知识讲解 简谐运动及其图象
简谐运动图象和公式教科ppt课件

一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像
《简谐运动的图象》课件

量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
简谐运动的描述(高中物理教学课件)完整版

四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。
简谐运动的图象和公式省名师优质课赛课获奖课件市赛课一等奖课件

2.回答下列问题: (1)质点离开平衡位置旳最大位移? (2)1s末、4s末、10s末质点位置在哪里? (3)1s末、6s末质点朝哪个方向运动? (4)质点在6s末、14s末旳位移是多少? (5)质点在4s、16s内经过旳旅程分别是多少?
x/m
3
O
8
16
t/s
-3
课堂练习
4.某弹簧振子旳振动图象如图所示,根据图象判断。下
D 列说法正确旳是( ) A、第1s内振子相对于平衡位置旳位移与速度方向相反 B、第2s末振子相对于平衡位置旳位移为-20cm C、第2s末和第3s末振子相对于平衡位置旳位移均相同, 但瞬时速度方向相反
D、第1s内和第2s内振子相对于平衡位置旳位移方向相 同,瞬时速度方向相反。
x/cm 2 0
0 1 2 3 4 5 6 7 t/s
-20
5.一种质点作简谐运动旳振动图像如图.从图中能够
看出,该质点旳振幅A=0._1_ m,周期T=0_._4 s,频率 f=2_.5_ Hz,从t=0开始在△t=0.5s内质点旳位移 0_._1,m旅程 = __0_ .5.m
三、简谐运动旳体现式
(4)从图象能够拟定任一时刻物体旳速度大小和方向, 以及某一段时间速度大小变化情况。
课堂练习
1.一质点作简谐运动,图象如图所示,在0.2s到0.3s这 段时间内质点旳运动情况是 CD
A.沿负方向运动,且速度不断增大 B.沿负方向运动旳位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向旳加速度不断减小
因此,以o为圆点,旋转矢量A的末端在ox轴上的投 影点的运动是简谐运动。
用旋转矢量图画简谐运动旳 x t 图
T 2π (旋转矢量旋转一周所需旳时间)
【课件】 简谐运动及其图像 简谐运动回复力及能量 课件教科版(2019)选择性必修第一册

0(填“>”、“<”或“=”)。
a b
8.一竖直悬挂的弹簧振子,下端装有一记录笔,在竖直面内放置一记
录纸。当振子上下振动时,以速率 v 水平向左拉动 记录纸,记录笔在
纸上留下如图所示的图像。y1、y2、x0、 2x0 为纸上印迹的位置坐标。
求该弹簧振子振动的周期和振幅。
1−2
2
9.如图所示,物体 A 和 B 用轻绳相连,挂在轻弹簧下静止不动,A 的
做简谐运动的物体受到总是指向平衡位置,且大小与位移成
正比的回复力的作用。
回复力数学表达式:F=-kx
(1)x是相对于平衡位置的位移、k是比例系数
(2)回复力大小与离开平衡位置的位移大小成正比,回复力方向与位移方向总是相反
(3)回复力F=-kx是判定振动物体是否做简谐运动的动力学判据
• 问题6:试证明竖直弹簧振子的运动是简谐运动?
• 当 Δφ 等于 π 的奇数倍时,两者运动的步调正好相反。同理,当 Δφ 等于 0 或 2π 的
整数倍时,两者同步振动,任意时刻的振动状态均相同。
根据一个简谐运动的振幅A、周期T、初相位φ0,可以 知道做
简谐运动的物体在任意时刻t的位移x是
= (
+ )
所以,振幅、周期、初相位是描述简谐运动特征的物理量。
• 假设重物所受的重力为 G,弹簧的劲度系数为 k,重物处于平衡位置时弹簧的伸
长量为 x1。则G = kx1
• 设重物向下偏离平衡位置的位移为 x 时,弹簧
的伸长量为 x2,则x = x2 - x1 取竖直向下为正方向。
• 则此时弹簧振子的回复力 F= G - kx2 = kx1 - kx2 = -kx
简谐运动的描述ppt课件

简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零
△ = 2( = 0,1,2, … )
(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )
A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。
简谐运动课件 (共28张PPT)

四、简谐运动中位移、加速度、速度、动能、 势能的变化规律
思考:BOB”三 个点的特征?
物理量
B
B’
O O
B O 变化过程
B’ B’ O O B
方向 位移(X) 大小 回复力(F) 方向 加速度(a) 大小 速度(V) 方向 大小 动能大小 势能大小
向右 减小 向左 减小 向左 增大 增大 减小
向左 增大
光滑斜面
6.简谐运动的实例
简谐运动是最简单、最基本的振动。
复习:
x
x
(1)位移:振动中的位移x都是以平衡位置为起点的,因此,方向 就是从平衡位置指向末位置的方向,大小就是这两位置间的距离, 两个“端点”位移最大,在平衡位置位移为零。 (2)回复力:
F kx
指向平衡位置,与位移方向相反,平衡位置为零,两端点最大。
回复力:使振动物体返回平衡位置的力。
特点:①方向:总指向平衡位置 ②回复力是按效果命名的力,回复力可以是物体受到的一个 力,也可以是物体所受某一个力的分力,还可以是物体受到的合外力 平衡位置:平衡位置是指回复力为零的位置,但并不一定是合外力 为零的位置(单摆)
3.知识回顾:胡克定律
在弹簧发生弹性形变时,弹簧振子的回复力F 与振子偏离平衡位置的位移x大小成正比,且方 向总是相反,即:
F kx
这个关系在物理学中叫做胡克定律 式中k是弹簧的劲度系数。负号表示回复力的 方向跟振子离开平衡位置的位移方向相反。
4.简谐运动:
定义:物体所受的力与它偏离平衡位置的位移大小成 正比,并且总指向平衡位置,则物体所做的运动叫做简 谐运动。 说明:判断是否作简谐振动的依据是
F kx
向左 减小
向右 增大 向左 增大 向右 减小 减小 增大
3.简谐运动的图像和公式

旋 转 矢量 A的
x 端点在
轴上的投
影点的运
动为简谐
运动.
x Acos(t )
简谐运动的位移公式:
x Acos( t )
其中A表示振幅, 是圆频率(或称角频率),( t + )称
为物体在t时刻振动的相位(或相)。 是t =0时的相位,
称为初相位,简称为初相。
物体振动状态由相位( t + )决定
旋转矢量
为了直观地表明简谐运动的三个特征量的物理意义,
可用一个旋转矢量来表 示简谐运动。
A
t=t
t = 0
t+
A
o
x·
x
x Aco(s t )
因此,以o为圆点,旋转矢量A的末端在ox轴上的
投影点的运动是简谐运动。
参考圆
用旋转矢量图画简谐运动的 x t 图
T 2π (旋转矢量旋转一周所需的时间)
2:1 1:1 0
1.相位是用来描述一个周期性运动的物体在一个周期内所 处的不同运动状态的物理量.
2.
x=Asin(ωt+ φ )
其中x代表质点对于平衡位置的位移,t代表时间,ω叫做 圆频率,ωt+φ表示简谐运动的相位.
3.两个具有相同圆频率w的简谐运动,但初相分别为φ1 和φ2,它们的相位差就是 (ωt+ φ 2)-(ωt+ φ 1)= φ 2- φ 1
知识应用: 1.一质点作简谐运动,图象如图所示,在0.2s 到0.3s这段时间内质点的运动情况是 ( CD )
A.沿负方向运动,且速度不断增大 B.沿负方向运动的位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向的加速度不断减小
弹力、动能、 势能、机械能、 动量呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐运动及其图象【学习目标】1.知道什么是弹簧振子以及弹簧振子是理想化模型。
2.知道什么样的振动是简谐运动。
3.明确简谐运动图像的意义及表示方法。
4.知道什么是振动的振幅、周期和频率。
5.理解周期和频率的关系及固有周期、固有频率的意义。
6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。
7.能用公式描述简谐运动的特征。
【要点梳理】要点一、机械振动1.弹簧振子弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子.2.平衡位置平衡位置是指物体所受回复力为零的位置.3.振动物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动.振动的特征是运动具有重复性.要点诠释:振动的轨迹可以是直线也可以是曲线.4.振动图像(1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律.(3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻).(4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.如图所示,在x 坐标轴上,设O 点为平衡位置。
A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零.在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负.要点二、简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动.简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动.物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有:(1)时间的对称: 4OB BO OA AO T t t t t ====,OD DO OC CD t t t t ===,DB BD AC CA t t t t ===.(2)速度的对称:①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D 两点)的速度大小相等,方向可能相同,也可能相反. 4.从振动图像分析速度的方法(1)从振动位移变化情况分析:如图所示,例如欲确定质点1P 在1t 时刻的速度方向,取大于1t 一小段时间的另一时刻1t ',并使11t t '-极小,考查质点在1t '时刻的位置1P '(11t x ,''),可知11x x <',即1P '位于1P 的下方,也就是经过很短的时间,质点的位移将减小,说明1t 时刻质点速度方向沿x 轴的负方向.同理可判定2t 时刻质点沿x 轴负方向运动,正在离开平衡位置向负最大位移处运动. 若12x x <,由简谐运动的对称特点,还可判断1t 和2t 时刻对应的速度大小关系为12v v >。
(2)从图像斜率分析:图像切线斜率为正,速度方向为正方向,图像切线斜率为负,速度方向为负方向,斜率绝对值表示速度大小.斜率大、速度大.要点三、描述简谐运动的基本概念 1.全振动一个完整的振动过程,称为一次全振动.不管以哪里作为开始研究的起点,弹簧振子完成一次全振动的时间总是相同的. 2.周期(1)定义:做简谐运动的物体完成一次全振动所需要的时间叫做振动的周期,用T 表示. (2)单位:在国际单位制中,周期的单位是秒(s ). (3)意义:周期是表示振动快慢的物理量.周期越长表示物体运动得越慢,周期越短表示物体运动得越快. (4)简谐运动的周期公式:2m T k=. 要点诠释:公式中m 为做简谐运动物体的质量,k 为做简谐运动物体受到的合外力跟位移的大小的比例常数.3.振幅 (1)定义:振动物体离开平衡位置的最大距离,叫做振幅,用A 表示. (2)单位:在国际单位制中,振幅的单位是米(m ).(3)意义:振幅是表示振动强弱的物理量.要点诠释:①振幅是一个标量,是指物体偏离平衡位置的最大距离.它没有负值,也无方向,所以振幅不同于最大位移.②在简谐运动中,振幅跟频率或周期无关.在一个稳定的振动中,物体的振幅是不变的.③振动物体在一个全振动过程通过的路程等于4个振幅,在半个周期内通过的路程是两个振幅,但14个周期内通过的路程不一定等于一个振幅.可以比一个振幅大,也可以比一个振幅小. 4.频率(1)定义:单位时间内完成的全振动的次数,叫故振动的频率,用f 表示.常把物体在1 s 内完成的全振动次数叫做频率.(2)单位:在国际单位制中,频率的单位是赫兹(Hz ).(3)意义:频率是表示物体振动快慢的物理量.频率越大表示振动得越快,频率越小表示振动得越慢.(4)周期与频率的关系:1T f=。
(5)固有频率和固有周期:振子获得能量后,物体开始振动.物体的振动频率,只是由振动系统本身的性质决定,与其他因素无关,其振动频率叫固有频率,振动周期也叫固有周期.要点四、简谐运动的描述1.简谐运动的表达式:sin()x A t ωϕ=+(1)式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间. (2)A 表示振动质点偏离平衡位置的最大距离,即振幅.(3)ω叫做简谐运动的圆频率,它也表示简谐运动物体振动的快慢.与周期T 及频率f 的关系:22f Tπωπ==。
所以表达式也可写成:2sin x A t T πϕ⎛⎫=+ ⎪⎝⎭或sin(2)x A f t πϕ=+.(4)ϕ表示0t =时,简谐运动质点所处的状态,称为初相位或初相.t ωϕ+代表了简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以代表简谐运动的相位. (5)简谐运动的位移和时间的关系也可用余弦函数表示成:cos ()2x A t πωϕ⎡⎤=-+⎢⎥⎣⎦,注意同一振动用不同函数表示时相位不同,而且相位t ωϕ+ 是随时间变化的量.(6)相位每增加2π就意味着完成了一次全振动. 2.测量弹簧振子周期的方法弹簧振子的周期一般较小,测定其周期时,一般是用秒表测出振子完成n 次全振动所用的时间t ,则t T n=. n 值取大一些(如50)可以减小周期的测量误差.3.计算振动物体通过的路程的方法一个周期内,振子的运动路程为4A .若全振动的次数为n ,则振动物体通过的路程为4nA . 4.对一次全振动的认识对简谐运动的物体,某一阶段的振动是否为一次全振动,可以从以下两个角度判断: 一是从物体经过某点时的特征物理量看,如果物体的位移和速度都回到原值(大小、方向两方面),即物体完成了一次全振动;二是看物体在这段时间内通过的路程是否等于振幅的四倍. 5.相位差是指两个相位之差,在实际中经常用到的是两个具有相同频率的简谐运动的相位差,反映出两简谐运动的步调差异.设两简谐运动A 和B 的振动方程分别为: 111sin()x A t ωϕ=+,222sin()x A t ωϕ=+,它们的相位差为2121()()t t ϕωϕωϕϕϕ∆=+-+=-.可见,其相位差恰好等于它们的初相之差,因为初相是确定的,所以频率相同的两个简谐运动有确定的相位差.若210ϕϕϕ∆=->,则称B 的相位比A 的相位超前ϕ∆,或A 的相位比B 的相位落后ϕ∆; 若210ϕϕϕ∆=-<,则称B 的相位比A 的相位落后ϕ∆,或A 的相位比B 的相位超前ϕ∆. (1)同相:相位差为零,一般的为2012n n ϕπ∆== (, , ,). (2)反相:相位差为π,一般的为(21)012n n ϕπ∆=+= (, , ,).要点诠释:比较相位或计算相位差时,要用同种函数来表示振动方程,相位差的取值范围:πϕπ-<∆≤.6.振动图像的信息 如图所示,则(1)从图像上可知振动的振幅为A ; (2)从图像上可知振动的周期为T ;(3)从图像上可知质点在不同时刻的位移,1t 时刻对应位移1x ,2t 时刻对应位移2x ; (4)从图像上可以比较质点在各个时刻速度的大小及符号(表示方向),如1t 时刻质点的速度较2t 时刻质点的速度小,1t 时刻质点的速度为负,2t 时刻质点的速度也为负(1t 时刻是质点由最大位移处向平衡位置运动过程的某一时刻,而2t 时刻是质点由平衡位置向负的最大位移运动过程中的某一时刻);(5)从图像上可以比较质点在各个时刻加速度的大小及符号,如1t 时刻的加速度较质点在2t 时刻的加速度大,1t 时刻质点加速度符号为负,2t 时刻质点加速度符号为正; (6)从图像可以看出质点在不同时刻之间的相位差.7.简谐运动的周期性简谐运动是一种周而复始的周期性的运动,按其周期性可作如下判断:(1)若21t t nT =-,则12t t 、两时刻振动物体在同一位置,运动情况相同. (2)若2112t t nT T -=+,则12t t 、两时刻,描述运动的物理量x F a v (、、、)均大小相等,方向相反.(3)若2114t t nT T -=+或2134t t nT T -=+,则当1t 时刻物体到达最大位移处时,2t 时刻物体到达平衡位置;当1t 时刻物体在平衡位置时,2t 时刻到达最大位移处;若1t 时刻,物体在其他位置,2t 时刻物体到达何处就要视具体情况而定.【典型例题】类型一、简谐运动的基本概念例1 关于机械振动的位移和平衡位置,以下说法中正确的是( ). A .平衡位置就是物体振动范围的中心位置B .机械振动的位移总是以平衡位置为起点的位移C .机械振动的物体运动的路程越大,发生的位移也越大D .机械振动的位移是指振动物体偏离平衡位置最远时的位移【思路点拨】平衡位置是物体所受回复力为零时所在的位置.【答案】B【解析】平衡位置是物体可以静止时的位置,所以应与受力有关,与是否为振动范围的中心位置无关.如乒乓球竖直落在台面上的运动是一个机械振动,显然其运动过程的中心位置应在台面上,所以A 项不正确;振动位移是以平衡位置为初始点,到质点所在位置的有向线段,振动位移随时间而变,振子偏离平衡位置最远时,振动物体振动位移最大,所以只有选项B 正确.【总结升华】位移和平衡位置是机械振动问题中非常重要的概念.位移的正负方向应该作出规定,平衡位置则是物体所受回复力为零时所在的位置.举一反三:【高清课堂:简谐振动及其图像例1】【变式1】一质点做简谐运动,其振动图象如图所示,则( )A .振幅是2cmB .振动频率为4HzC .3s t =时,质点速度为正且最大D .4s t =时,质点速度为正且最大 【答案】A C【高清课堂:简谐振动及其图像例2】【变式2】一质点作简谐运动,图象如图所示,在0.2s到0.3s这段时间内,质点的运动情况是()A.沿负方向运动,且速度不断增大B.沿负方向运动的位移不断增大C.沿正方向运动,且速度不断增大D.沿正方向的加速度不断减小【答案】C D类型二、振动图像的理解例2 (2015 东城一模)如图甲所示,弹簧的一端与一个带孔小球连接,小球穿在光滑水平杆上,弹簧的另一端固定在竖直墙壁上。