微混合器研究进展_朱丽

合集下载

离子色谱法测定食用油中总氯方法的研究

离子色谱法测定食用油中总氯方法的研究

离子色谱法测定食用油中总氯方法的研究史晓梅;杨永坛;杨悠悠;苗雨田【摘要】An ion chromatography method was adopted for the determination of total chlorine in edible oil.Edible oil samples were first heated at high temperature,and then were heated in muffle furnace at a constant temperature of 550 ℃ for 3 hours with calcium oxide as the protective agent.Samples were extracted with deionized water in an ultrasonic field after being cooled down,and purified through an ion exchange column for eliminating metal ions before ion chromatographic analysis.The chromatographic separation was carried out on an Ion PacTM AS19 (4 mm ×250 mm) column using 25.0 mmol/L KOH as the eluent solvent at a flow rate of 1.0 mL/min.The injection volume was 25 μL.The external standard method was used to quantify total chlorine.The detection limit of the method was 0.003 mg/L and a good linear relation was observed in the range of 0.02 ~5.0 rng/L (R2 =0.999 8).The average recoveries were in the range of 83.1%~90.3% for the spiked level of1.0 ~4.0 mg/L,the RSDs were in the range of 4.07%~10.64%.This method was easy for operating,which is rapid and sensitive,and proved to be effective for the quantitative and qualitative analysis of total chlorine in edible oil samples,and this method could meet the requirements of daily inspection and supervision.%建立离子色谱法测定食用油中总氯含量的方法,使用氧化钙为保护剂,先经过高温加热,然后在恒温马弗炉中继续以550℃加热3h,待样品冷却后用去离子水超声浸提,样品溶液过离子交换柱除去金属离子后上机测定总氯含量.使用Ion Pac TMAS19(4 mm×250 mm)为分析柱,KOH淋洗液的浓度为25.0 mmol/L,流速1.0 mL/min,选样体积25μL,外标法定量.氯离子标准溶液在0.02~5.0 mg/L浓度范围内呈现良好线性关系,R2 =0.999 8,检出限0.003 mg/L.在1.0 ~4.0 mg/L添加浓度上,回收率范围为83.1%~90.3%,相对标准偏差4.07%~ 10.64%.该方法操作简便且快速准确,能够有效测定食用油中的总氯含量,满足食用油中总氯的检测需求以及样品的分析测定.【期刊名称】《中国粮油学报》【年(卷),期】2018(033)003【总页数】4页(P100-103)【关键词】离子色谱法;食用油;总氯【作者】史晓梅;杨永坛;杨悠悠;苗雨田【作者单位】中粮营养健康研究院;营养健康与食品安全北京市重点实验室,北京102209;中粮营养健康研究院;营养健康与食品安全北京市重点实验室,北京102209;中粮营养健康研究院;营养健康与食品安全北京市重点实验室,北京102209;中粮营养健康研究院;营养健康与食品安全北京市重点实验室,北京102209【正文语种】中文【中图分类】TS207.3食用油脂作为三大营养素之一,是人类膳食的重要组成部分,也是人体内重要的能源和营养源,是消费者必不可少的日常消费品。

以降压为目的的CO2混合工质制冷系统研究进展

以降压为目的的CO2混合工质制冷系统研究进展

2017年第36卷第6期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·1969·化 工 进展以降压为目的的CO 2混合工质制冷系统研究进展武卫东,贾松燊,吴俊,张华(上海理工大学制冷与低温工程研究所,上海 200093)摘要:自然工质CO 2 因其具有良好的环境友好特性(ODP=0,GWP=1)、单位容积制冷量高、良好的传热性能等优点而得到制冷行业的再次关注。

然而,由于其自身物性及工况条件的限制,在实际应用中CO 2制冷系统大多采用跨临界循环,高压侧压力高达12MPa 左右,这对系统各部件的安全性和制造成本提出非常高的要求。

本文总结了目前采用CO 2混合工质来有效改善纯CO 2制冷系统运行压力较高问题的制冷循环系统,综述了国内外以降压为目的的CO 2混合工质制冷系统研究进展,分析了CO 2混合工质的跨临界制冷循环系统、自复叠式制冷系统以及压缩-吸收耦合循环系统各自的特点,指出了以降压为目的的CO 2混合工质制冷系统的发展前景,并对今后的CO 2混合工质制冷系统的主要研究方向进行了讨论。

关键词:二氧化碳;制冷循环;混合工质;混合物;热力学;降压中图分类号:TB66 文献标志码:A 文章编号:1000–6613(2017)06–1969–08 DOI :10.16085/j.issn.1000-6613.2017.06.002Research progress on refrigeration systems using CO 2 mixture refrigerantto reduce its cycle pressureWU Weidong ,JIA Songshen ,WU Jun ,ZHANG Hua(Institute of Refrigeration and Cryogenics Engineering ,University of Shanghai for Science and Technology ,Shanghai200093,China )Abstract :Carbon dioxide is increasingly attracting attention as a natural refrigerant due to its environmental friendliness (ODP=0,GWP=1),large unit volume refrigerating capacity and good heat transfer performance ,etc. However ,it is mainly used in transcritical refrigeration cycle due to limitation of its physical properties and working conditions. The operating pressure in the high pressure side of the transcritical CO 2 cycle may exceed 12MPa ,which results in high requirements for safety and manufacturing costs. In this paper ,we summarized current CO 2 refrigerant systems using CO 2 mixture refrigerant to effectively improve the problem of its high operating pressure ,reviewed the research progress of refrigeration systems using CO 2 mixture refrigerant to reduce its cycle pressure ,and analyzed the characteristics of the CO 2 mixture refrigeration systems ,including the transcritical refrigeration cycle system ,auto-cascade refrigeration system and compression-absorption coupled cycle system. Furthermore ,we pointed out the development prospect of the refrigeration systems using CO 2 mixture refrigerant for depressurization ,and discussed the main research directions of the CO 2 refrigeration systems in the future.Key words :carbon dioxide ;refrigeration cycle ;mixture refrigerant ;mixture ;thermodynamics ;depressurization第一作者及联系人:武卫东(1973—),男,博士,副教授,研究方向为制冷新技术。

微流体技术制备多级结构材料的研究进展_郭松

微流体技术制备多级结构材料的研究进展_郭松

中国科学: 化学 2015年第45卷第1期: 24 ~ 33 SCIENTIA SINICA Chimica 《中国科学》杂志社SCIENCE CHINA PRESS评述微流体技术制备多级结构材料的研究进展郭松, 尹苏娜, 潘宜昌, 陈苏*, 张利雄*材料化学工程国家重点实验室; 南京工业大学化学化工学院, 南京 210009*通讯作者, E-mail: lixzhang@收稿日期: 2014-09-30; 接受日期: 2014-10-17; 网络版发表日期: 2014-12-26doi: 10.1360/N032014-00274摘要多级结构材料具有微纳米尺度范围内结构可调、多功能化等特点而受到广泛关注. 微流体技术具有独特的微尺寸效应和易操控性, 应用于多级结构材料制备具有明显优势. 国外对此有较多研究, 国内也取得了很多进展, 有些方面还处于领先水平. 本文对国内微流体技术制备多级结构材料方面的研究进展进行了综述, 主要介绍了基于这一技术新开发的各种制备方法, 包括界面反应法、界面萃取、液滴分相和多重乳液等, 阐述了各种新制备方法的科学原理、所采用的微流体装置的特点和所制得的多级结构材料的类型与结构特征, 为进一步利用微流体技术开发新型多级结构材料及其制备方法提供有用信息, 最后对今后的发展趋势进行了展望. 关键词微流体多级结构材料界面反应双液相分相多重乳液1引言多级结构材料指一类在微观尺度下结构或性质具有多样性的成型材料, 如具有空心、核壳、Janus 等结构的微球和微纤维、非球状的微囊泡、形貌独特的组装体、嵌套结构(structure-within-structure)的复合体、复杂形貌和微结构的颗粒以及多级孔道结构的多孔材料等[1~6]. 它们因具有结构复杂、形貌特殊和功能多样化等特点, 可广泛运用在催化、生物技术、纳米技术、电子技术和能源再生等领域, 成为近10多年来的研究热点[3,5,6]. 多级结构材料的形貌和结构取决于其制备方法. 例如, 空心、核壳、Janus类微球的制备主要包括模板法、选择性刻蚀和奥氏熟化等[3]; 微纤维的制备主要采用静电纺丝、湿法纺丝和流体涂布等[6]; 非球状微囊泡、形貌独特的组装体及嵌套结构的复合体等材料的制备一般采用乳化、模板印刷法和自组装等[2,7]; 而多级孔道结构的多孔材料的制备也主要采用模板法和酸、碱处理等选择性刻蚀法[3]. 由此可见, 每种多级结构材料都有其限定的制备方法, 如何采用这些方法来精确调控所制备材料的尺寸分布、结构及组成仍面临着巨大挑战. 因此, 需要开发一种操控简单且同时适用于多类多级结构材料的制备技术.微流体技术因其微米数量级的通道结构、优良的液滴和流型操控性能、较快的传热传质速度等特点[8], 除广泛应用于化学合成领域外, 近来还被用于金属粒子、氧化硅、纳米沸石、量子点、金属有机骨架材料(MOFs)等微纳米材料的高效合成[5,9~11], 显现出制备时间显著缩短、产品尺寸均一度大幅提高等优点. 同时, 还能通过耦合多步合成过程制得微纳复合颗粒, 如CdS/ZnS核壳量子点、Co/Au核壳纳米粒子和Co3BTC2@Ni3BTC2核壳结构MOF微粒等[12~14]. 此外, 基于微流体的层流效应和相界面特性, 如界面聚合、界面萃取、多重乳液和液滴融合等多种微流体技术已被成功用于制备出类型多样、形貌各异、结构复杂和功能多样化的多级结构材料, 体现出该技术在多级结构材料的制备方面具有灵活性、多变性和相对普适性. 因此, 近10年来相关研究工作不断涌现. 但微化工技术专题中国科学: 化学 2015年 第45卷 第1期25与利用微流体技术制备微纳米粒子已有较多综述相比[8], 尚缺乏系统介绍利用微流体技术制备多级结构材料的综述. 因此, 本文将在介绍国外有关研究进展的同时, 重点对国内相关研究进展进行总结, 着重介绍用于多级结构材料制备的各种微流体方法及相关科学原理和制备过程, 揭示及分析这些多级结构材料的结构特点, 最后对这方面研究的未来发展方向进行展望.2 液滴界面反应法界面反应指异相(各环境介质)间在界面处发生的化学反应. 目前已被用于制备超薄膜、纳米线和微胶囊等[15~18]. 其制备通常采用机械搅拌或超声等手段将一相以液滴的方式分散在另一相中, 但是所得到的液滴均匀度有限. 利用微流体技术可得到非常均匀的液滴最终形成尺寸均匀且结构组成可控的中空或实心微球. 采用该方法, 国外研究者已制备出尼龙、生物质大分子、有机硅和TiO 2等多种材质的中空微球[19~22].张利雄课题组[23]以硫酸水溶液和溶有糠醇的生物柴油分别作为分散相和连续相, 通过由内径 100 μm 针头和内径1.2 mm 聚氯乙烯(PVC)软管组装成的简易T 型微流体装置(图1(a)), 将硫酸水相液滴均匀分散在含有糠醇的连续相中, 糠醇在硫酸液滴界面聚合形成了聚糠醇微球. 通过调节糠醇在油相中的浓度以及硫酸溶液的pH, 可以控制糠醇的聚合 速度, 实现了空心球壁厚的调节和实心聚糠醇微球的制备, 进一步炭化可制得相应中空或实心炭微球, 也可在水相中加入磁性前驱物, 制得磁性炭球.若在上述水相中添加一定浓度的硅溶胶, 可制得炭-氧化硅复合微球, 通过酸处理或焙烧选择性地去除硅或炭组分, 可以制备出具有多级孔结构的二氧化硅或炭微球[26]. 可见, 通过液滴界面反应可灵活实现微球多级组成、结构以及功能化的调控.此外, 将上述形成单分散液滴的简单T 型微流体装置改为1个由30个独立微通道(宽50 μm, 深 150 μm)构成的基于快速混合原理的交叉趾型微反应器(图1(b))时, 通过调节连续相中糠醇的浓度以及停留时间, 可以制得具有高尔夫球状的、平均尺寸为0.7~1.2 μm 的炭微球[24].杨朝勇课题组[27]采用类似方法, 利用十字型玻璃微通道反应器(宽250 μm, 深200 μm), 将含有模板剂十六烷基三甲基溴化铵(CTAB)的氨水溶液以均匀液滴的形式分散在正硅酸乙酯(TEOS)中, 通过TEOS 在氨水液滴界面的水解, 成功制备出了具有中孔结构的二氧化硅中空微球. 其壁厚可通过控制TEOS 水解的速度和CTAB 的浓度来调节.此外, 骆广生课题组[25]依此方法也制备了具有核壳结构的复合微球. 他们利用同轴微流体装置将硅溶胶液滴分散在含有钛酸四丁酯(TBOT)的液体石蜡中, TBOT 会在液滴界面水解, 从而得到具有核壳结构的氧化钛-氧化硅复合微球(图1(c)).图1 界面反应技术制备中空聚糠醇微球和炭微球[23](a)、高尔夫型纳米碳球[24](b)以及核壳结构SiO 2/TiO 2复合微球[25](c)郭松等: 微流体技术制备多级结构材料的研究进展263 微流体纺丝法微流体纺丝法是利用传统湿法纺丝的快速成型技术, 结合微流体的层流效应, 制备微米尺寸纤维的技术. 早期主要用于实心微纤维的制备, 近来拓展至中空、Janus 和多重节点结构的微纤维的制备[28]. 国内在此方面取得领先的成果. 例如, 顾忠泽课题组[29]在1个双通道型毛细管(喷嘴内径50 μm)中以2股添加了不同染料的海藻酸钠水溶液为分散相形成双层平行流, 结合界面反应, 制得具有Janus 结构的直径为170 μm 的海藻酸钙微纤维(图2(a)).陈苏课题组[30]以添加不同原料的聚乙烯吡咯烷酮(PVP)乙醇溶液为原料, 利用乙醇挥发使PVP 浓缩成型, 制得分别含硫化钠和醋酸锌或氯化镉的PVP 微纤维. 通过控制纤维收集器的旋转方式和转速, 将分别含硫化钠和醋酸锌或氯化镉的PVP 纤维构筑成一维与零维(1D-0D)、一维与一维(1D-1D)、一维与二维(1D-2D)的阵列. 在纤维交点处, 离子的扩散可原位生成ZnS 或者CdS 量子点, 由此制得高度有序化和可控角度的量子点-聚合物杂化微纤维阵列 (图2(b)).4 微流体纺丝与液滴技术结合法 微流体纺丝与液滴技术结合法是利用微流体装置在纺丝前驱液中形成单分散的液滴, 再通过纺丝技术制备包裹有液滴的纺丝的一种方法. 国外尚未有利用该方法制备多级结构材料的报道. 秦建华课题组[31]利用由十字形通道和聚焦型通道串联而成的微流体设备, 以聚(乳酸-co -羟基乙酸) (PLGA)的碳酸二甲酯(DMC)溶液和海藻酸钠水溶液分别为分散相和连续相, 先在十字形通道中形成O/W 乳液, 后在聚焦通道中固化成型, 制备了含有油相液滴的海藻酸钙纤维, 再经干燥脱水形成竹节状形貌(图3(a)).张利雄课题组[32]采用更为简单的、由内径 110 μm 针头与喷嘴内径100~150 μm 玻璃微针同轴组装而成的微流体装置, 先在海藻酸钠溶液中形成石蜡液滴, 在其流经玻璃微针出口时, 液滴会受挤压变形, 而此时海藻酸钠溶液在出口固化形成海藻酸钙纤维, 而液滴因界面张力作用恢复球状, 这种相互作用形成了具有椭球状节点的纤维; 纤维因干燥收缩和包裹液滴形状的保持, 使其具有珠串结构. 珠串结构的大小、间距和纤维的直径以及表面性质等可通过多因素进行调节(图3(b)).5 两相微界面萃取法两相微界面萃取法是一相中的溶剂在微通道内通过两相界面(平行流或液滴的形式)扩散至另一相中, 使得该相中溶质被浓缩成型的方法[5]. 例如, 通过萃取含有PLGA 的DMC 液滴可得到亚微米或纳米PLGA 凝胶球[33]; 或在连续相与分散相流速比大于300时, 诱导液滴中的溶剂形成非均一扩散, 可制得环型的氧化硅[34]和聚甲基丙烯酸甲酯(PMMA)微球[35].朱锦涛课题组[36]以聚苯乙烯(PS)或PMMA 与PS 的共聚物的氯仿溶液作为分散相, 水相作为连续相, 先利用聚焦微流装置得到W/O 乳液, 然后分别用水和乙醇萃取氯仿, 可得到表面褶皱的PS 小球和PMMA/PS 的Janus 小球(图4(a)).张利雄课题组[37]将硅溶胶的乙醇液滴操控在由液体石蜡与生物柴油组成的液-液界面处, 通过调节图2 微流体纺丝技术制备Janus 海藻酸钙纤维[29](a)和PVP/量子点复合纺丝阵列[30](b)中国科学: 化学 2015年 第45卷 第1期27图3 微流体纺丝与液滴技术相结合制备竹节状海藻酸钙纤维[31](a)和珠串纤维[32](b)图 4 两相微界面萃取技术制备表面褶皱具有Janus 结构的PS/PMMA 复合粒子[36](a)和开口空心、榛子状的二氧化硅微 球[37](b)萃取温度和萃取剂的种类来调节乙醇萃取的速度, 可得到实心(室温, 生物柴油)、偏心空心(60℃, 生物柴油)、开口空心(60℃, 蓖麻油与35 wt%碳酸二甲酯)和榛子状(60℃, 蓖麻油与50 wt%碳酸二甲酯)的氧化郭松等: 微流体技术制备多级结构材料的研究进展28硅微球(图4(b)).除制备多级结构微球外, 骆广生课题组[38]在以不锈钢针头、玻璃纤维和聚四氟乙烯管同轴串联组装成的微流体设备中, 先形成内相和外相为水溶液、中间相是聚丙烯腈的二甲基甲酰胺(DMF)溶液的三层环流流型, 利用DMF 向水相的扩散, 制得聚丙烯腈中空纤维.6 微液滴双液相分相法双液相分相过程指2种组分共存于同一溶液中时, 在一定的浓度范围会因密度的差异, 之前的均相体系会分成两相的过程. 通常, 溶液体系分相后会形成两相分层的现象. 最近有研究发现, 以4 wt%葡聚糖(DX), 1 wt% PEG 和94 wt%水的混合溶液作为分散相, 以PEG 的高浓度溶液作为连续相, 在微通道中形成混合溶液的微小液滴, 因水被萃取至连续相中使PEG 和葡聚糖分相, 最终形成了PEG/DX/PEG 结构的乳液, 进而制得包含PEG 的葡聚糖微囊[39]. 与此类似, 以PEGDA 的水溶液作为分散相, 正十六烷与2,2-二乙氧基苯乙酮(DEAP)的混合液作为连续相, 利用DEAP 扩散至水相液滴中诱导液滴发生分相, 可制得多层核壳结构PEGDA 微球[40].最近, 张利雄课题组[41]发现了丙烯酰胺(AM)- PEG 液滴聚合之后形成球形或棒状聚丙烯酰胺(PAM)/ PEG 核壳结构乳液的现象; 并结合液滴融合技术, 在核壳结构乳液中引入聚乙二醇二丙烯酸酯(PEGDA)的热致PEGDA 聚合二次分相, 可制得由球形核组成的具有哑铃型、三叶草型、正四面体型和多棱柱型等结构的PAM/PEG 复合水凝胶, 或由棒形与球形PAM 凝胶经过不同的排列组合方式组装得到具有三角形、四面体、以及非常少见形貌等多种三维结构的复合水凝胶(图5).7 多重乳液法多重乳液法指在利用微流体多重乳液制备技术制备具有复杂结构的多重乳液的过程中, 通过添加聚合物单体、纳米材料等组分, 采用光聚合、界面萃取等手段, 使这些组分快速成型, 从而制得与多重乳液结构一致或相近的多级结构颗粒的方法. 该方法制备所得材料的结构主要取决于多重乳液的结构, 后者的形成主要依赖不同形式微流体装置的设计, 如多重毛细管并行同轴流、T 型通道串联、聚焦通道串联等, 由此可制得双重乳液、多核双重乳液、异相多核双重乳液、三重乳液和双相乳液等. 在制备这些图5 AM-PEG 水溶液液滴中聚合致分相形成核壳结构, 并结合液滴融合等技术制备得到多种复杂结构乳液和特殊形貌复合水凝胶微球[41]中国科学: 化学 2015年 第45卷 第1期29乳液的过程中, 通过加入聚合物单体、单分散PS 粒子、SiO 2胶粒、Fe 3O 4纳米粒子和量子点等, 可以得到诸如具有Janus 结构的PMMA/量子点/Fe 3O 4复合微球、多重核壳ETPTA/纳米凝胶复合光子晶体微球和非球形结构的聚PEGDA 等形态各异的多级结构 材料.依此方法, 陈苏课题组[42]利用简单的同轴装置, 以包含CdS 量子点的PMMA 氯仿溶液和分散有纳米Fe 3O 4颗粒的PMMA 氯仿溶液为分散相, 分别通过2个平行并在一起的针头, 在以聚乙烯醇(PVA)水溶液为连续相的剪切下形成的Janus 液滴, 挥发除去液滴中的氯仿, PMMA 成型得到具有白色半球为荧光区域、黑色半球为磁性区域的Janus 结构PMMA 微珠. 他们还采用该方法分别以单分散PS 胶体粒子分散液和乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)为分散相, 水溶液为连续相, 制得了新月结构的光子晶体和Janus 结构的ETPTA/PS 复合微球[43].顾忠泽课题组[44]在2个串联的T 型通道组成的微流体装置中, 先以单分散磁性纳米胶体溶液作为分散相, ETPTA 油溶液作为连续相, 在第一个T 型通道中形成W/O 乳液, 再在第二个T 型通道中以聚乙烯醇(PVA)水溶液为连续相流体制得水包油包水(W/O/W)多重液滴, 利用光聚合技术使液滴成型, 得到以透明ETPTA 为壳层, 单分散磁性纳米胶体乳液为核的微胶囊颗粒. 这种材料可以通过调变外加磁场显示出不同的色彩.除了完全复制多重乳液的结构之外, 秦建华课题组[45]在由T 型通道串联聚焦通道组成的微流体装置中, 先以矿物油为分散相, PEGDA 水溶液为连续相, 在T 型通道中形成O/W 乳液, 再在聚焦通道中以FC40作为连续相制备O/W/O 多重乳液, 利用微空间限制技术挤压乳液呈盘状, 结合聚合淬灭技术, 使壳层中靠近通道壁处的PEGDA 不发生反应, 从而制备了结构与乳液不完全相同, 呈现出新月和多脚架形貌的颗粒.张利雄课题组[46]也采用2个串联的T 型微通道, 先以壳聚糖水溶液作为连续相, TEOS 和正己烷的混合溶液作为分散相, 在第一个T 型通道中制得O/W 乳液, 在第二个T 型通道中以液体石蜡作为连续相制得O/W/O 乳液, 其被滴入氢氧化钠水溶液中使壳聚糖成型, 再在铝酸钠溶液中浸渍、水热合成, 即可得到中空的A 型分子筛微球. 通过调节TEOS 相的流速, 可以形成包裹有更多的TEOS 液滴的壳聚糖乳液, 从而得到多空腔的A 型分子筛微球. 此方法的巧妙之处在于, TEOS 既可以作为合成A 型沸石的硅源, 又能作为形成空腔的模板.更多的研究采用同轴串联组装的聚焦型微流体装置形成复杂结构的多重乳液[47~49]. 褚良银课题 组[50]采用这种装置, 在第一级聚焦型微通道内, 分散相聚(N -异丙基丙烯酰胺-co -甲基丙烯酸-co -烯丙胺)纳米水凝胶的水溶液, 被连续相ETPTA 流体剪切得到简单乳液; 该乳液作为分散相, 在第二级聚焦型微通道中被外层连续相水溶液进一步剪切形成W/O/W 的双重乳液; 最后通过光引发ETPTA 聚合得到空心ETPTA 微球. 通过在ETPTA 中添加苯甲酸苄酯和表面活性剂聚甘油蓖麻醇酯(PGPR), 来控制内部的水相液滴在界面上的黏附状态, 使得内部液滴处于偏心位置或突出外层液滴, 进而制备得到具有开口的空心ETPTA 微球. 他们还将该方法用于制备中空 结构的壳聚糖、聚N -异丙基丙烯酰胺等材质的 微球[51~55].朱锦涛课题组[56~59]利用类似的乳液成型机理, 在由2根不同喷嘴内径的微针按照喷嘴对喷嘴的方式组装成的微流体装置中, 分散相是纳米凝胶的水溶液, 在第一个喷嘴处被分散了SiO 2粒子的ETPTA 溶液剪切形成W/O 乳液, 乳液在进入第二喷嘴时被外层连续相水溶液剪切形成W/O/W, 并进一步利用光聚合成型技术得到空心SiO 2/ETPTA 复合材料的光子晶体、对温度响应的核壳结构聚(N 异丙基丙烯酰胺-co -丙烯酸)/ETPTA 光子晶体微球和Janus 结构 的聚(N 异丙基丙烯酰胺-co -丙烯酸)/ETPTA 光子晶体微球.此外, 顾忠泽课题组[60]设计了一种由喷嘴内径约50 µm 的4孔毛细微针与内径为100~300 µm 的毛细管同轴组装成的微流体装置, 选择分散了不同尺寸SiO 2粒子的ETPTA 溶液作为分散相从微针的4个孔道中分别流入, 利用连续相水溶液的剪切作用形成Janus 液滴, 然后通过光引发聚合得到Janus 结构的SiO 2/ETPTA 光子晶体微球. 通过增加毛细微针中孔道的数目, 并且在不同微针中引入不相溶的两相溶液, 再在外层连续相的剪切作用下一步乳化制备核壳结构的多重乳液, 并制得类似于条形码结构的SiO 2/ETPTA 光子晶体颗粒和包裹有液滴的ETPTA 微囊等[61~66].郭松等: 微流体技术制备多级结构材料的研究进展308 结论和展望综上, 利用微流体技术独特的特性, 可以制备出具有奇特结构和易多功能化等特性的多类多级结构材料. 其中有些方法是传统制备技术在微通道中的延伸, 如液滴界面反应法和微流体纺丝法; 而有些方法是基于多种技术的耦合, 如微流体纺丝与液滴法、两相微界面萃取法和多重乳液法; 也有基于传统现象在微通道中的新发现, 如微液滴双液相分相法. 可见, 将传统制备技术移植到微流体体系中, 能够制得许多传统技术难以合成的多级结构材料.此外, 基于传统现象在微通道中的新发现, 如微液滴双液相分相法, 也可开发多级结构材料的新的制备技术. 在未来的研究中可以将目前双水相体系推广至双油相或复合体系中用于有机多级结构材料的制备. 若想进一步提高材料的结构复杂性, 还可将多种制备方法耦合, 例如, 将精馏、膜分离和吸附等传统过程移植到微流体技术用于新型多级结构材料的制备中. 在此过程中, 必然需要进一步设计出更多步骤耦合的新型微流体装置. 但目前国内在微流体装置创新设计方面还有待进一步提升.目前在微尺度分散、混合、传递、反应等方面的化工基础理论已初步建立, 但依据这些理论指导材料制备方面的相关报道还很有限. 因而在未来的工作中, 还需进一步完善微尺度下这些化工基础理论, 为后续合理设计多级结构材料提供有力基础.在多级结构材料类型方面, 除了各种形貌的微球和纤维外, 还可以通过复合得到Janus 球、开口球、竹节串珠结构纤维、纤维阵列、异型微结构水凝胶等. 很多形貌与结构是其他传统方法难以制得的, 显示出微流体技术的优势. 目前所制得的材料主要集中在有机材料. 虽然有少许无机或无机/有机复合材料已成功制备, 但是未来仍需进一步拓展其类型及结构多样化, 为设计构建高效负载型催化剂及电池等多种结构非均匀的复合材料提供有用的指导.致谢本工作得到国家自然科学基金(21476114)、江苏省高校自然科学基金重点项目(12KJA530002)、江苏省自然科学基金(BK20140934)和江苏省优势学科项目资助, 特此一并致谢.参考文献1 Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures. Nat Mater , 2007, 6: 557–562 2 Lee KJ, Yoon J, Lahann J. Recent advances with anisotropic particles. Curr Opin Colloid Interface Sci , 2011, 16: 195–2023 Liu J, Qiao SZ, Chen JS, Lou XWD, Xing X, Lu GQM. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery andlithium-ion batteries. Chem Commun , 2011, 47: 12578–125914 Ruokolainen J, Brinke G, Ikkala O. Supramolecular polymeric materials with hierarchical structure-within-structure morphologies. AdvMater , 1999, 11: 7775–77805 Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM. Generation of monodisperseparticles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed , 2005, 44: 724–7286 Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature , 2010, 463:640–6437 Gokmen MT, Du Prez FE. Porous polymer particles—a comprehensive guide to synthesis, characterization, functionalization andapplications. Prog Polym Sci , 2012, 37: 365–4058 Günther A, Jensen KF. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip , 2006, 6:1487–15039 陈光文. 微化工技术研究进展. 现代化工, 2007, 27: 8–1310 骆广生, 王凯, 徐建鸿, 王玉军, 吕阳成. 微化工过程研究进展. 中国科学: 化学, 2014, 44: 1404–1412 11 汪伟, 谢锐, 巨晓洁, 褚良银. 微流控法制备新型微颗粒功能材料研究新进展. 化工学报, 2014, 65: 2555–256212 Luan W, Yang H, Fan N, Tu ST . Synthesis of efficiently green luminescent CdSe/ZnS nanocrystals via microfluidic reaction. NanoscaleRes Lett , 2008, 3: 134–13913 Yang H, Luan W, Wan Z, Tu S, Yuan WK, Wang ZM. Continuous synthesis of full-color emitting core/shell quantum dots viamicroreaction. Cryst Growth Des , 2009, 9: 4807–481314 Luan W, Yang H, Wan Z, Yuan B, Yu X, Tu S. Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead (II).中国科学: 化学 2015年第45卷第1期J Nanopart Res, 2012, 14: 1–815Hou L, Zhang Q, Ling L, Li CX, Chen L, Chen S. Interfacial fabrication of single-crystalline ZnTe nanorods with high blue fluorescence. J Am Chem Soc, 2013, 135: 10618–1062116Yang S, Wang CF, Chen S. Interface-directed assembly of one-dimensional ordered architecture from quantum dots guest and polymer host.J Am Chem Soc, 2011, 133: 8412–841517Lin Y, Skaff H, Böker A, Dinsmore AD, Emrick T, Russell TP. Ultrathin cross-linked nanoparticle membranes. J Am Chem Soc, 2003, 125: 12690–1269118Skaff H, Lin Y, Tangirala R, Breitenkamp K, Böker A, Russell TP, Emrick T. Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking. Adv Mater, 2005, 17: 2082–208619Steinbacher JL, Moy RW, Price KE, Cummings MA, Roychowdhury C, Buffy JJ, Olbricht WL, Haaf M, McQuade DT. Rapid self-assembly of core-shell organosilicon microcapsules within a microfluidic device. J Am Chem Soc, 2006, 128: 9442–944720Takeuchi S, Garstecki P, Weibel DB, Whitesides GM. An axisymmetric flow-focusing microfluidic device. Adv Mater, 2005, 17: 1067–107221Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E. Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc, 2006, 128: 12205–1221022Eun TH, Kim SH, Jeong WJ, Jeon SJ, Kim SH, Yan SM. Single-step fabrication of monodisperse TiO2 hollow spheres with embedded nanoparticles in microfluidic devices. Chem Mater, 2009, 21: 201–20323Pan YC, Ju MH, Wang CQ, Zhang LX, Xu NP. Versatile preparation of monodisperse poly(furfuryl alcohol) and carbon hollow spheres in a simple microfluidic device. Chem Commun, 2010, 46: 3732–373424Ju M, Zeng C, Wang C, Zhang L. Preparation of ultrafine carbon spheres by controlled polymerization of furfuryl alcohol in microdroplets.Ind Eng Chem Res, 2014, 53: 3084–309025Lan W, Li S, Xu J, Luo G. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device.Langmuir, 2011, 27: 13242–1324726Liu Y, Ju M, Wang C, Zhang L, Liu X. Preparation of monodisperse mesoporous carbon microspheres from poly(furfuryl alcohol)-silica composite microspheres produced in a microfluidic device. J Mater Chem, 2011, 21: 15049–1505627Li D, Guan Z, Zhang W, Zhou X, Zhang WY, Zhuang Z, Wang X, Yang CJ. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl Mater Inter, 2010, 2: 2711–271428Chung BG, Lee KH, Khademhosseini A, Lee SH. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012, 12: 45–5929Cheng Y, Zheng F, Lu J, Shang L, Xie Z, Zhao Y, Chen Y, Gu Z. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater, 2014, 26: 5184–519030Xu LL, Wang CF, Chen S. Microarrays formed by microfluidic spinning as multidimensional microreactors. Angew Chem Int Ed, 2014, 53: 3988–399231Yu Y, Wen H, Ma J, Lykkemark S, Xu H, Qin J. Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater, 2014, 26: 2494–249932Ji X, Guo S, Zeng C, Wang C, Zhang L. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device. RSC Adv, 2015, 5: 2517–252233Hung LH, Teh SY, Jester J, Lee AP. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip, 2010, 10: 1820–182534Fang A, Gosse C, Gaillard C, Zhao X, Davy J. Tuning silica particle shape at fluid interfaces. Lab Chip, 2012, 12: 4960–496335Wang B, Shum HC, Weitz DA. Fabrication of monodisperse toroidal particles by polymer solidification in microfluidics. Chemphyschem, 2009, 10: 641–64536Liu S, Deng R, Li W, Zhu J. Polymer microparticles with controllable surface textures generated through interfacial instabilities of emulsion droplets. Adv Funct Mater, 2012, 22: 1692–169737Ju M, Ji X, Wang C, Shen R, Zhang L. Preparation of solid, hollow, hole-shell and asymmetric silica microspheres by microfluidic-assisted solvent extraction process. Chem Eng J, 2014, 250: 112–11838Lan W, Li S, Lu Y, Xu J, Luo G. Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice. Lab Chip, 2009, 9: 3282–328839Song Y, Shum HC. Monodisperse w/w/w double emulsion induced by phase separation. Langmuir, 2012, 28: 12054–1205931。

模型检测研究进展-计算机科学国家重点试验室

模型检测研究进展-计算机科学国家重点试验室
本文将对模型检测的典型应用主要研究内容及关键技术分别加以阐述最后介绍国内研究人员在该领域的部分新进展
模型检测研究进展
朱雪阳 张文辉 李广元 吕毅 林惠民 中国科学院软件研究所 计算机科学国家重点实验室 北京 100190
目录
摘要 ........................................................................................................................................................................ 2 Abstract ................................................................................................................................................................. 2 1. 2. 3. 引言 ............................................................................................................................................................... 2 典型应用 ..................................................................................................................................................... 3 主要研究内容及关键技术 ................................................................................................................... 4 3.1. 有限状态模型检测 ......................................................................................................................... 4

共振声混合技术在含能材料领域应用研究进展及展望

共振声混合技术在含能材料领域应用研究进展及展望

兵工自动化 2017-07Ordnance Industry Automation 36(7) ·20·doi: 10.7690/bgzdh.2017.07.006共振声混合技术在含能材料领域应用研究进展及展望马宁,陈松,蒋浩龙,张哲,秦能(西安近代化学研究所氟氮化工资源高效开发与利用国家重点实验室,西安 710065) 摘要:针对现有传统混合方法难以满足新型含能材料工艺要求的问题,对共振声混合技术在含能材料领域应用研究进行综述。

介绍共振声混合技术在混合炸药混合、推进剂混合、单质含能材料共晶等方面的应用,并对其在含能材料领域的应用前景进行展望。

通过总结可以看出:共振声混合技术具有无桨混合、整场混合的优点,该技术将在含能材料的化学反应、成球、包覆、光泽等方面发挥其更大的优势。

关键词:共振声混合;含能材料;炸药;推进剂;共晶中图分类号:TJ06; TJ450 文献标志码:AResearch Progress and Prospect on Application of Resonance Acoustic MixingTechnology in Energetic Materials FieldMa Ning, Chen Song, Jiang Haolong, Zhang Zhe, Qin Neng (State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China) Abstract: The traditional mixing method can not meet the technical requirements of new type energetic material technology, carry out the summary on applications of resonant acoustic mixing in the field of energetic materials.Introduced application of resonant mixing technology in fields of composite explosive mixing, propellant mixing, and simple energetic material co-crystallisation, and analyzed application prospect of this technology in energetic material field. In summary, the resonance acoustic mixing technology has advantages of non paddle mixing and whole mixing.Resonant acoustic mixing can be excellent used in energetic material manufacturing such as chemical reaction, glomeration, coating, polishing.Keywords: resonant acoustic mixing; energetic materials; explosives; propellants; co-crystallisation0 引言由于含能材料特殊应用场合和危险的天然属性其对混合工艺效果和工艺安全要求都极其严格,随着新型含能材料的不断发展,现有传统混合方法逐渐难以很好满足其工艺要求。

微纳米尺度流动实验研究的问题与进展_李战华

微纳米尺度流动实验研究的问题与进展_李战华

/ 引用格式 : L i Z H, Z h e n X. T h e r o b l e m s a n d r o r e s s i n t h e e x e r i m e n t a l s t u d o f M i c r o N a n o- s c a l e f l o w. J o u r n a l o f E x e r i m e n t s i n F l u i d M e- g p p g p y p : : c h a n i c s, 2 0 1 4, 2 8( 3) 1- 1 1.李战华 ,郑 旭. 微纳米尺度流动实验研究的问题与进展. 实验流体力学 , 2 0 1 4, 2 8( 3) 1- 1 1.
, L i Z h a n h u a Z h e n X u g ( , , ) L NM, I n s i t i t u t e o f M e c h a n i c s C h i n e s e A c a d e m o f S c i e n c e s B e i i n 0 0 1 9 0, C h i n a 1 y j g : / b s t r a c t T h e m i c r o n a n o s c a l e e x e r i m e n t a l f l u i d m e c h a n i c s s t u d i e s t h e f l u i d f l o w w i t h t h e A p t i c a l d i m e n s i o n f r o m a b o u t 1 mm t o 1 n m,w h i c h i s a l s o t h e t r a n s i t i o n r a n e f r o m t h e m a c r o - y p g : s c o i c f l o w t o m o l e c u l a r m o t i o n.T h e c o m b i n a t i o n o f t h e t w o c l a s s i c a l t h e o r i e s t h e c o n t i n u u m p , m e c h a n i c s a n d t h e m e c h a n i c s f o r w a r d s o m e b a s i c t h e o r e t i c a l l i k e t h e u a n t u m u s t s r o b l e m s q p p , o f t h e c o n t i n u i t h o t h e s i s a n d t h e b o u n d a r s l i I n t h e m e a n t i m e d u e t o t h e c o u l i n v a l i d i t y y p y p. p g y / / / , o f t h e l i u i d s o l i d i n m i c r o n a n o s c a l e i t i s w o r t h c o n s i d e r i n t h e i n f l u e n c e o f i n t e r a s h a s e s - q y g g p ,m / f a c i a l c h e m i s t r a n d e l e c t r i c o n t h e f l o w. T h e r e f o r e i c r o n a n o e x e r i m e n t a l d e v i c e s r o e r t i e s y p p p , s h o u l d i n t e r a t e f o r c e a n d e l e c t r i c i t m e a s u r e m e n t s a n d r e u i r e a n a n o m e t e r m e a s u r i n s a c e g y q g p , ap N f o r c e a n d a n a n o s e c o n d t i m e r e s o l u t i o n.T h i s f o c u s e s o n t h e r e s o l u t i o n r e c i s i o n a e r - p p p , , / r o b l e m s o f v a l i d i t o f t h e c o n t i n u i t h o t h e s i s b o u n d a r s l i B r o w n i a n m o t i o n o f m i c r o p y y p y y p / n a n o a n d m i c r o v o r t e x f l o w, a n d i n t r o d u c e s t h e a n d d i f f i c u l t i e s o f m i c r o a r t i c l e s r o r e s s e s -p - p g / / n a n o f l o w m e a s u r e m e n t b M i c r oN a n o P I V a n d m i c r on a n o s c a l e f l o w v i s u a l i z a t i o n u s i n t r a c - y g , / ” e r s .U t o d a t e t h e s t u d o f m i c r o n a n o f l o w i s s t i l l f o l l o w i n t h e i d e a o f“ m i n i a t u r i z a t i o n o f p y g , , c l a s s i c a l f l u i d m e c h a n i c s m e a s u r e m e n t h o w e v e r t h e n a n o f l o w m e a s u r e m e n t u r e n t l n e e d s t h e g y n e w t e c h n i u e s a n d m e t h o d s . q : / ; / e w o r d s m i c r o n a n o f l o w; e x e r i m e n t a l m e a s u r e m e n t M i c r o N a n o P I V; i n t e r f a c e K p y

微通道内液-液两相流流型及传质的研究进展

微通道内液-液两相流流型及传质的研究进展
influence of various factors including features of microchannels, properties and flow rates of fluids on the
formation of flow patterns and mass transfer coefficients were analyzed. It was pointed out that most of
通道入口结构以及微通道尺寸对液-液两相流的流
型均有重要的影响。
Salim 等[8] 以水-白矿油为两相体系,研究了微
1 微通道内液-液两相流基础
影响微通道内液-液两相流体流动的主要因素
可以概括为微通道材料及几何尺寸 (两相通道宽度
wc、wd,通道深度 h,通道直径 dh)、两相物理性质
(两相黏度 μc、μd,表面张力 σ) 和两相流动状况
(parallel flow) /环状流 (annular flow)、混乱的细条
纹流 (chaotic thin striations flow) 等 (图 1)。影响
微通道内液-液两相流流型的因素可以归纳为微通
道特征和液-液两相性质两大方面。
1.2 微通道特征对两相流动的影响
对于给定的液-液两相体系,微通道材料、微
众多研究学者针对不同的两相体系,对微通道
中的液-液两相流体流动进行了研究。连续相流体
和分散相流体在主通道内相互作用,两相界面处的
扩散作用受到抑制,界面形态受流动状况和流体性
质的影响,呈现不同的流型。目前观测到的流型有
弹状流 (slug flow)、滴状流 (droplet flow)、喷射
流 (jet flow)、节状形变流 (nodular flow)、平行流

剪切增稠液及其复合材料的研究进展

剪切增稠液及其复合材料的研究进展

橡 胶 工 业CHINA RUBBER INDUSTRY312第71卷第4期Vol.71 No.42024年4月A p r.2024剪切增稠液及其复合材料的研究进展陈柏宇1,管登高1,彭 燕2,刘 涛2(1.成都理工大学 材料与化学化工学院,四川 成都 610000;2.中国工程物理研究院 化工材料研究所,四川 绵阳 621000)摘要:剪切增稠液(STF )作为新一代智能耗能材料广泛应用于抗刺扎、抗冲击和阻尼减振等领域。

介绍STF 的特性和剪切增稠机理,综述STF 复合材料的制备方式,包括浸渍或喷涂、夹层或填充、共混以及胶囊化;分析STF 复合材料的抗刺扎性能、抗冲击性能、阻尼减振性能与应用。

建议进一步探索STF 的剪切增稠机理,研发对环境不敏感、长使用寿命、可在高冲击速率下应用、磁流变性或电流变性的STF 复合材料。

关键词:剪切增稠液;复合材料;抗刺扎性能;抗冲击性能;阻尼减振性能;共混;胶囊化中图分类号:TQ336.4+2 文章编号:1000-890X (2024)04-0312-08文献标志码:A DOI :10.12136/j.issn.1000-890X.2024.04.03121931年R.V.WILLIAMSON [1]在胶体分散体系中发现了异常流变行为,当剪切力到达一定阈值时,硬球分散液的黏度会出现急剧增大现象。

之后H.FREUNDLICH 等[2]也验证了这一现象,该现象被描述为剪切增稠(由T.GILLESPIE [3]于1966年提出)。

由于突然增大的黏度会破坏仪器设备、阻塞输送流体的管道、使涂料涂覆不均匀,当时多被视为工业生产中的不利现象。

后来随着研究的不断深入,该现象在防护和阻尼减振等领域潜在的应用价值被发现,剪切增稠材料的制备也受到关注。

剪切增稠液(STF )是一种典型的剪切增稠材料,通常是由极性溶剂以及纳米或微米颗粒组成的颗粒悬浮液。

这种悬浮液在正常情况下呈液态,具有较好的流动性,但当所受的剪切力到达一定阈值时,悬浮液黏度急剧增大,甚至出现类固态的转变,而当剪切力加载取消后,悬浮液又快速恢复到初始状态,变为可流动的液体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档