微混合器

合集下载

德国拜耳模块化微反应技术2014

德国拜耳模块化微反应技术2014

Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.;Yoshida, J. J. Am. Chem. Soc. 2004, 126, 14702. S. Suga, A. Nagaki and J. Yoshida, Chem. Commun., 2003, 354. Bayer Patents
拜耳微反应技术特点1: 可选择模块多,适用范围广
微混合器和微换热器
梳式混合器
阀式混合器
层叠式混合器
盘片式换热器
电加热器
LH 2-薄层式混合器
Page 18
LH 25-薄层式混合器
LH 1000-薄层式混合器
同轴换热器
拜耳微反应技术特点1: 可选择模块多,适用范围广
Page 19
拜耳微反应技术特点2: 易拆装,易清洗
4. 基于微反应器技术的连续工艺开发
5. 结论
Page 2
化工生产中的挑战
Page 3
微反应技术
优势:灵活,应用范围广 劣势:不能适应反应具体要 求, 反应效率低 反应时间分布宽 温度和浓度不均匀 反应温度控制困难 操作安全性差 优势:适应反应具体要求, 反应效率高
微反应技术 = 微型反应通道 + 连续流动
Page 8
微反应器对反应温度/时间的精确控制
避免平行副反应
温度对于一个化学反应非常重要: • 快反应需要降温否则容易失控甚至爆炸 • 慢反应需要加热以提高反应速率 • 许多反应对温度非常敏感(动力学Vs.热力学控制)
避免后续副反应
Page 9
无放大效应
We had a small problem with the scale-up out of the laboratory....

微反应器系统设计

微反应器系统设计
1.介绍微反应器在不同领域的应用案例,包括制药、化工、生物工程等。 2.分析微反应器在不同应用中的优势和局限性,以便于用户选择和应用。 3.探讨微反应器未来的发展趋势和前沿技术,以促进微反应器技术的不断创新和发展。
微反应器系统设计
系统组成与功能
系统组成与功能
微反应器系统概述
1.微反应器是一种用于化学反应的微型化设备,具有高度集成、高效传质和传热等优点。 2.微反应器系统由反应器、混合器、控制器等多个部分组成,各部分协同工作实现化学反应的高效 进行。 3.微反应器系统在设计上需要考虑化学反应的特性、流体的流动性和传热传质等因素。
▪ 微尺度效应
1.微尺度效应是指微反应器中由于尺度缩小而带来的流体行为 的变化。 2.微尺度下,流体的惯性力减小,粘性力占主导地位,导致流 体的流动行为发生变化。 3.微尺度效应对反应流体的混合、传质和传热等行为都有重要 影响。
反应流体动力学
▪ 流动行为
1.微反应器中的流动行为包括层流和湍流,流动行为对反应效率和产物质量有重要影响。 2.层流流动有利于反应的均匀混合和传热,提高反应效率。 3.湍流流动可以增强传质和传热,但也可能导致反应的不均匀性和副产物的生成。
控制系统与优化
控制系统软件设计
1.控制系统软件需要实现与硬件的通讯和数据交互。 2.软件设计需要考虑反应过程的特性和需求,以实现最佳的控制效果。
先进控制算法应用
1.引入先进控制算法,如神经网络、模糊控制等,可以优化控制系统的性能。 2.这些算法能够更好地处理非线性、时变等复杂反应过程,提高控制精度和鲁棒性。
控制系统与优化
▪ 优化目标与评估指标
1.控制系统的优化目标可能包括提高产率、降低能耗、提高产 品质量等。 2.评估控制系统性能的主要指标包括稳态误差、响应速度、抗 干扰能力等。

微流控芯片技术及其应用

微流控芯片技术及其应用

微流控芯片技术及其应用微流控芯片技术是一种基于微纳米加工技术制造的微型芯片,能够精确控制微流体在芯片内部的流动。

该技术结合了微流体力学、微电子学和生物学等学科,广泛应用于药物筛选、基因分析、细胞分析和生物传感等领域。

本文将重点介绍微流控芯片技术的原理、制备方法以及其应用领域。

一、微流控芯片技术的原理与制备方法微流控芯片技术的核心是利用微纳米加工技术在芯片上制造一系列微小的通道和结构,以便精确控制微流体的流动。

其原理基于微流体力学,通过精确调控流体的压力、流速和流量,实现对微流体的精确控制。

微流控芯片通常由微流体通道、微阀门、微泵和微混合器等功能单元组成。

微流控芯片的制备方法主要有两种:玻璃基质制备和聚合物基质制备。

玻璃基质制备方法包括湿法刻蚀、热压刻蚀和激光加工等,适用于制备微流道尺寸较大的芯片。

聚合物基质制备方法则包括胶印、光刻和热熔连接等,适用于制备尺寸较小且需要高精度的芯片。

二、微流控芯片技术的应用领域1. 药物筛选:微流控芯片技术可以模拟人体的生理环境,实现对药物在体内代谢和毒性的评估。

通过微流控芯片,可以高通量地筛选出具有潜在药效的化合物,加快新药研发的速度。

2. 基因分析:微流控芯片技术可以实现对基因的高通量检测和分析。

通过在微流控芯片上构建合适的反应体系和探针,可以实现对DNA 序列、基因表达和基因突变等的快速检测和分析。

3. 细胞分析:微流控芯片技术可以实现对细胞的高通量单细胞分析。

通过在芯片上构建微小的细胞培养室和检测通道,可以实现对细胞的培养、分离、操控和检测等操作,为研究细胞的功能和行为提供了有力工具。

4. 生物传感:微流控芯片技术可以实现对生物分子的高灵敏检测。

通过在芯片上固定特定的生物分子(如抗体、酶和核酸等),可以实现对目标分子的选择性捕获和灵敏检测,广泛应用于生物传感、环境监测和临床诊断等领域。

5. 化学反应:微流控芯片技术可以实现对化学反应的高效控制和优化。

通过在芯片上构建微小的反应室和混合器,可以实现对反应底物的精确控制和混合,提高反应速率和产物纯度,广泛应用于有机合成、催化反应和分析化学等领域。

微反应器技术及其在化工生产中的应用

微反应器技术及其在化工生产中的应用

纳米材料 生产 、有机 合成 、乳液 制备等 领域 ,取得 了非 常 显著 的经济效益 和社会效益 。
本文 以微反应器技术 在几种 化工产 品生 产 中的应用 为 例 ,介绍微反应器技术 的优势 ,并分 析如何 根据 化学反应 特点 ,设计基本工艺路 线 以及选 择关键 微反应 设备 ,从 而 实现工艺 的优化 。
应设 备 ,从 而 实现 ;有机合成 ;乳 液;放 大生产
中 图 分 类 号 :TQ 5 ,TQ 5 01 02 文 献 标 识 码 :A
0 引 言
外 ,需要为 随后 的晶核 生长 过程 提供 稳定 、均匀 的环 境 。
器快速降 至成核 温度 以下 ,此后 只发 生 晶核 的生 长过 程 。 生产过程 中对温度 的精确控制能够将成核和生长过程分开 , 从而 为合成尺寸均一 的纳米颗粒创造 了条件 。 基于模块化微反应器 技术 ,拜耳公 司先 后开发 出多种 纳 米 粉 体 的 合 成 工 艺 ,包 括 无 机 荧 光 纳 米 粉 ( 如 LP a O4: u e O E 、C P 4:T b等) 、量 子 点 ( C S 、C S 如 A e d、

般 而言 ,溶液 的过饱 和度 与反应 物的混合 程度 以及 反应
微反应器从本质上讲是一种管式连续反应器_ ] 1 ,但是其 体 系的温度密切相 关 ,因此 ,快速 均匀 的混合 、快 速的升 0 通道特征尺寸仅为 1 一10 ,远远小于常规 的管式反应 温和降温 、以及精确 的反应 时间控制对 产 品的质量 至关重 0 00 器 。—个微反应器的内部结构由很多微通道并联而成 ,可获得
C 、T e b阳离子 前驱体 溶 液和 H。 O P ,阴离 子前 驱体溶 液 ; 其次 ,两股物料 在微 混合 器 内按 预设 比例快 速均 匀混 合 , 混合后 的溶液流经微换 热器快 速升温 至成核温 度 ;然后 反 应溶液流人带有混合 和换热装 置的微反应 器 中进 行纳米 晶 核的生长 。为 了实现成 核与生长 过程 的分离 ,通 常晶体 的 生长温度需等 于或低 于成核温 度 ;最后溶液 流经 微换热 器 快速 降温使反应淬灭 ,得到含有 C P 4 e O :Tb 纳米颗粒 的溶 液。整个过程 中,通过调 节反应参 数如 反应 温度 、停 留时 间、浓度等可 以得到 形貌 和尺 寸可 控 的单 分散 纳米 颗粒 。 与传 统批次合成 工艺相 比,该 工艺具有 以下 优点 :获得 的 产品质量 高 ( 颗粒尺寸在 2 l Onn以下 、颗粒 尺寸分 布窄) , 可重复性好 ,设备 体积小 ,安 全性 好 、能耗 低 ,可 以实 现

微通道反应器

微通道反应器

微通道反应器报告摘要本文以微通道反应器(以下简称微反应器)为研究对象,在参阅了大量文献的基础上,对微反应器的概念、结构、分类及优缺点进行了概述。

重点分析了微反应器内流体力学特性以及微观混合特性,着重讨论了反应器内的流型理论与计算微观混合的数学模型。

最后针对微反应器在实际中的应用,简述其适合的反应体系,并分析了微反应器的典型工业应用实例。

以此来帮助我们更进一步得了解微反应器。

关键字:微反应器;流体力学;混合特性ABSTRACTThis article takes microreactor as the target of our study, and summarizes the concept, structure, classification, advantages and disadvantages of microreactor based on a large number of references. It focuses on the hydrodynamic characteristics and microscopic mixing characteristics of microreactor, and focuses on the mathematical model of the flow pattern inside the reactor theory and computation micromixing. Finally consider of the application of microreactor in practice, this article outlines suitable reactor system of microreactor, and analyzes the typical examples of industrial applications of microreactor. In order to help us get further understand on microreactor.Key words:Microreactor, Hydromechanics, Characteristics of mixing目录前言 (1)第1章微反应器概述 (3)第1.1节微反应器的概念 (3)第1.2节微反应器的起源与演变 (4)第1.3节微反应器的结构 (5)第1.4节微反应器的分类 (6)第1.5节微反应器的特点 (7)1.5.1 微反应器的优点 (7)1.5.2 微反应器的缺点 (9)第2章微反应器流体力学与混合特性 (11)第2.1节微反应器内流体力学研究 (11)2.1.1 两相流流型 (11)2.1.2 两相流的传质 (18)2.1.3 两相流的数值模拟 (19)第2.2节微反应器的混合特性 (22)2.2.1 数学模型方程 (22)2.2.2 混合效率的计算 (24)第3章微反应器的应用 (29)第3.1节微反应器适合的反应体系 (29)第3.2节微反应器的工业应用实例 (31)3.2.1 微反应系统合成生物柴油 (31)3.2.2 微反应技术在有机合成中的应用 (32)结语 (35)参考文献 (37)致谢 (39)前言近年来,纳米材料成为高科技发展的重点,已经成为国际竞相争夺的一个科技战略制高点,也是我国高科技发展的重点[1]。

微通道反应器在聚合反应中的应用

微通道反应器在聚合反应中的应用

微反应器因为其良好的传热性和混合型近年来被广泛运用在化工生产开发中,并表现出了巨大的潜力。

而与传统的釜式反应器相比,微反应器的内部尺寸在几十到几百微米,并且内部具有几百万上千万条单独的通道。

其特征是尺度通常为数百微米量级,反应物的扩散路程短,因此能显著缩短实现充分混合所需时间。

传统釜式的混合时间通常为秒级,特征尺度极小的微反应器甚至达到毫微妙级的混合时间;小尺度还使微反应器的比面积小于100m2/m3,极少数可以达到1000m2/m3,而微反应器的比面积可以达到5000-50000m2/m3.大比表面积使微反应器具有良好的传热性能,更容易实现对反应温度的精确控制。

依靠其良好的传热传质性能,微反应器可通过控温系统和流量调节方便地控制反应温度、反应物配比和反应时间等反应参数。

除此之外微反应器系统因为相对封闭,不容易受到水、空气等杂质的侵入,可省去部分繁琐的除杂保护措施。

为了保持小尺寸特性,微反应器的工业放大将主要依靠反应器数量的增加,不存在传统反应器在放大过程中出现的传热传质能力变化等问题。

综上所述,微反应器在有机合成领域受到很大的重视。

聚合反应对于反应器的传热和混合有着较高的要求,而传统的釜式反应器并不能帮助研究者们制备出高性能的聚合产物。

聚合温度对于自由基聚合所产得的分子量和分子量分布有着很大的影响。

所以所以对反应系统温度的控制是控制产品质量的关键因素。

大部分自由基聚合都是较强的放热反应,而反应的速度较快。

传统的反应釜传热和传质能力较差,往往导致反应体系内温度分布不均匀,从而影响产物的分子量分布。

而如果采用微反应器进行实验的话就可以明显改善反应的结果。

在上图的实验中,科学家们使用了T行微混合器和内径分别为250μm和500μm的微管式反应器系统,进行了一系列丙烯酸脂单体的自由基聚合。

通过一系列反应证明了微反应器可以有效控制自由基聚合产物的分子量分布。

目前在微反应器聚合中研究较多的就是溶液聚合法,并将转化率控制在较低水平,以防止体系黏度过高堵塞管路。

微通道反应器是如何工作的

微通道反应器是如何工作的

微反应器是微反应技术的实际应用,微反应器具有传统釜式反应器不具备的优势比如快速平稳的反应,以及反应数目放大的特点,副产物产生较少。

在精细化工领域这样的优势对于精细化工的过程本质安全性的提高是非常大的:比如更好的传热传质系数能够让反应更加稳定,不会让瞬间放热的反应造成热量的过量积累导致危险情况的产生,并且微反应器通过通道尺寸的缩小让反应小于易燃易爆物质的临界直径,可以有效阻断自由基链式反应,让爆炸无从发生。

那么在进行反应的时候微通道反应器的工作流程是什么呢,下面就为大家介绍一下。

一、微反应器进行的硝化反应研究学者们利用三角内交叉趾柱形单通道反应器硝化异辛醇,让该反应可以在25℃的常温下不需要添加惰性溶液和含氮物质作为稳定剂,反应停留时间在45.9-65.8s,是常规反应器1/210,而且其中的硝酸异辛酯的收率达到了99.5%,质量分数为99.6%。

说明节省了换热能耗的同时提高了反应效率和产品质量,同时保证了反应的安全性;研究人员研究T型微反应器中的甲苯硝化反应,反应速率几乎是受本征反应进行程度得到了良好的控制;从硝化反应底物、反应温度、反应时间、产物纯度和收率等方面总结了国外2000年开始10多年间有关微反应器中连续硝化反应的研究。

2、以芳香环化合物为底物的硝化反应在进行水杨酸( 1a) 的硝化实验中发现,传统的硝化方式既有一硝基化合物的生成,又有二硝基化合物的生成,但是利用SS316型管式微反应器基本消除了二硝基化合物的生成,并提高了目标产物的选择性。

另外,升高反应温度、增加硝化剂的含量,也可以提高5-硝基化合物( 1b) 的选择性,产率由釜式的40%提高到60%。

对比文献[10],使用的是玻璃微反应器,而SS316 型管式微反应器的材质是金属,其良好的导热性可增强传热效率,提高原料的转化率。

邻硝基苯甲醛( 2b) 的传统合成方法是直接对苯甲醛( 2a) 进行硝化,但由于空间位阻以及邻位碳原子的亲核性较差,导致邻位化合物2b 的物质的量比较低( 邻间比为1 ∶4) 。

微生物检验实验旋涡混合器作业指导书

微生物检验实验旋涡混合器作业指导书

微生物检验实验旋涡混合器作业指导书
1.目的
规范旋涡混合器操作规程,确保正确使用旋涡混合器。

2.授权操作人
经培训并通过考核的微生物实验室工作人员。

3.适用范围
微生物实验室旋涡混合器
4.工作环境
相对湿度:10%-85%;运行温度:15-30℃。

5.操作程序
5.1接通旋涡混合器的电源。

5.2打开旋涡混合器上方的绿色开关,混合器即开始工作。

5.3把装有欲混匀物品的容器放于混合器的海绵上。

5.4稍微用力按压混匀物,用力越大,混匀强度越大。

5.5混匀完毕,关闭开关,切断电源。

6.质量控制(不需要)
7.维护保养
每次使用完毕,切断电源,清洁表面。

8.校正(不需要)
9.应急处理
出现不能自行解决的故障,应及时联系维修人员并告知微生物实验室负责人。

10.注意事项
10.1容器开始混匀时应逐渐加力,以免一开始就高强度
混匀,液体容易溅出。

10.2如液体溅出,应立即停止使用。

取出海绵,用消毒
液浸泡清洗,待海绵脱水干燥后,方可重新使用。


合器外表及台面均要用消毒液擦拭干净。

10.3不要长时间开启旋涡混合器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档