Hubei Huaxiang Construction Project Quality Testing CO., LTD, Wuhan 430034;2.Hubei Geological Research Laboratory, Wuhan 430034 Abstract: We collected and analyzed massive data of apparent density and thermal conductivity of the extruded polystyrene foam(XPS). Studies have shown that in addition to the surrounding environmental factors, the factors such as the foaming agent used in the production of the sheet itself have a great influence on the thermal conductivity of the XPS sheet. Under the conditions of controlling production process and other factors, there is a significant positive correlation between apparent density and thermal conductivity of XPS sheet in the apparent density range commonly found in the market. Key words: the extruded polystyrene foam(XPS); apparent density; thermal conductivity 挤塑聚苯乙烯泡沫塑料板,简称XPS板,是目前建筑市场上常用的墙体及屋面用的建筑节能材料。
铝合金换热器真空钎焊过程中Si的分布及其对焊接质量的影响
焊管WELDED PIPE AND TUBE
Vol.44 No.8Aug. 2021第
44卷第
8期
2021年8月
试验与研究
铝合金换热器真空钎焊过程中Si的分布
及其对焊接质量的影响*
朱单单1,龙绍檣
2,龙 潇
2
(1.
贵州永红换热冷却技术有限公司,贵州惠水
558000
; 2
.贵州理工学院,贵阳550003)
摘 要:为了研究3003铝合金板翅式换热器真空钎焊焊缝中Si的分布对焊接质量的彩响机制,采
用扫描电镜及能谱(SEM+EDS)分析方法对板翅式换热器钎焊焊缝进行了分析。结果显示,Si在钎
缝区主要以两种形式存在:一是以带状富硅相在钎缝组织聶界附近聚集析出,
尤其是钎焊炉中靠近
炉壁侧试样钎缝中硅含量高达93%
;
二是以Al-Si或Al-Si-Mn固溶体形态沿钎缝与母材界面曲折分
布。此外,钎焊炉中靠近炉壁侧试样因升温快,过热度高,导致钎缝凝固偏析严重,Si偏聚严重,
钎缝组织均匀性显著恶化,同时引起凝固末端产生缩孔、微裂纹等缺陷。研究表明,工件在真空钎
焊炉中的布置方式对Si在钎缝中的分布状态和钎缝质量有显著影响
。
关键词:铝合金;散热器;真空钎焊;Si元素分布
中图分类号:
TG113 文献标识码:A DOI
: 10.19291/j.cnki.l001-3938.2021.0&003
Distribution of Si during Vacuum Brazing of Aluminum Alloy Heat Exchanger and
its Effect on
Welding
ZHU Dandan1, LONG Shaolei2, LONG
Xiao
2
(I. Guizhou Yonghong Cooling Technology Co., Ltd., Huishui 558000, Guizhou, China;
2. Guizhou
Institute of Technology, Guiyang 550003,
考虑沉积反应的绝热层多孔介质体烧蚀模型
考虑沉积反应的绝热层多孔介质体烧蚀模型王书贤;李江【摘要】基于炭化层结构是存在致密层的非均匀多孔结构这一试验现象,建立了考虑沉积反应的多孔介质体烧蚀模型.重点突出了导致致密层形成的沉积反应的计算方法,以及和氧化反应共同作用对孔隙结构的影响,和对烧蚀率的影响.对烧蚀发动机三元乙丙绝热层烧蚀试验开展了数值计算验证,烧蚀率和孔隙结构分布均吻合较好.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)010【总页数】4页(P127-130)【关键词】体烧蚀模型;沉积反应;孔隙结构;致密层【作者】王书贤;李江【作者单位】西安航空学院,西安710077;西北工业大学燃烧、流动和热结构国家级重点实验室,西安710072【正文语种】中文【中图分类】V435.14绝热层烧蚀一直是固体火箭发动机的一个重要研究领域。
随着对烧蚀机理认识的不断发展深入,烧蚀模型也由早期的面烧蚀模型向多孔介质体烧蚀模型发展。
体烧蚀模型的显著特点是考虑炭化层和热解层的多孔结构对传热烧蚀的影响[1,2]。
近年来通过试验发现炭化层呈现上密下疏的非均匀多孔结构[3,4]。
对于致密层的形成,经分析认为由沉积反应导致的可能性最大[5]。
关于多孔炭化层的沉积现象早在1973年就曾提出,美国学者Clark在对20世纪60年代烧蚀研究进行总结的基础上提出[6]:热解气体在通过炭化层时发生异相沉积反应将影响炭化层密度,对炭化层的描述需要增加表达孔隙率变化的方程。
2006年Curry建立考虑沉积反应的体烧蚀模型[7],在炭化层内发生的复杂物理化学过程中包含了沉积反应。
Ayasoufi在对飞行器再入大气的烧蚀计算中也采用了上述模型,并给出了CH4、C2H6、C2H4、C2H2混合气体的反应过程及反应速率指前因子和活化能[8]。
借鉴国外对沉积现象的处理方法,实时计算热解气体沉积造成的碳沉积量,并同步计算热解和氧化反应的质量消耗量,得到炭化层孔隙结构的生成、演化以及由此导致的一系列物性参数变化对绝热层传热烧蚀的影响。
燃气轮机热障涂层技术专利分析
燃气轮机热障涂层技术专利分析谢晓阳1,汪海锋2(1. 国防专利审查中心,北京 100083;2. 中国船舶重工集团公司第七一四研究所,北京 100101)摘要: 热障涂层是一种金属陶瓷复合涂层系统,常用于燃气轮机热端部件表面,以降低基底温度,保护燃气轮机在高温下长期工作。
本文对燃气轮机热障涂层制备技术、涂层材料技术、结构设计技术相关的专利进行分析,研究了热障涂层技术相关专利的申请趋势、重点申请国、重点申请人、技术发展路线以及未来的发展趋势等。
研究结果表明,我国在电子束-物理气相沉积制备技术、热障涂层梯度结构设计等方面与国外存在较大差距,国内需要在相应技术方面加强研发及专利布局。
关键词:燃气轮机;热障涂层;专利分析中图分类号:U668.3 文献标识码:A文章编号: 1672 – 7649(2020)01 – 0186 – 04 doi:10.3404/j.issn.1672 – 7649.2020.01.038PatenT Analysis Research on Key Technologies of Thermal Barrier Coatings Applied to Gas TurbineXIE Xiao-yang1, WANG Hai-feng2(1. Defense Patent Examination Center, Beijing 100083, China; 2. The 714 Research Institute of CSIC, Beijing 100101, China)Abstract: Thermal-barrier coatings (TBCs) are metal-ceramic composite coatings applied to the surfaces of the hottest parts of gas turbine, protecting gas turbine from long-term operation at high temperatures. The patents relate to the thermal barrier coatings preparation, materials and structural design of gas turbine TBCs are analyzed in this article. The patents are studied in specified in patent application trend, patent apply countries, patent applicant, technology roadmap. The results showed that there is a large gap between China and abroad in aspect of EB-PVD、graded coating designing, action should be taken to reinforce the technolog and patent layout strategy.Key words: gas turbine;thermal barrier coatings (TBCs);patent analysis0 引 言热障涂层(Thermal Barrier Coatings)是一种金属陶瓷复合的陶瓷基系统,通常用于燃气轮机的热端部件,对基底材料起到隔热作用,从而保护燃气轮机长期在高温环境下正常工作[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Influenceofporesonthethermalinsulationbehaviorofthermalbarriercoatingspreparedbyatmosphericplasmaspray
L.Wang,Y.Wang*,X.G.Sun,J.Q.He,Z.Y.Pan,Y.Zhou,P.L.WuLaboratoryofNanoSurfaceEngineering,DepartmentofMaterialsScience,SchoolofMaterialsScienceandEngineering,HarbinInstituteofTechnology,Harbin150001,PRChina
articleinfoArticlehistory:Received21April2010Accepted22June2010Availableonline1July2010
Keywords:A.ThermalbarriercoatingsE.ThermalinsulationF.Pore
abstractThedefectsinmaterialsplayveryimportantroleontheeffectivethermalconductivity.Especially,thespatialandgeometricalcharacteristicsofporesaresignificantfactorsforthethermalinsulationbehaviorofthermalbarriercoatings(TBCs).Inthispaper,finiteelementmethodwasemployedtosimulatethethermaltransferbehaviorofTBCswithdifferentspatialandgeometricalcharacteristicofpores.Thesim-ulationresultsindicatethatthethermalinsulationeffectofTBCswouldbeenhancedwhentheporesize,porevolumefractionandporelayerswhichareperpendiculartothethicknessdirectionincreaseandthespacebetweentheadjacentporesdecreases.Itispredictedthattheeffectivethermalconductivityisdif-ferentatdifferentdirectionsfortheatmosphericplasmaspray(APS)TBCs.Anovelmethod,Computa-tionalMicromechanicsMethod(CMM),wasutilizedtodepictthethermaltransferringbehaviorofactualcoatings.Atthesametime,modelwithdifferentkindsofdefectswereestablished,andtheeffec-tivethermalconductivityasthefunctionofdefectorientationangle,defectvolumefractionanddefectshapecoefficientwasdiscussedindetail.Thesimulationresultswillhelpustofurtherunderstandtheheattransferprocessacrosshighlyporousstructuresandwillprovideusapowerfulguidetodesigncoat-ingwithhighthermalinsulationproperty.Ó2010ElsevierLtd.Allrightsreserved.
1.IntroductionAsvitalcoatingmaterials,thermalbarriercoatings(TBCs)haverolesofprotectinghightemperaturealloysubstrate,reducingtheworkingtemperatureandincreasingworkingefficiencyofhightemperaturecomponent[1–3].Sotheyarecurrentlybeingusedorconsideredforengineapplicationsinaerospace,aircraft,marineautomobiles,nuclearfusionreactorsandheavy-dutyutilities[4,5].However,thedurabilityrequirementsofTBCsfortheseapplica-tionsareincreasingrapidly.Someresearchershavealreadyindi-catedtheneedforcoatingssurvivingtemperaturehigherthan1400°C[6,7].Itwasreportedthatreusablerocket-poweredvehi-clesencounterextremelyhighheatloadsintheirenginesandairframes[8],andthebladesinthehigh-pressurefuelturbopumponthemainenginesofspaceshuttleundergoverylargethermaltransientsonstart-upofengines.Moreover,ahighertemperaturegradientwillalsoberequiredintheseapplications.Asotherprop-ertiesarekeptthesame,thepropertyofthermalinsulationisverypivotal.ThemostdirectroutetoensurethathightemperaturecomponentscoatedwithTBCshavehighflowandThrust-Weightratioandalonglifespan[9]istoenhancethethermalinsulationproperty.DemandforTBCswithexcellentthermalinsulationper-
formanceisbecomingmoreandmoreurgentandthematerialselectionstandardisbeingraisedcontinuously.Basedoncurrentresearch,therearefourwaystoimprovethethermalinsulationofTBCs.Thefirstwayistoincreasethethicknessofthecoating,butpreviousinvestigationshaveindicatedthatresidualstresswillincreasewiththeincreaseofthethickness.IfresidualtensilestressexistsintheceramiccoatingofTBCs,andthemagnitudeexceedstheinnerbondingstrengthofthecoatingparticles,theTBCswillfail.Thesecondwayistofindoutothermaterialswithlowerther-malconductivities,suchaszirconate-basedTBCs,whichisex-pectedtobeapromisingcandidateforanewgenerationofTBCs.Thethirdwayistoconductceramiccoatingsurfacetreatments,suchaslaserremeltingorcoatingmaterialswithhighinfraredexternalreflectionratesinordertoimpedetheheattransferencetothesubstrate.Thefourthwayistocontrolthespraypowderstructureandtheplasmasprayparameters(asforAPSTBCs).ThisisadirectandeffectivemethodtodecreasetheeffectivethermalconductivityofTBCs.Previousinvestigationshaveshownthatporesareofconse-quencesindecreasingthethermalconductivityofceramicmateri-als.Muchliteraturehasbeenpublishedaboutthethermalinsulationpropertyofporousmaterials,suchasporousbulkcera-micmaterials[10].Guetal.[11]haveinvestigatedthehighlypor-ouszirconiabasedTBCswithzigzagmorphology,believingthatthistypeofporecanimpedeheatflowthroughthethicknessof
0261-3069/$-seefrontmatterÓ2010ElsevierLtd.Allrightsreserved.doi:10.1016/j.matdes.2010.06.040
*Correspondingauthor.Tel.:+8645186402752;fax:+8645186413922.E-mailaddress:wangyou@hit.edu.cn(Y.Wang).
MaterialsandDesign32(2011)36–47ContentslistsavailableatScienceDirectMaterialsandDesign